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This document provides a detailed overview of the modeling framework used in 
the 2025 Rhodium Climate Outlook (RCO). Section 1 provides an overview of 
Rhodium’s Global Energy Model (RHG-GEM), an integrated modeling platform that 
captures uncertainty in economic and population growth, oil and natural gas 
prices, and clean energy technology costs under likely policy evolution to provide 
probabilistic energy, emissions, and temperature projections through the end of 
the century. In Section 2, we outline the probabilistic approach to projecting 
energy and emissions outcomes under uncertainty, and Section 3 describes the 
novel approach to climate policy projections implemented in the RHG-GEM to 
answer the question: “what are we on track for?”. Section 4 summarizes the 
approach used to translate GHG emission pathways from RHG-GEM into 
temperature outcomes, through simulations of the Finite-amplitude Impulse 
Response (FaIR) model. Section 5 presents the methodology of the Monte-Carlo 
Analysis applied to this integrated modeling framework to capture the key 
uncertainties in the evolution of the energy system, future global GHG emissions 
pathways, and associated temperature outcomes.  In Section 6, we describe how 
we project all six Kyoto gases as part of our comprehensive emissions framework. 
Finally, we outline our methodology for developing our alternative scenarios. 

Section 1: Rhodium’s Global Energy Model 
To model global energy and emissions outcomes, we use Rhodium’s Global Energy Model 
(RHG-GEM), a highly modified version of the World Energy Modeling System (WEPS) used 
by the Energy Information Administration (EIA) to produce the International Energy 
Outlook 2023 (IEO2023). The WEPS model is designed to provide the EIA’s long-term world 
energy projections under current policy and technology trends. As such, Rhodium invested 
in significantly modifying the WEPS model—and for many components overhauling the 

Energy & Climate 

https://rhg.com/research/rhodium-climate-outlook-2024/
https://www.eia.gov/outlooks/ieo/weps/documentation/
https://www.eia.gov/outlooks/ieo/
https://www.eia.gov/outlooks/ieo/
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original model completely—to robustly capture a range of policy, socioeconomic, and 
energy market futures.  

CORE COMPONENTS OF RHG-GEM 

 Built for uncertainty: RHG-GEM is designed to consider a wide range of uncertainties 
underpinning the energy system, including through Monte Carlo Analysis. This allows 
for a robust and systematic exploration of the main drivers of energy and emissions.  

 Integrated platform: Our energy and emissions model is linked with the FaIR model. 
This allows for probabilistic temperature projections derived directly from our 
emissions projections that include climate system uncertainty as well.  

 Clean technology characterization: RHG-GEM characterizes commercially available 
clean technologies, including solar, wind, utility-scale battery storage, and electric 
vehicles. The model integrates up-to-date technology cost and performance data and 
captures spatial and temporal variability of renewable energy resources. We also 
characterize novel clean technologies—which we collectively refer to as emerging 
clean technologies (ECTs)—with a focus on clean hydrogen, sustainable aviation fuels 
(SAF), carbon capture, and direct air capture (DAC). To appropriately capture the 
market for clean technologies, we also characterize complementary and competitor 
technologies and relevant supporting infrastructure.  

 Clean technology demand: In the industrial, transport, and building sectors we allow 
for fuel substitution and clean technology adoption based on relative costs and 
performance, consumer behavior, and historically-calibrated fuel-switching potential.  

 Integrated supply and demand: Demand is determined endogenously in the model, 
based on GDP, population, energy prices, and other drivers. Demand and supply solve 
iteratively in the model, producing a general equilibrium solution on an annual basis.  

 Regional: RHG-GEM models 16 world regions that consist of countries and country 
groupings within the broad divide of the Organization of Economic Cooperation and 
Development (OECD) and non‐OECD countries (Figure 1). 

 Modular: RHG-GEM has a modular structure. The main modules consist of: electricity 
and heat, oil and gas supply, industry, transport, buildings, and non-energy emissions, 
along with a climate policy module. This modularity enables us to design the 
methodology and assumptions most suited to each sector. RHG-GEM is also designed 
to easily link with other models, including FaIR. 

 Model timeframe: Our time horizon extends to 2100, which allows us to provide a 
methodologically consistent set of global emissions and temperature rise projections. 
And as 2050 gets closer, looking beyond mid-century provides useful insights into 
regional energy and sectoral emissions dynamics. 
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FIGURE 1 
RHG-GEM regions 

 

 
Source: EIA WEPS 

 

FIGURE 2 
The integrated RHG-GEM platform 

 
 
Source: Rhodium Group 

Energy system and emissions modeling 

ELECTRIC POWER SECTOR AND CLEAN TECHNOLOGY PRODUCTION 

Rhodium’s electricity and emerging clean technology module (REEM henceforth) is built 
using the TIMES model framework, which uses a linear programming approach to explore 
cost-optimal configurations of the future energy system. The model objective is to 
minimize total discounted system costs. Features of this formulation include perfect 

https://iea-etsap.org/docs/TIMESDoc-Intro.pdf
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competition (no market power held by specific firms) and perfect foresight (market players 
have all information about the present and the future, to inform investment decisions). The 
utilization of an optimization framework in modeling the power sector and emerging clean 
technology supply allows for the identification of the most efficient and economically 
viable pathways to meet energy demands, while explicitly diving into the complex 
dynamics that result from the alignment of policy targets with the inherent constraints tied 
to the physics of energy systems. 

The REEM projects generating capacity (including additions and retirements), generation, 
fuel consumption, carbon dioxide (CO2) emissions, and prices for the electric power and 
heat sector, hydrogen, and sustainable aviation fuel production. Integrating emerging 
climate technologies into the REEM’s least-cost optimization framework allows these 
technologies to compete for market share with incumbents and clean alternatives. 
Moreover, we are able to capture sector coupling between the electric power system and 
electricity-based technologies (e.g., electrolysis, power-to-liquids, and DAC).  

The REEM receives electricity, district heat, hydrogen, and sustainable aviation fuel 
demand from each end-use sector (residential, commercial, industry, and transport), oil 
and gas supply curves from the oil and gas sector, along with captured CO2 from the 
industrial module. For each of the end-use modules, the REEM provides the following 
projections:    

 Biomass, electricity, district heat, hydrogen, and sustainable aviation fuel wholesale 
prices 

 Electricity retail prices 
 Fuel consumption to produce electricity, hydrogen, and alternative fuels 
 Carbon dioxide transport and sequestration costs 
 

POWER AND HEAT PRODUCTION 

The modeling of the existing power stock takes into account the installation year of each 
plant and is derived from data sourced from the Platts’ World Electric Power Plant 
database and IRENA. Plants under construction are sourced from the Global Energy 
Monitor’s integrated project tracker. Renewable electricity potentials, encompassing 
solar, wind, and hydro sources, are modeled at the country level. Hourly capacity factors 
for renewables can be consolidated into 12 or 36 annual time slices. This allows user 
control over the number of annual time slices, offering flexibility in representing seasonal 
and time-of-day variations in electric load and supply. For the purposes of the RCO 2025, 
we use 12 time slices to lower computational burden, given the need to run many trials in 
our Monte Carlo Analysis (MCA). 

The model explicitly incorporates early economic retirement and capacity retrofits. While 
non-economic capacity often persists in the real world due to local must-run 
considerations, institutional practices, and other factors, the REEM introduces decay 
constraints. These constraints limit the rate of decrease in coal, gas, and oil power 
capacity, specifying a maximum annual percentage rate of decline and a representative 
unit size that can be retired beyond the annual percentage rate, allowing capacity to reach 
zero. Residual gas and coal plants are constrained to maintain a minimum of 20% annual 
capacity factor each. 

https://www.irena.org/Data/Downloads/IRENASTAT
https://globalenergymonitor.org/projects/global-integrated-power-tracker/
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FIGURE 3 
Overview of the REEM energy system  
Clean technologies and related infrastructure are highlighted in blue. 

   
Source: Rhodium Group 

Grid reliability is addressed through reserve capacity requirements, obligating suppliers 
to uphold sufficient generating capacity that exceeds peak demand by a specified margin. 
This constraint assigns dependability factors to each power plant type, representing the 
percentage of installed capacity the grid can rely on in case of outages or peak power 
demand time slices. The reserve capacity requirements constraint applies to each region 
and year as follows: 

�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖

 

 

× 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖  

≥  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚 arg 𝑖𝑖 𝑛𝑛  ×  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

The dependability factors and reserve margin have been sourced through a 
comprehensive literature review. Dependability percentages for variable renewable 
sources and hydro have been established at 15% and 50%, respectively. Reserve margin 
has been set at 25%. 

We consider the uncertainty in cost and performance parameters for renewable power 
generation technologies in the MCA, including solar, wind and utility scale batteries. Cost 
and performance for power generating facilities equipped with carbon capture technology 
are informed by Rhodium analysis and current literature. This includes work from the 
National Energy Technology Laboratory, which details cost and performance for natural 
gas-fueled direct supercritical CO2-fired power plants. 

https://netl.doe.gov/energy-analysis/details?id=eb6f9d1c-8fb8-45ee-9766-1ffe33d4cca8
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EMERGING CLEAN TECHNOLOGIES 

Clean hydrogen: We model clean hydrogen production from electrolysis, biomass 
gasification, methane pyrolysis, and fossil with carbon capture, as well as unabated fossil-
based hydrogen production pathways. Hydrogen demand covers both existing uses of 
hydrogen, including in the chemical and refining sectors, and new uses, including other 
industries, fuel cell vehicles, power and heat generation, and power to liquids/gas. All 
demands except hydrogen used for fuel production are exogenous to the REEM and 
originate from other RHG-GEM modules. We assume hydrogen for existing uses can be 
sourced by any hydrogen pathway, with the exception of methanol and ammonia 
transformed into urea. In those sectors only, unabated or CCS-equipped hydrogen 
pathways can fulfill hydrogen demand, reflecting the need for carbon in these industrial 
processes. In general, we assume new sources of hydrogen demand can only be produced 
by clean pathways. 

Sustainable aviation fuels: SAF technologies modeled include Hydroprocessed Esters and 
Fatty Acids (HEFA), biomass gasification Fischer-Tropsch with and without CCS and power-
to-liquids Fischer-Tropsch. We assume these fuels can be blended with jet fuel at any ratio 
to be used as “drop-in” fuels for domestic and international flights. Demand for SAF 
originates in the RHG-GEM transportation demand module. 

Direct air capture: DAC modeling in the REEM explicitly differentiates between the solid 
sorbent and liquid solvent pathways. We assume heat for the process can be produced 
on-site or off-site. 

We establish current cost and performance figures for each ECT pathway through 
extensive literature reviews, expert interviews, and Rhodium analysis. The costs are a 
culmination of the capital costs, non-energy operation and maintenance expenses (both 
fixed and variable), financing rates, and energy inputs.  

RHG-GEM incorporates endogenous technology learning for clean hydrogen and DAC to 
project future capital costs of these technologies based on a learning-by-doing approach. 
Capital costs are updated across model run iterations based on cumulative technology 
installed capacity. To address the decline in learning rates with deployment, we employ a 
three-tiered model for technology learning rates. The "revolution learning rate" pertains 
to the early stages of deployment, the "evolution learning rate" signifies a rapid 
deployment phase, and the "commercial learning rate" corresponds to the mature stage 
of technology deployment. Thresholds for each phase are established through expert 
judgment. The uncertainty in technological learning rates is considered in our MCA. 

HYDROGEN PRODUCTION, DELIVERY, AND STORAGE 

Hydrogen capacity is derived from data developed by the Pacific Northwest National 
Laboratory (PNNL) that has disaggregated data for the US, Europe, China, and the rest of 
the world. Regional hydrogen demand is used to estimate installed capacity in the rest of 
the world by REEM region. Planned hydrogen plants are extracted from the IEA’s 2023 
hydrogen projects database and are aggregated by plant and fuel type. Hydrogen supply 
is possible through coal gasification without and with carbon capture, steam methane 
reforming (SMR henceforth) without and with carbon capture, methane pyrolysis, biomass 
gasification without and with carbon capture, and electrolysis. Cost and performance 
parameters associated with production technologies are based on Rhodium analysis for 
electrolysis and the IEA’s future of hydrogen study for all other production technologies. 

https://www.iea.org/data-and-statistics/data-product/hydrogen-production-and-infrastructure-projects-database
https://www.iea.org/data-and-statistics/data-product/hydrogen-production-and-infrastructure-projects-database
https://www.iea.org/reports/the-future-of-hydrogen/data-and-assumptions
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Hydrogen delivery and storage modeling are based on the Joint Research Centre’s work 
on hydrogen supply chain architecture for bottom-up models. This includes three 
hydrogen storage possibilities: large-scale underground storage (UGS), centralized, and 
decentralized tank storage. The efficiency of hydrogen UGS is assumed to be similar to 
the current operating natural gas UGS facilities, whereas the efficiency of tank storage is 
assumed to be around 80%. We also assume that the three storage technologies could be 
used as seasonal storage solutions. Delivery costs range between 7.04 $/kg and 11.38 
$/kg depending on the different potential delivery pathways.  

CARBON TRANSPORT AND STORAGE 

Carbon transport and storage costs are based on the EIA’s WEPS model and are 
estimated to be 40$/tCO2. We assume annual CO2 injection rates that become less 
constraining over time as new storage resources are developed and technology improves. 
For Europe, we limit annual CO2 injection rates to 300 Mt, in line with the 1.5Tech scenario 
of the EU Long Term Scenarios used in the European Green Deal negotiations.   

BIOMASS SUPPLY CURVES 

We developed biomass supply curves based on publicly available Globiom-G4M biomass 
supply curves from the International Institute for Applied Systems Analysis (IIASA). This 
data represents the regional availability of delivered bioenergy at prices ranging between 
3$/GJ and 60$/GJ. To develop HEFA feedstock potentials, we identified different types of 
oil feedstocks that constitute potential HEFA feedstock candidates based on a techno-
economic assessment from Tao et al. From there, we used FAOSTAT country-level data on 
the yearly production of these oil feedstocks as potentials in 2018. Finally, population 
growth is used to project feedstock potential through 2100.  

INDUSTRY 

Industry is an extremely diverse sector with no one-size-fits-all solution for 
decarbonization, and the industrial module is designed to address major subsectors 
independently, projecting demand and considering only technologies appropriate to the 
constraints of the specific subsector. Special attention is paid to technology 
characterization in the highest-emitting subsectors. As a result, industrial fuel demand is 
split across 15 sub-industries in RHG-GEM, with specific detailed models for cement, 
chemicals, and iron and steel. Methane from oil and gas production is considered part of 
the industrial sector, but accounted for in our non-CO2 module (see the section on 
Agriculture, forestry and other land use and other non-CO2 emissions). 

Proxy global demand for the products of each industry is projected using regression 
models and historic demand, GDP, population or demand for related products. The 
regional supply breakdown to meet global demand is calculated by indexing historical 
production to changes in GDP, fuel prices, or population. A price elasticity of demand is 
then applied to the projections to capture sensitivity to energy prices. In addition, we 
calculate the historic fuel intensity of production and fit a regression model to calculate 
any improvements in energy intensity over time and project total energy demand. The 
metrics used as a proxy for demand for products in each subindustry and data sources 
are outlined below. 

https://www.sciencedirect.com/science/article/abs/pii/S0360319914008684?via%3Dihub
https://climate.ec.europa.eu/system/files/2018-11/com_2018_733_analysis_in_support_en.pdf
https://github.com/iiasa/GLOBIOM-G4M_LookupTable
https://github.com/iiasa/GLOBIOM-G4M_LookupTable
https://doi.org/10.1186/s13068-017-0945-3
https://doi.org/10.1186/s13068-017-0945-3
https://www.fao.org/faostat/en/#data/QCL
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TABLE 1 
Drivers of industrial demand  

Industry Demand drivers Data source 

Iron and Steel Steel production and 
consumption, iron 
production 

World Steel in Figures. World Steel Association. 
2000-2023. 

Chemicals Ammonia production, 
petrochemical feedstocks 

USGS Mineral Commodity Summaries, Nitrogen 
(fixed) -Ammonia. 2000-2022 
IEA Energy Balances, 2023 

Non-Metallic Minerals Cement production, Lime 
production 

USGS Mineral Commodity Summaries, Cement. 
2000-2023 
USGS Mineral Commodity Summaries, Lime. 
2000-2023 

Food, Agriculture Total calorie supply, food 
production 

FAOSTAT Food and Commodity Balances. 1960-
2023 

Motor Vehicles Passenger vehicle 
production, commerical 
vehicle production 

International Organization of Motor Vehicle 
Manufacturers. Production Statistics 1999-2023 

Paper Paper products 
production 

FAOSTAT Forest Product Statistics. 1968-2023. 

Non-Ferrous Metals Aluminum production USGS Mineral Commodity Summaries, 
Aluminum. 2000-2023 

Construction Building demand Modeled metric 

Oil Extraction, Coal 
Extraction 

Fuel demand from all 
sectors 

 EIA International Coal and Coke Production. 
2023. 
OECD Data. Crude Oil Production. 2023. 

Other Industry, Other 
Feedstocks, Other Metal-
Based Durables, Other 
Extraction 

-- Fuel demand grows proportional to all other 
industries 

 

In our generic approach, fuel for a given industry was subdivided into end-use categories 
(boilers/CHP, process heat, feedstock and other) based on Manufacturing Energy 
Consumption Survey (MECS) categorizations. A logit choice model was calibrated against 
the historic fuel shares for each category and used to project the future fuel shares for 
demand in each category. The logit is defined by the following equation: 

𝑠𝑠𝑖𝑖  =  
𝛼𝛼𝑖𝑖 exp(𝛽𝛽𝑝𝑝𝑖𝑖)

∑ 𝛼𝛼𝑗𝑗 exp�𝛽𝛽𝑝𝑝𝑗𝑗�𝑁𝑁
𝑗𝑗=1
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Where s is the share of total demand met by a given fuel, α is a preference parameter 
calibrated from historic data, β is a user-defined parameter. and p is the fuel price. The β 
parameter is set to a higher or lower value depending on if the sector is expected to be 
very price sensitive; in other words, if industrial facilities can be expected to quickly switch 
over to the least-cost alternative, or if incumbent technologies will persist due to either 
high variability in actual prices or other preferences. The α preference parameter captures 
any additional factors (e.g., fuel transport costs, equipment costs, labor) that may explain 
historic preferences for fuels but are not captured in fuel price alone.  

The inverse of the equation is solved using historic fuel prices and shares to generate a 
time series of historic preference parameters. These preference parameters are either set 
constant to the historic average or allowed to trend up and down over the model period, 
depending on the strength of the historic trend.  

The model assumes that industrial equipment has long turnover times and only a fraction 
of the total capacity will switch fuels in a given year. A typical stock lifetime is set for each 
category, and the inverse defines the fraction that can turn over in a given year. In each 
modeled year, the logit shares are applied to that fraction of the total demand from the 
previous year, plus any new demand in a given year, and the remaining demand shares are 
set equal to the overall shares in the previous year. 

For each industry, the fuel consumed for process heat and boilers/CHP was split 
proportionally to the demand for low (<100C) and high heat in the industry. Heat pumps 
were introduced as a technological choice in the logit to meet low heat demand. The 
preference parameter for heat pumps was derived from the historic preference for direct 
electrification on a cost per unit of heating basis, taking into account the relative efficiency 
and capital/fuel costs of heat pumps. Additional modeling assumptions were made for 
major-emitting industries to capture sector-specific technologies and dynamics. These 
assumptions, as well as details for sector-specific demand modeling, are outlined below. 

IRON AND STEEL 

There are two main stages to steelmaking: the production of iron from iron ore, which 
requires a reducing agent, and the conversion of iron to steel, with a limited set of 
technologies appropriate for each step. Ironmaking is the most carbon-intensive step in 
the steelmaking process, and decarbonization of the sector can be achieved with both a 
transition to lower-emitting technologies, as well as replacement of iron with recycled 
steel. As a result, the iron and steel submodule projects demand for both iron and steel 
and available recycled scrap, and employs a stock accounting model to determine the 
least-cost technology able to meet demand for each step. 

Total demand for steel is projected by fitting a rational model of the form: 

𝑄𝑄𝑄𝑄𝑄𝑄  =  
𝑎𝑎 ⋅ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

𝑏𝑏 ⋅ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐2  +  𝑐𝑐
 

to the historic time series of demand per capita, as a function of GDP per capita. The 
rationale behind this model was to capture multiple stages in a country or region’s 
economic development: An initial, low industrialization stage when GDP per capita is low 
and demand for basic materials is low, a “development” period during which per capita 
demand for materials grows rapidly with increasing wealth as infrastructure is rapidly built 
out, to a saturation point, and then a post-industrialization stage, during which demand 
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per capita decreases from its historic maximum to a long term, stable level needed to 
maintain existing infrastructure.  

The model was fit to historic data for each GEM region. In OECD-member 
countries/regions, the historic “saturation” point (the point of peak per capita demand) 
was found in the historic time series, and the cumulative steel consumed through that year 
was calculated in order to estimate the long-term steady state demand required to 
maintain previous infrastructure, and constrain the a, b and c parameters of the regression 
model. For developing regions, the cumulative per-capita demand from the OECD was 
used to project the expected inflection point, and constrain the fitted rational model—
projecting demand in these regions to grow as according to their historic pace with respect 
to expected GDP growth, but to eventually taper off once infrastructure levels reach those 
similar to that at which OECD members saw a reversal in demand growth. 

We then apply a sector-specific stock accounting model to calculate demand for total 
steel production by technology and retirements in every year. Demand not covered by 
existing capacity is met with the lowest-cost technology. This model calculates available 
scrap from historic production data and assumes scrap is maximally utilized to meet 
demand for new steel via electric arc furnace production. Any additional demand is met 
via ironmaking pathways, either blast furnaces or direct reduction (which may be natural 
gas, coal, or hydrogen-based).  

In each year, capacity that has reached the retirement age is subtracted from the existing 
stock, and the difference between total iron demand and total stock is assumed to be met 
with the lowest cost technology. Annual new deployment of a given technology is 
restricted to no more than doubling existing stock of the technology to reflect 
infrastructure and construction constraints.  

CEMENT 

Cement is an extremely carbon-intensive industry, historically requiring both high-CO2 
fossil fuels capable of producing high heat and releasing large quantities of process 
emissions during the chemical reaction required to make clinker, one of the main 
ingredients in cement. Since fuel substitution can only address a portion of the emissions 
from cement, solutions like carbon capture and reduction of clinker ratios are required to 
fully decarbonize, and the cement submodule focuses on these technologies. 

Total demand for cement is calculated using the same rational model and methodology 
as employed for the iron and steel sector. Demand for lime is assumed to grow 
proportionally to changes in demand for the major end uses of lime—steel, basic 
chemicals, paper, food, agriculture, and construction. Regional production is adjusted 
based on price elasticity factors. Demand for energy aside from kiln process heat is 
assumed to grow proportionally to cement demand. Total clinker demand is calculated 
assuming a decline in ratios from current regional levels to the current ratio in China, which 
has the lowest clinker ratio of any region. 

The generic logit model is applied to all fuel usage categories in the cement sector except 
for fuel used to heat cement and lime kilns, which accounts for approximately a quarter 
of total energy demand in the sector. We assume that carbon capture is the most viable 
low-carbon alternative for cement and exclude other technology solutions in the earlier 
stages of development (e.g., electric kilns). We use carbon capture costs consistent with 
Rhodium’s ICAP model, a facility-level US industrial carbon capture model developed and 

https://rhg.com/research/industrial-carbon-capture/
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maintained by Rhodium Group. Data on existing cement plants with carbon capture was 
used to calculate the average and standard deviation of prices for this technology and 
generate a normal curve, reflecting uncertainty in plant-level costs. In each year, the cost 
of emitting a ton of carbon is compared to the price curve, and the fraction of the cost 
curve that falls below the carbon cost is assumed to be the share of total cement plants 
that have carbon capture in that year.  

CHEMICALS 

We divided fuel use in the chemicals industry into three major sectors: ammonia, 
methanol, and high-value chemicals (HVCs). Demand for ammonia is projected using a log-
linear regression on global population and historic production. Production is downscaled 
to regions based on relative changes in population and fuel costs. Chemical fuel 
feedstocks are used as a proxy for HVC demand and projected using a log-linear 
regression on global GDP and historic quantities. Production is downscaled to regions 
based on relative changes in fuel prices and GDP. Methanol and demand for non-process 
or feedstock energy are assumed to grow proportionally to demand for HVCs. 

Process heat in the ammonia and methanol sectors was assumed to be used primarily as 
a feedstock and heat source for the generation of hydrogen, which is required for the 
chemical reaction process. The fuel used for hydrogen generation is removed from the 
chemicals sector and included instead in the REEM. We calculate hydrogen demand for 
the chemical industry based on ammonia and methanol production, and send this to the 
REEM where hydrogen production mix is determined based on a least-cost optimization. 
Given that urea and methanol require a source of carbon, we assume that hydrogen for 
those products is produced with carbon-based hydrogen (including with capture). 
Remaining fuel usage in the chemicals sector is determined using the logit approach 
described above.  

REFINING 

In the oil refining sector, which currently accounts for 33% of global hydrogen demand, we 
focus on opportunities for clean hydrogen deployment and carbon capture. The RHG-GEM 
model projects demand for fuel use in refineries based on global oil product demand and 
historic refinery gain, and calculates the amount of associated hydrogen demand required 
to remove sulphur from crude oil. The resulting hydrogen demand is sent to the REEM, 
where the least-cost mix of hydrogen technologies is deployed to meet demand. We 
exclude hydrogen supplied by refinery by-products, since this is sometimes produced 
from integrated systems that would be difficult to retrofit. We model carbon capture on 
fluid catalytic cracker units using the same approach as we do for cement. Capture costs 
are based on Rhodium’s ICAP model.  

FOOD AND AGRICULTURE 

Regional food demand in terms of calories supplied per capita is assumed to grow with 
GDP per capita. A global log-log model is fit to historic calorie per capita data and 
projected forward, and a saturation point is assumed at the current calorie per capita 
consumption level of the United States. This trend is then applied to the current regional 
consumption levels in order to project regional demand, and regional demands are 
summed to determine global demand. Food is assumed to be highly traded, with global 
demand being met with supply from any region. Current regional supply fractions are 
calculated from historic production data, and these supply fractions are scaled and 
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normalized over time with changes in regional demand, then applied to global demand in 
order to calculate regional production levels in terms of tons of food produced. The same 
calculations are applied to scale energy demand from the agricultural sector over time. 

PAPER  

Global paper demand is calculated by applying a log-log regression to global historic 
paper production per capita and GDP per capita. Regional trendlines are set by applying 
the global trend and scaling the intercept to match current regional production levels. A 
saturation point is set at the current production levels for the United States, which has 
both steady production levels and the highest current levels of production per capita. 

 NON-FERROUS METALS  

Aluminum is a key input for many higher-level products, with the bulk of demand coming 
from buildings, vehicles, electric power, and consumer goods. Thus, demand for aluminum 
is projected to grow with demand in these sectors. Historic aluminum demand per unit 
demand for each end use is calculated by applying current end-use fractions to global 
historic aluminum production data and dividing by demand indicators for each end use—
vehicle production, total electricity demand, total buildings energy demand, with 
population used as a proxy catch-all for consumer goods. This aluminum material intensity 
is then applied to global projections of each demand indicator to calculate global 
aluminum demand. Regional production fractions are then calculated by scaling current 
production fractions over time with relative changes in GDP and electricity prices, 
assuming aluminum production will grow more in areas with high economic growth and 
low electricity prices.  

ROAD VEHICLES  

Global demand for new vehicles is calculated in the GEM Transport module. Regional 
production fractions are calculated from historic production data. These fractions are 
scaled over time with relative changes in regional GDP and demand, normalized, and then 
applied to global demand quantities to obtain number of new vehicles produced by region. 

OIL AND COAL EXTRACTION 

Total fuel demand from oil and coal extraction is assumed to grow proportionally to 
economy-wide demand for these fuels. Production quantities are obtained by multiplying 
the historic ratio of extracted fuels to total demand by future demand for fuels. For coal, 
regional production fractions are calculated from historic data and applied to production 
projections, assuming relative production fractions do not change over time. For oil, 
regional production fractions are calculated from the GEM Oil and Gas module outputs of 
oil production by region.  

OTHER INDUSTRIES  

“Other industries” represents fuel demand from various uncharacterized industrial 
sectors—high-level manufacturing of consumer durables, textiles, leather, wood, and 
other products, and unspecified extraction. In addition, some countries do not report 
sector-specific fuel demand in the IEA Energy Balances, and all industrial energy demand 
is categorized as “other” and represented here. Since all fuel demand in other industries 
represents either such uncharacterized demand or demand from refinement of basic 
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materials characterized elsewhere, fuel demand in “Other Industry” is assumed to grow 
proportionally to fuel demand from all other industrial sectors. 

TRANSPORTATION 

The transport model projects demand for passenger and freight transportation based on 
demographic and economic drivers. For on-road transportation, we take a technology 
rich, stock-accounting approach with an aim to capture new technology adoption based 
on relative costs and performance, taking into account policy, infrastructure barriers, and 
consumer behavior. In air and marine transportation, we take a simpler approach due to 
data constraints, but similarly capture cost, efficiency and infrastructure for a range of 
conventional and novel technologies. 

LIGHT-DUTY VEHICLES (LDVS) 

Light-duty vehicle fuel consumption is calculated using a stock-based approach for vehicle 
kilometers traveled and average fuel economy of the existing stock. This submodule uses 
a vintage stock accounting model to calculate the sales and stocks across regions. LDV 
stocks per capita are projected using the Gompertz curve related to GDP per capita and 
vehicle ownership. The survival curve is subsequently applied to calculate the surviving 
stock and finding sales required to satisfy the demand. The historical stocks are calibrated 
to 2021 IEA Mobility Model for the Transport Model (MoMo) data. The market share of the 
sales is determined using a logit choice model based on the total cost of ownership (TCO) 
of the LDVs (see Industry section for logit equation). The CO for each technology is 
calculated using the upfront cost of the vehicle, maintenance cost, and fuel cost per mile. 
After the market shares are computed, the average fuel economy is adjusted to meet the 
fuel economy standards. The LDV fuel consumption is then calculated by multiplying 
average stock fuel economy by the stock and average vehicle kilometer traveled by each 
vehicle.  

ON-ROAD FREIGHT 

Freight (including passenger buses) is categorized into three classes based on the gross 
weight of the vehicle (GVW)—light (< 3.85 tons), medium (3.85 – 16.5 tons), and heavy (>16.5 
tons) trucks. Medium and heavy trucks are further split based on their operation range 
into short-haul (<500 miles) and long-haul trucks (>500 miles) based on the US Vehicle 
Inventory and Use Survey.  

Along with the projected travel demand for trucks, a stock accounting model is used to 
project future sales and stocks. The module consists of seven vehicle technology types—
gasoline, diesel, natural gas, LPG, battery electric vehicle (BEV), plug-in hybrid electric 
(PHEV), and fuel cell electric vehicles (FCEV). We assume FCEVs will be more suited for 
medium and heavy trucks due to their longer range, faster refueling times, and lower risk 
of lost cargo capacity. The market share of sales by drivetrain is determined by using a 
logit choice model based on the TCO of the trucks. The TCO for each technology is 
calculated for the first user over a period of five years using the upfront cost of the vehicle, 
resale price, infrastructure cost (for BEV and FCEVs), maintenance cost, and fuel cost per 
mile.  

Further, we assume fuel economy standards currently on-the-books are met, plus 
moderate fuel economy improvements for all regions through 2050, based on expert 

https://www.census.gov/library/publications/2002/econ/census/vehicle-inventory-and-use-survey.html
https://www.census.gov/library/publications/2002/econ/census/vehicle-inventory-and-use-survey.html
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judgement and historical trends. For both LDVs and freight, we assume all zero-emission 
vehicle policies are met, including mandates and subsidies. 

MARINE 

Domestic marine travel demand is projected by growth in nine industrial commodities 
(chemicals, iron and steel, food, paper, refinery (petroleum products), non-metallic 
minerals, other industry, agriculture, and extraction). International marine demand is 
projected by growth in energy commodities (industrial outputs, coal, LPG, natural gas, and 
petroleum product) and oil price. The future share of fuels in marine consumption is 
determined using a logit choice model based on the TCO of different powertrains in 
shipping. The TCO is calculated based on IEA assumptions for base ship cost, fuel 
cell/engine cost, fuel storage, infrastructure, and delivery costs. 

AVIATION 

For passenger air travel, revenue passenger miles (RPM) per capita is projected based on 
the historical relationship between GDP per capita and demand. RPM per capita is 
assumed to follow an s-curve shape to reflect more rapid growth as regions develop and 
saturation at higher levels of income. GDP per capita is also used to project revenue ton 
miles for freight air demand. The future shares of conventional and sustainable aviation 
fuels are determined by a logit choice function based on projected fuel prices. 

BUILDINGS 

Residential and commercial energy demands by fuel are calculated based on projected 
changes in GDP, population, and fuel prices. As shown in the formula below, each service 
demand is assigned a socioeconomic driver of growth as well as an elasticity factor to 
inflate/deflate demand growth above/below the driver alone. Demand is also subject to 
changes in the weighted-average fuel price and fuel price elasticity.  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡−1
∗ (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑡𝑡
/𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑡𝑡−1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡−1⁄ ) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Historical energy consumption by energy service is calibrated to data from GCAM. For 
each service demand, region, and year, fuel mix is determined using a logit choice model 
calibrated against the historic fuel shares. 

DATA CENTERS AND AI 

Electricity demand from data centers and artificial intelligence (AI) applications is 
represented as a distinct component of total power demand. This demand is implemented 
as a deterministic trajectory based on a review of recent literature, including the 
International Energy Agency’s Energy and AI report. The projection captures the expected 
increase in global electricity use associated with the expansion of digital infrastructure 
and AI computing workloads. While stylized, this representation ensures that RHG-GEM 
reflects the incremental power requirements from growing data center operations. 

https://www.iea.org/data-and-statistics/charts/current-and-future-total-cost-of-ownership-of-fuel-powertrain-alternatives-in-a-bulk-carrier-ship
https://gcims.pnnl.gov/modeling/gcam-global-change-analysis-model
https://iea.blob.core.windows.net/assets/601eaec9-ba91-4623-819b-4ded331ec9e8/EnergyandAI.pdf
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Section 2: Probabilistic Projections 
RHG-GEM is an integrated platform that produces fully probabilistic policy, 
socioeconomic, energy price, technology cost and behavioral projections of the energy 
system and emissions. We do so using a Monte Carlo Analysis (MCA), which relies on 
repeated random sampling to estimate a probability distribution of outcomes. Global 
emissions are then fed into the FaIR model to produce internally-consistent probabilistic 
global average temperatures.  

Emission uncertainties 
We parameterize the following sources of socioeconomic, energy market, and behavioral 
uncertainty as inputs to the energy system model. Policy and climate uncertainties are 
discussed in subsequent sections. To define our sensitivities, we draw on the best 
available third-party data and research. For data sources with probabilistic projections, 
we sample from those distributions. Otherwise, we establish probability distributions to 
be consistent with the most recent research and to reflect the range of market and 
economic uncertainties. 

 GDP per capita: GDP per capita data is taken from Stock, Watson, and Mueller’s 
Bayesian latent factor modeling of international long-run growth. Their projections 
produce a joint predictive distribution of per capita GDP for 113 countries through the 
end of the century. To ensure near-term projections align with the latest outlook for 
growth, data through 2028 is aligned with the International Monetary Fund’s World 
Economic Outlook with the exception of China, where we rely on in-house projections 
from Rhodium’s China practice. GDP growth assumptions for China reflect a projected 
growth rate of 2.3% in 2024 and 4.2% in 2025, with long-term growth averaging 2.2% 
between 2024 and 2030, and 1.9% after 2030 on average. We sample jointly 
distributed country-level GDP per capita from this dataset and aggregate up to the 
RHG-GEM regional level where needed.  

 Population: Population data through 2100 is taken from the UNDP’s probabilistic 
global projections. We assume independence of GDP per capita and population due 
to a lack of reliable information on their joint distribution. 

 Oil and gas markets: We consider a distribution of oil and natural gas prices based on 
the historical range, with median prices of $63 per barrel for Brent crude and $4.8 per 
mmBTU for Henry Hub natural gas. Henry Hub prices are adjusted by region based on 
the historical relationship between Henry Hub and other regional market prices.  

 Coal markets: We consider a distribution of thermal and metallurgical coal prices 
based on the historical range. US coal prices are extracted from EIA and adjusted by 
region based on the historical relationship between the US market and other regional 
market prices. 

 Renewable technology cost: Overnight capital and operating costs for key renewable 
technology costs are based on the National Renewable Energy Laboratory’s (NREL) 
Annual Technology Baseline. We construct a probability distribution of costs based 
on the NREL’s Conservative, Moderate Technology Innovation, and Advanced 
Technology Scenarios for solar, wind, and utility-scale storage. Costs are jointly 

https://scholar.harvard.edu/sites/scholar.harvard.edu/files/stock/files/muller_stock_watson_international_long_run_growth_dynamics_w26593_2019.pdf
https://population.un.org/wpp/
https://population.un.org/wpp/
https://www.eia.gov/coal/annual/
https://www.eia.gov/coal/annual/
https://atb.nrel.gov/
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sampled for wind and solar, while utility-scale batteries are sampled with electric 
vehicle (EV) battery costs, with the assumption that they continue to rely primarily on 
lithium-ion technology. 

 Electric vehicle battery costs: A major factor in EV adoption for passenger vehicles is 
upfront costs. We therefore consider uncertainty in the year cost parity is achieved 
between EVs and conventional vehicles between 2025 and 2040. For freight, we 
consider uncertainty in the cost of lithium-ion batteries. We construct a probability 
distribution based on AEO 2025 reference and BNEF battery cost projections. We 
assume battery costs for the suite of heavy-duty EV technologies modeled in RHG-
GEM match these reduction pathways.  

 Emerging climate technologies (ECTs) learning rates: Currently, ECTs are typically 
more expensive than their fossil-fuel incumbents. Over time, these costs are expected 
to come down as a function of deployment, often referred to as a learning rate or 
experience curve. For direct air capture and clean H2 technologies, we consider a 
range of learning rates—defined as the cost reduction for each doubling of 
deployment—to reflect uncertainty in future cost reductions.  

  “Friction” in clean technology uptake: Clean technologies face many non-cost 
barriers today that may continue to slow their adoption. For passenger and freight 
EVs, this includes insufficient charging infrastructure—real or perceived—limited 
model availability, and political politicization. For clean electricity generation, barriers 
include lengthy permitting times, insufficient transmission, and public opposition. We 
capture these barriers in aggregate as uncertainty in the pace of deployment. This is 
modeled as a shift in the deployment curve for EVs and as an increase in the 
construction time for wind and solar projects. 

 Land-use emissions: To project land-use emissions, we utilized historical data from 
FAOSTAT, aggregated by country and grouped into regions based on the regional 
granularity previously described. Given the inherent variability in historical land use 
emissions, we designed a uniform probability distribution for each region. The 
distribution was defined by the minimum and maximum historical emissions values, 
capturing the range within which future emissions are likely to fall. By drawing from 
these distributions, we generated probabilistic land use emissions projections for 
each region, accounting for the uncertainty in future trends while aligning with 
historical patterns. 

Section 3: Climate Policy Projections—What Are We 
On Track For? 
As more countries adopt emission reduction targets or net-zero emission pledges, the gap 
between current policies and the mitigation actions needed to achieve these goals 
continues to widen. Assessing that gap is crucial, and Integrated Assessment Models 
(IAMs) can contribute by projecting the evolution of GHG emissions and temperature over 
the next century under alternative policy developments. IAMs generally project where 
current policies (and sometimes announced policies) take us if no further action is 
implemented. These current policy pathways are compared with stylized policy scenarios 
where the world meets specific targets (e.g., 1.5°C warming) to alert of this policy gap and 

https://www.fao.org/faostat/en/#data/GT
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spur governments into further action. But policy is not static. It is the product of evolving 
social, economic, and political drivers. Climate policy will continue to develop over time, 
and quantitative assessments of this evolution are critically missing for decision-makers, 
who invest in new equipment, processes, and technologies across the world.  

The latest addition to RHG-GEM, the Climate Policy Projections (CPP), aims to fill this gap. 
Based on an econometric model of climate policy, the CPP charts the likely evolution of 
climate action over time. Underlying Rhodium’s CPP is a panel data analysis of policy 
evolution in 51 countries from 2000 to 2020. Rather than a deterministic forecast, the CPP 
is a policy-modeling tool that responds dynamically to projections of political and 
socioeconomic drivers. Incorporated into Rhodium’s suite of global energy system, GHG 
emissions, and temperature models, it allows us to answer the question: What are we on 
track for?  

What drives a country’s climate action?  
As climate change rises on the political agenda, research has increasingly focused on the 
forces influencing climate policy action at different levels of government. From quantifying 
local lobbying efforts to multi-country comparisons of carbon pricing policies, a review of 
this broad political economy literature suggests that climate policy is linked to three types 
of factors: 

ECONOMIC  

Higher levels of GDP per capita tend to be associated with more ambitious climate policy. 
Wealthier economies have more resources to devote to climate mitigation and can afford 
to invest in new technologies. They also tend to have greater historical emissions, implying 
higher responsibility. Climate policy is also responsive to energy prices. With higher fuel 
prices, affordability and competitiveness concerns quickly come to the forefront of the 
political agenda. On the other hand, reliance on fossil fuel revenues (so-called fossil fuel 
rents) reduces a country’s likelihood of implementing policies curbing their extraction or 
use. 

POLITICAL 

A rise in public awareness of climate change and its impacts has been a critical factor in 
bringing the issue to the recent political agenda, increasing policy action. Organized 
private interests have been shown to actively mobilize and lobby against more ambitious 
climate policies historically, on the basis that they increase costs and affect profitability 
(e.g., fossil-fuel extraction and supply, fossil-based power generation, energy-intensive 
industries). On the other hand, as the economic opportunities from the energy transition 
arise, it is likely that a growing influence of clean technology lobbies could influence 
climate policy action positively.  

INSTITUTIONAL 

The influence of these political forces on climate action is catalyzed by a country’s 
institutions. Good governance tends to be linked to more transparent formulation and 
implementation of policies, more independence from private influence, less subject to 
corruption, and more closely related to public opinion. Good quality institutions should 
therefore deliver more climate action as public concern rises on the topic.        
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In a panel data analysis, we relate these drivers to the historical evolution of climate action 
to verify and quantify these mechanisms. 

Historical evolution of climate policy 
Climate policy has evolved differently across the world, and policy instruments differ 
widely. Our quantitative approach to the CPP delivers a single measure of climate action 
(both its coverage and stringency) that can be consistently compared across countries 
and over time. Studies have used different proxies for this: most rely on GHG emissions 
reductions as an indicator of climate change mitigation. But emissions are directly linked 
to economic output and are therefore greatly affected by non-policy factors (e.g., 
recession, natural disaster, pandemic). Others focus on countries that have implemented 
a carbon price as a comparable indicator of climate ambition—a method that discounts 
climate policy implemented through other instruments (subsidies, regulation, etc.). 
Another common method is to consider “policy density”, i.e., the number of climate 
policies and laws implemented in one country, abstracting from the effectiveness or at 
least ambition underlying these policy packages.  

For our analysis, we built a novel national index of climate action, based on the OECD’s 
Climate Actions and Policies Measurement Framework1, a structured and harmonized 
database of climate policies across countries and years. We base our analysis on the 2023 
database version, covering from 2000 to 2022 and 49 countries participating in the 
International Programme for Action on Climate (namely OECD members and accession 
candidates, G20 countries, and the European Union). Several global databases of climate 
policies are publicly available, but the CAPMF is the most comprehensive harmonized 
database. It brings together 56 policies and climate actions, ranging from sectoral 
instruments (e.g. solar feed-in-tariffs or minimum efficiency performance standards for 
appliances), to cross-sectoral policies (e.g. carbon prices, targets) as well as international 
actions (e.g. participation in climate agreements). The database tracks the implementation 
of each of these 56 policies across countries, as well as their stringency using a normalized 
scale: from zero when a policy is not in place, to 1 capturing the most stringent 
implementation across all countries and years in the database.  

For each country in the database, we construct an aggregate climate policy index, as a 
weighted average of each of the policies’ stringency in each country and year. Since the 
CAPMF deliberately includes both climate mitigation policies and non-climate policies that 
have climate mitigation benefits, we must assign weights to each policy to give more 
importance to those directly intended to reduce emissions (see Table 2). 

_____________________________________________________________________________________________________________________ 
1 Nachtigall, D., et al. (2022), "The climate actions and policies measurement framework: A structured and 
harmonised climate policy database to monitor countries' mitigation action", OECD Environment Working Papers, 
No. 203, OECD Publishing, Paris, https://doi.org/10.1787/2caa60ce-en 

https://data-explorer.oecd.org/vis?tm=actions&pg=0&snb=39&df%5bds%5d=dsDisseminateFinalDMZ&df%5bid%5d=DSD_CAPMF%40DF_CAPMF&df%5bag%5d=OECD.ENV.EPI&df%5bvs%5d=1.0&dq=AUS.A.POL_STRINGENCY.LEV1_SEC%2BLEV2_SEC_E_MBI%2BLEV3_ETS_E%2BLEV4_ETS_E_PR%2BLEV4_ETS_E_GHG%2BLEV3_CARBONTAX_E%2BLEV3_FFS_E%2BLEV3_EXCISETAX_E%2BLEV3_FIT%2BLEV3_AUCTION%2BLEV3_RECS%2BLEV2_SEC_E_NMBI%2BLEV2_SEC_I_MBI%2BLEV2_SEC_I_NMBI%2BLEV2_SEC_B_MBI%2BLEV2_SEC_B_NMBI%2BLEV2_SEC_T_MBI%2BLEV2_SEC_T_NMBI%2BLEV1_CROSS_SEC%2BLEV1_INT.0_TO_10%2BPL&pd=2018%2C&to%5bTIME_PERIOD%5d=false
https://data-explorer.oecd.org/vis?tm=actions&pg=0&snb=39&df%5bds%5d=dsDisseminateFinalDMZ&df%5bid%5d=DSD_CAPMF%40DF_CAPMF&df%5bag%5d=OECD.ENV.EPI&df%5bvs%5d=1.0&dq=AUS.A.POL_STRINGENCY.LEV1_SEC%2BLEV2_SEC_E_MBI%2BLEV3_ETS_E%2BLEV4_ETS_E_PR%2BLEV4_ETS_E_GHG%2BLEV3_CARBONTAX_E%2BLEV3_FFS_E%2BLEV3_EXCISETAX_E%2BLEV3_FIT%2BLEV3_AUCTION%2BLEV3_RECS%2BLEV2_SEC_E_NMBI%2BLEV2_SEC_I_MBI%2BLEV2_SEC_I_NMBI%2BLEV2_SEC_B_MBI%2BLEV2_SEC_B_NMBI%2BLEV2_SEC_T_MBI%2BLEV2_SEC_T_NMBI%2BLEV1_CROSS_SEC%2BLEV1_INT.0_TO_10%2BPL&pd=2018%2C&to%5bTIME_PERIOD%5d=false
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TABLE 2 
Policy weights in Rhodium’s Climate Policy Index 

Policy classification 

Weight 
in 
index 

Example policies in the 
CAMPF 

Market and regulatory instruments directly aimed at 
reducing emissions 

1 Prices, taxes, deployment subsidies, 
standards 

Enabling instruments to facilitate emission reductions 
but not reduce them directly 

0.75 Planning for renewables, R&D 
subsidies 

Non-constraining instruments with aspirational value 0.5 Targets, signatures of international 
agreements  

Actions with informational or advisory value 0.25 Labels, reporting commitments, 
voluntary mechanisms 

Non-climate policy instruments 02 Speed limits, rail expenditures 

Our final index captures a general increase in climate policy ambition within and across 
sectors, in a consistent way that allows for comparison both across countries and over 
time. 

Climate policy projection drivers 
Using a panel data analysis, we estimate how various drivers (economic, political, 
institutional) impacted climate policy over the 20-year time period of analysis and across 
50 countries. The econometric model is presented below.  

THE ECONOMETRIC MODEL 

We chose a country-fixed effect model to control for unobserved heterogeneity between 
countries: 

 
𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 = 𝛾̅𝛾𝐷𝐷𝚤𝚤𝚤𝚤���� + αi + ε𝑖𝑖𝑖𝑖 

Where: 

i,t country, year 
𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖     Dependent variable: Climate Action Index 
𝐷𝐷𝚤𝚤𝚤𝚤���� Climate action drivers 
𝛾̅𝛾   Associated coefficients 
 

We test a range of drivers and different model specifications. Table 3 summarizes the 
results. Our measure of fossil fuel lobby and a country’s income level have historically 
been the largest drivers of climate action. While higher GDP per capita results in more 

_____________________________________________________________________________________________________________________ 
2 We assign a weight of 0 to policies with incomplete data over the period, to avoid artificial breaks in the policy 
index (i.e., fossil fuel subsidies reforms and energy efficiency policies reported only after 2010).  



RHODIUM GROUP  |  ENERGY & CLIMATE RHODIUM CLIMATE OUTLOOK 2025 TECHNICAL APPENDIX 

                       
FOR MORE INFORMATION REGARDING OUR RESEARCH, PLEASE EMAIL CLIENTSERVICE@RHG.COM               20 

climate action, a high reliance on oil, gas and coal in the energy system tends to lead to 
less ambitious policies. Economic dependency on oil (i.e., higher oil rents) and a large share 
of manufacturing in GDP both have historically negatively impacted climate action. In 
contrast, higher oil prices have spurred more climate action, although the analysis 
suggests a delayed policy reaction to oil prices.  

Institutional drivers (government effectiveness and regulatory quality) do not add 
explanatory power to the model, regardless of the specification chosen, and neither do 
our measures of climate technology industrial leadership (patents) and public awareness 
(media coverage). We expect public opinion (awareness but also concern) to have played 
a role in policy formation, but there is limited data available to test this in a robust way3. 

Based on the results of the econometric analysis, we build our Climate Policy Projections 
tool, where future climate action in a given country or region is a function of the selected 
drivers above, namely GDP per capita, the shares of oil, gas, and coal in energy demand, 
oil rents, the share of manufacturing in value added and the lagged oil price. The 
relationships between drivers and climate action are informed by the coefficients of the 
fixed effect model. We also account for uncertainty in our projections (i.e., capturing the 
drivers we do not currently model) using projected residuals, randomly sampled from the 
results of a bootstrapping exercise.4 

TABLE 3 
Results of the panel data analysis 
 

Drivers 
Variable or proxy (and 
source) Results of analysis Inclusion in CPP 

Income GDP per capita (World Bank) Positive relationship, 
significant (1% level) 

Yes 

Oil price WTI Brent crude oil price & 
lags, (IEA) 

Positive & small 
relationship with lagged 
variable, significant (1% 
level) 

Yes, lagged 

Economic reliance on 
fossil fuels 

Oil rent, Gas rent, Coal rent 
(World Bank) 

Negative & small 
relationship, only oil is 
significant (1% level) 

Yes, oil rent only 

Fossil fuel lobby Share of oil/gas/coal in 
energy demand (IEA) 

Negative significant 
relationship for all three 
(1% level) 

Yes 

Weight of industry in 
economy  

Share of manufacturing in 
Value-Added (%) (World 
Bank) 

Small negative and 
significant relationship (5% 
level) 

Yes 

_____________________________________________________________________________________________________________________ 
3  International public opinion surveys on climate change vary in geographical coverage and are not available 
historically on a yearly basis. They also differ in the wording of questions and could not be used to reconstruct a 
large enough panel to include in our analysis. 
4 Our bootstrap method estimates our panel data model 1000 times, resulting in 50,000 20-year sequences of 
residuals, from which projections can be randomly sampled. 
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Industrial leadership in 
cleantech  

Number of clean energy 
patents  (IEA) 

Not significant No 

Good governance Government Effectiveness & 
Regulatory Quality Indices 
(World Bank) 

Negative, contrary to 
hypothesis, significant for 
government effectiveness 
(10% level) 

No 

Public awareness of 
climate change 

Number of media articles on 
climate change or global 
warming + lags, (Media and 
Climate Change 
Observatory) 

Very small positive 
relationship but not 
significant. 

No 

 

Projecting policy action in the RHG-GEM 
The Climate Policy Projections are integrated as a module into RHG-GEM. The module 
endogenously projects the evolution of climate policy in each of the RHG-GEM’s 16 
regions and countries, based on socio-economic inputs (GDP, population, fuel prices) and 
on the evolution of the energy system itself via feedback from other RHG-GEM modules. 
The projected policy pathways feed into the decision-making process throughout the 
model: as climate policy becomes more or less stringent in a given scenario, final demand 
consumers (household, industry, transport) and suppliers (electricity generation, fuel 
production) can adapt their technology choices to more or less carbon-intensive options. 
Figure 2 represents the integration of CPP and its linkages in RHG-GEM.  

The Climate Policy Projections module projects policy stringency levels by sector and 
region, reflecting variation in the maturity of existing policy frameworks across 
geographies and segments of the energy system. Initial policy ambition is derived from an 
extensive review of international and national policy databases and academic literature 
assessing the scope and ambition of current measures in the power, transport, buildings, 
industry, and other sectors. Sectoral policies are translated into an effective carbon price. 

To represent uncertainty in translating existing policies into an equivalent carbon-price 
metric, each sector–region starting point follows a uniform probability distribution around 
a central estimate. This probabilistic initialization allows sampling across plausible ranges 
of policy ambition in the base year. The econometric model governing policy evolution 
then projects policy pathways through 2100 as a function of economic, political, and 
institutional drivers based on the econometric modeling described in the section above. 
The result is a probabilistic ensemble of climate policy trajectories that reflects cross-
sectoral differences in policy maturity, uncertainty in the precision of the equivalent 
carbon price metric, and the evolving nature of policy over time as influenced by its key 
drivers. 

The full integration of CPP as a module in RHG-GEM allows us to project the likely 
evolution of policy in a dynamic way that is consistent with the underlying economic, 
energy system, and technological assumptions. Combined with the MCA of the major 
uncertainties behind the clean energy transition, we can provide probabilistic ranges of 
GHG emissions and temperature outcomes, inclusive of a dynamic climate policy 
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evolution. With the CPP, RHG-GEM is the first model to provide an endogenous, internally 
consistent probabilistic answer to the question: What are we on track for? 

Current policies in RHG-GEM 
In addition to our stylized projections of future policy, we also include current policy from 
all actionable and quantifiable existing national policy that we expect will have a 
meaningful emissions impact beyond what the projected policy will deliver. For example, 
we don’t anticipate a carbon price to provide a good proxy for targeted subsidies for 
electric vehicles or emerging clean technologies. To remain consistent with United Nations 
guidelines for reporting the impact of current measures, we include only policies that have 
been finalized and adopted. We do not include aspirational goals or economy-wide targets 
that have yet to be solidified in specific, actionable policy. We include sub-national policies 
where relevant—for example, state-level renewable energy mandates in the United 
States. The following is a non-exhaustive list of policies included in our RCO 2025: 

 Renewable portfolio standards and clean energy targets 

 Fuel economy and CO2 standards for light-duty vehicles and freight 

 Zero-emission vehicle mandates 

 Climate technology subsidies  

Section 4: Temperature Outcomes: The Finite-
Amplitude Impulse Response (FAIR) Model 
RHG-GEM’s emissions modeling is coupled with the FaIR model to provide probabilistic 
global temperature rise. FaIR simulates the global climate's response to greenhouse gas 
emissions, considering climate uncertainty. This simple model provides an accurate 
representation of the climate’s response to emissions, while minimizing the computational 
burden of running thousands of simulations in a Monte Carlo framework. 

Model description 
The Finite-amplitude Impulse Response (FaIR) model is a reduced-complexity climate 
carbon-cycle model representing the global average climate system, taking into account 
the timescales of carbon and heat exchange, and of different greenhouse gas (GHG) and 
aerosol species. It is a lightweight, fast, transparent, and simple model that accurately 
reflects the climate response to emissions. FaIR calculates atmospheric GHG 
concentrations from GHG emissions, the effect of changing concentrations on radiative 
forcing (how much the planet's energy imbalance changes), and ultimately the change in 
global average temperature resulting from the changing energy imbalance. This model 
was used extensively in the IPCC's 6th Assessment Report and was identified by NASEM 
as an exemplar of a simple climate model meeting criteria for social cost of greenhouse 
gas calculations. These criteria include transparency, simplicity, and the ability to 
accurately and probabilistically represent climate and carbon cycle systems and their 
uncertainties in a manner consistent with IPCC assessments and insights from more 
complex Earth system models. Note that FaIR does not contain sub-global or regional 
patterns, such as the hemispheric nature of aerosols, nor does it contain internal 

https://zenodo.org/records/5513022
https://www.ipcc.ch/assessment-report/ar6/
https://nap.nationalacademies.org/catalog/24651/valuing-climate-damages-updating-estimation-of-the-social-cost-of
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variability (e.g. weather) or tipping point representation but is rather a smooth 
representation of global averages. 

For this report, we use FaIR version 1.6.4, which is a slightly updated version from that 
used in AR6 but with identical results. A description of how GEM emissions were prepared 
and how FaIR simulations were executed follows. 

Emissions  
GHG emissions for the RCO baseline scenario were extracted from the RHG-GEM, while 
for other scenarios, emissions data was derived based on the calculations detailed in 
Section 7. Global emissions reflect the probability distribution of global GHGs through 
2100 under uncertainty. Emissions for six gases from GEM in CO2-equivalent units were 
disaggregated, unit converted, and formatted into the format expected by FaIR (a 39-
species array by year).  

To represent historical emissions and emissions of gases not included in RHG-GEM, 
emissions from the Reduced Complexity Model Intercomparison Project (RCMIP) were 
obtained for the SSP2-4.5 emissions scenario, which includes historical emissions and a 
projection of future emissions for a middle-of-the-road mitigation future in which radiative 
forcing reaches ~4.5W/m2 by 2100. SSP2-4.5 emissions are used until year 2023, when 
GEM emissions projections begin, at which time projected GEM emissions for each of the 
included gas species are delta-shifted to the SSP2-4.5 level and carried forward based on 
GEM trends.  

The trend for emissions of NOx and SOx was calculated based on relative changes in the 
combustion of fossil fuel, assuming 85% of aerosol emissions today come from fossil fuel 
combustion. The SSP2-4.5 level of these aerosols was similarly carried forward based on 
the GEM trend of fossil fuel combustion. 

The resulting emissions are used as inputs to FaIR in combination with climate parameters 
representing climate uncertainty, as described in the next section.  

FaIR simulations  
A key feature of FaIR is its ability to run quickly, and efficiently produce probabilistic time 
series of the temperature response to GHG emissions that captures the uncertainties in 
the climate system. The response to emissions is captive to uncertain values of carbon 
and heat uptake by the ocean, climate sensitivity, and radiative forcing, to name a few 
factors. Many of these uncertain parameters are exogenous to FaIR and can be set by the 
user to sample a physically plausible range, for example. Here we have used a set of 
calibrated input parameter samples that were developed for use in the AR6 to determine 
the global mean temperature response to emissions, reflecting the current best estimates 
of climate uncertainty (see Forster et al. 2021 Box 7.1 and Chapter 7 Supplementary 
Material 7.SM.2 for additional details).  

The FaIR input parameter samples were chosen following a set of constraints applied to a 
1-million-member ensemble of emissions-driven FaIR simulations over years 1750 - 2019, 
as described in Ch. 7 of AR6 WG1 and its Supplementary Material (Section 7SM.2). The 
initial parameter draws were sampled from assessed and/or published uncertainty ranges 
of effective radiative forcing (ERF), the climate response (surface and deep ocean effective 
heat capacities, efficacy of ocean heat uptake, heat transfer coefficient between the 

https://github.com/OMS-NetZero/FAIR/tree/v1.6.4
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07.pdf
https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-7/
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surface and deep ocean layers, and climate feedback parameter), and the carbon cycle 
(airborne fraction of CO2, and change in airborne fraction of CO2). The resulting constrained 
parameter set consists of 2,237 samples of 15 parameters. Together the resulting climate 
simulations satisfy criteria for matching the following: the trend in historical global average 
temperature, the assessed historical ocean heat uptake, 2014 atmospheric CO2 
concentrations, and airborne fraction of CO2 concentrations in transient CO2 increase 
simulations. The climate simulations run with this parameter set are consistent with the 
assessed ranges of equilibrium climate sensitivity (ECS) and transient climate response 
(TCR), and the ranges of global average temperature change for the AR6 emissions 
scenarios (see Ch 7 Cross-Chapter Box 7.1 of Forster et al. 2021). Version 1.0 of the FaIR 
parameter set was used. The final parameter set consists of 2,237 samples that give FaIR 
simulations with physically plausible and historically consistent time series of global 
average temperature. 

Section 5: Monte Carlo Analysis  
Monte Carlo Analysis (MCA) is a mathematical technique used to estimate possible 
outcomes in a highly uncertain system. The method relies on repeated and simultaneous 
sampling of uncertain input parameters, represented by probability distributions, which in 
turn generates a probability distribution of outcomes. MCA is well-suited for producing 
probabilistic projections of the energy and climate systems, both of which are highly 
complex and dependent on numerous uncertainties.  

Sampling strategy 
We leverage Latin hypercube sampling (LHS) to construct samples for uncertain 
parameters. The decision to employ LHS is rooted in its ability to systematically explore 
the entire spectrum of uncertainty associated with these parameters while simultaneously 
minimizing the number of samples required. Unlike random sampling methods, LHS 
ensures more even coverage across the range of each uncertain parameter, providing a 
representative set of scenarios for our analysis. 

We ran 4950 MCA simulations, which provided a reasonable level of precision in global 
emissions outcomes while minimizing computational burden. Considering that each GEM 
simulation requires an average of 3 hours to run, we addressed the challenge of runtime 
constraints by parallelizing our simulations. To achieve this, we utilized GAMS engine, a 
Software as a Service (SaaS) provided by GAMS, accessed through their API. This 
parallelization strategy allowed us to run ~2000 simulations simultaneously, significantly 
optimizing our overall runtime. 

An integrated energy-climate MCA 

UNCERTAINTY IN CLIMATE POLICY PROJECTIONS 

The climate policy projections are derived internally to RHG-GEM, enabling uncertainty in 
parameters and assumptions above (e.g., GDP, population and oil prices) to feed into the 
evolution of climate policy. Two-way interactions between the energy system and the 
climate policy projections are enabled through running iterations of RHG-GEM, ensuring 
consistency between the emission pathway and climate policy projections under a given 
set of sampled parameters. We also model uncertainty in our climate policy projections 

https://zenodo.org/records/5513022
https://zenodo.org/records/5513022
https://doi.org/10.5281/zenodo.5513022
https://www.gams.com/engine/
https://www.gams.com/engine/engine-api.html
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(i.e., capturing the drivers we do not currently model) using projected residuals, randomly 
sampled from the results of a bootstrapping exercise. Lastly, we capture uncertainty in 
the estimates of the regression parameters. 

PAIRING OF EMISSIONS AND CLIMATE UNCERTAINTY 

To manage computational resources, a method was established to link RHG-GEM 
emissions uncertainty with a representative sample of FaIR climate uncertainty. A full 
pairing of the 2,237 FaIR samples with all RHG-GEM emissions pathways was not viable 
due to the excessive number of simulations required. Instead, each RHG-GEM emissions 
pathway was paired with 7 randomly selected climate parameter samples with 
replacement, to ensure an adequate spread of the climate uncertainty is accounted for 
each emissions pathway. The FaIR model was then executed for each emissions-climate 
parameter pairing, resulting in a set of 33,066 climate simulations. For the purpose of 
analysis, the simulation data was confined to the years 2022 - 2100.  

Uncertainty decomposition analysis 
Beyond reflecting the uncertainty in global emissions pathways and temperature 
outcomes, the MCA allows us to explore the contributions of each of the uncertain 
parameters considered on model results. The MCA framework is useful to move away 
from punctual sensitivity analysis of each parameter, towards a global sensitivity analysis, 
which considers all parameters and their interactions on our modeled outcomes.  

Following Saltelli et al. (2008), we perform multivariate regression analysis on our MCA 
results and compute the Standardized Regression Coefficients (SRC) in order to determine 
the importance of each of our uncertain parameters on our model outputs. Although the 
relationships between inputs and outputs are not linear in the RHG-GEM, we do not aim 
to quantify that relationship through the linear regression, but rather to inform our results 
on the relative importance of each uncertain parameter on the outcome.  

We perform two regressions, the first on temperature outcomes, and the second on global 
emissions, as follows: 

𝑇𝑇𝑖𝑖,𝑡𝑡 = 𝛽𝛽𝑇𝑇0 + 𝛽𝛽𝑇𝑇1𝐸𝐸𝑖𝑖,𝑡𝑡 + �𝛽𝛽𝑇𝑇𝑇𝑇 𝑋𝑋𝑗𝑗,𝑖𝑖,𝑡𝑡
𝑗𝑗

 

𝐸𝐸𝑖𝑖,𝑡𝑡 = 𝛽𝛽𝐸𝐸0 + �𝛽𝛽𝐸𝐸𝐸𝐸 𝑍𝑍𝑘𝑘,𝑖𝑖,𝑡𝑡
𝑘𝑘

 

Where T and E represent the global mean temperature and global cumulative GHG 
emissions in sample i and year t, respectively, while 𝑋𝑋𝑗𝑗are the j uncertain climate input 
parameters to the FaIR model, and 𝑍𝑍𝑘𝑘 are the k uncertain input parameters to the RHG-
GEM. 𝛽𝛽𝑇𝑇 and 𝛽𝛽𝐸𝐸 therefore represent the regression coefficients of the multivariate 
regressions on global mean temperatures and global cumulative emissions, respectively. 
To avoid multicollinearity issues, we only include a single parameter in a set of jointly 
sampled uncertainties (e.g., renewable capital costs as a whole). We also exclude 
uncertainties with negligible impacts on global emissions. We normalize the data inputs to 
the regression so as to obtain regression coefficients that are already standardized to the 
variance of our model outcome and can be used directly for sensitivity analysis. 

https://doi.org/10.1002/9780470725184


RHODIUM GROUP  |  ENERGY & CLIMATE RHODIUM CLIMATE OUTLOOK 2025 TECHNICAL APPENDIX 

                       
FOR MORE INFORMATION REGARDING OUR RESEARCH, PLEASE EMAIL CLIENTSERVICE@RHG.COM               26 

The R-square statistic, which reflects the goodness of fit of the linear model and can be 
interpreted as the fraction of the variance explained by our regression is high - 0.73 for 
temperatures in 2100 and 0.75 for emissions. The uncertainty parameters we include as 
independent variables all show statistical significance at the 95% level. Given our large 
sample size (N=4950 for global emissions and N= 33085 for temperature outcomes), the 
SRC can be interpreted as the relative first-order contribution of each parameter to the 
portion of the variance explained by our model. In other words, we cannot capture the 
full effect of each parameter’s variance on the variance of the model outcome, but these 
higher order effects (interactions between parameters) are captured in the unexplained 
portion of the variance. 

Our findings show that 80% of uncertainty in global mean temperature rise by 2100 comes 
from climate sensitivity—the amount of warming for a given increase in GHG 
concentrations. In contrast, uncertainty in global emissions contributes 15%, with the 
remainder due to interactions between these sources of uncertainty. 

For global emissions, the largest source of uncertainty is economic growth, specifically 
GDP per capita, reflecting long-term unpredictability in emerging economies. Energy 
market factors, such as fossil fuel prices, also play a significant role. While population 
growth has a negligible impact on emissions by 2050, its influence increases toward the 
end of the century. 

In addition to these first-order effects, interactions between uncertainties are significant, 
underscoring the non-linearity of the energy system. This non-linearity is reflected in the 
widening of variance over time, with the range of plausible emissions nearly doubling from 
2050 to 2100. Our uncertainty decomposition underscores the need for robust mitigation 
efforts that address these wide-ranging drivers of uncertainty, particularly through the 
accelerated deployment of low-carbon technologies and innovations in hard-to-abate 
sectors. 

Section 6: Agriculture, Forestry and Other Land Use 
and Other Non-CO2 Emissions  
RHG-GEM provides comprehensive, methodologically consistent projections of economy-
wide emissions of all six gases included under the Kyoto Protocol (CO2, methane, nitrous 
oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride), including for 
agriculture, forestry and other land uses (AFOLU). For most AFOLU and non-CO2 emissions, 
changes in emissions over time are driven by changes in the underlying socioeconomic 
drivers (e.g., population and economic growth). Unlike for energy CO2, we assume no 
evolution in climate policy throughout the projection period (with the exception of HFCs). 
There is not yet enough historical evidence of climate policy applied across geographies 
in these sectors to provide robust data to model the potential evolution of future policy 
using our Climate Policy Projection model. As climate policy deploys across these sectors 
in the coming years, we hope that data collection will allow us to include these sectors in 
our CPP. For now, we assume that emission rates remain consistent with today’s levels. 
Below we outline the specific methods we apply to each sub-sector category. 
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Agriculture, forests and other land use GHG emissions 
To establish a methodologically consistent historical emissions inventory for agriculture, 
we use Food and Agriculture Organization (FAO) data, which we align with inventory 
categories defined by the Intergovernmental Panel on Climate Change (IPCC). For 
projections extending to 2100, we start with emission trends aligning with scenarios 
modeled by the International Institute for Applied Systems Analysis (IIASA) in their 
GLOBIOM-G4M projections. This scenario is based on SSP2, which describes a world in 
which agricultural yield improvements are more pronounced in developing economies, 
gradually converging with those in developed nations. It does not assume that the world’s 
sustainability goals are met. In this scenario, emissions from agriculture are projected to 
decrease through 2100, due in part to ongoing afforestation efforts and productivity 
enhancements, counterbalanced by population growth and consequent land scarcity. 

We align the emissions trends for CO2, methane, and nitrous oxide from IIASA’s projections 
with the underlying socioeconomic assumptions (e.g., economic and population growth) 
and uncertainties in RHG-GEM, which provides a range of potential emission outcomes for 
emissions from agriculture. Specifically, we take the range of scenarios that assume no 
carbon price is applied in this sector throughout the projections and assume biomass 
prices ranging from $0-60 per gigajoule. This does not capture the full range of potential 
emissions from this sector, however, as we do not capture the effect of potential climate 
or sustainable development policies that may shape the future of GHG emissions and 
removals from this sector. 

To project land use emissions, we used historical data from FAOSTAT, organized by 
country and grouped into regions based on the previously defined regional structure. Due 
to the inherent variability in historical land use emissions, we created a uniform probability 
distribution for each region. This distribution, defined by the minimum and maximum 
historical emission values, represents the range within which future emissions could fall. 
By sampling from these distributions, we generated probabilistic land use emissions 
projections for each region, capturing the uncertainty in future trends while reflecting 
historical patterns. 

Industry 
For vented and flared methane emissions from coal, oil, and natural gas production and 
transportation, we take coal, oil and gas production and consumption outputs from RHG-
GEM and apply regional emission factors from the International Energy Agency (IEA). For 
the United States, we apply emission factors from Taking Stock 2025, reflecting current 
policies and regulations targeting emissions in production, distribution, and processing as 
of June 2023. We have not incorporated methane emissions abatement policy from the 
rest of the world due to a lack of modeling of how recently announced policies existing 
policies will impact emissions. There is not yet sufficient evidence in the historical record 
of methane abatement from oil and gas to allow us to incorporate it into our econometric 
Climate Policy Projection. For now, we assume current emission-intensity rates continue 
at historical rates throughout the projection period. 

The projection of nitrous oxides follows a similar behavior to CO2 emissions and activity 
data from the relevant sub-industries projection in RHG-GEM industrial module. In a 
similar way, the projection of F-gases emissions is correlated with regional GDP per capita, 

https://www.sciencedirect.com/science/article/pii/S0959378016300784?via%3Dihub
https://rhg.com/research/taking-stock-2025/
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reflecting their association with industrial production and the manufacturing of specific 
products. 

Hydrofluorocarbons 
We assume global implementation of the Kigali Amendment of the Montreal Protocol, 
which provides a legally binding pathway for phasing down the consumption and 
production of hydrofluorocarbons (HFCs). We apply the Kigali implementation scenario 
from the recent Velders study, which finds that HFC emissions under Kigali implementation 
decline to 1 gigaton of CO2 equivalent by 2050 and then level off by 2080, remaining below 
0.5 gigatons up to 2100. 

 

  

https://acp.copernicus.org/articles/22/6087/2022/acp-22-6087-2022-discussion.html
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economic analysis. We help decision-makers in both the public and private sectors 
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