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This document provides a detailed overview of the modeling framework used in
the 2025 Rhodium Climate Outlook (RCO). Section 1 provides an overview of
Rhodium’s Global Energy Model (RHG-GEM), an integrated modeling platform that
captures uncertainty in economic and population growth, oil and natural gas
prices, and clean energy technology costs under likely policy evolution to provide
probabilistic energy, emissions, and temperature projections through the end of
the century. In Section 2, we outline the probabilistic approach to projecting
energy and emissions outcomes under uncertainty, and Section 3 describes the
novel approach to climate policy projections implemented in the RHG-GEM to
answer the question: “what are we on track for?”. Section 4 summarizes the
approach used to translate GHG emission pathways from RHG-GEM into
temperature outcomes, through simulations of the Finite-amplitude Impulse
Response (FalR) model. Section 5 presents the methodology of the Monte-Carlo
Analysis applied to this integrated modeling framework to capture the key
uncertainties in the evolution of the energy system, future global GHG emissions
pathways, and associated temperature outcomes. In Section 6, we describe how
we project all six Kyoto gases as part of our comprehensive emissions framework.
Finally, we outline our methodology for developing our alternative scenarios.

Section 1: Rhodium’s Global Energy Model

To model global energy and emissions outcomes, we use Rhodium’s Global Energy Model
(RHG-GEM), a highly modified version of the World Energy Modeling System (WEPS) used
by the Energy Information Administration (EIA) to produce the International Energy
Outlook 2023 (IEO2023). The WEPS model is designed to provide the EIA’s long-term world
energy projections under current policy and technology trends. As such, Rhodium invested
in significantly modifying the WEPS model—and for many components overhauling the
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original model completely—to robustly capture a range of policy, socioeconomic, and
energy market futures.

CORE COMPONENTS OF RHG-GEM

= Built for uncertainty: RHG-GEM is designed to consider a wide range of uncertainties
underpinning the energy system, including through Monte Carlo Analysis. This allows
for a robust and systematic exploration of the main drivers of energy and emissions.

= |ntegrated platform: Our energy and emissions model is linked with the FalR model.
This allows for probabilistic temperature projections derived directly from our
emissions projections that include climate system uncertainty as well.

= Clean technology characterization: RHG-GEM characterizes commercially available
clean technologies, including solar, wind, utility-scale battery storage, and electric
vehicles. The model integrates up-to-date technology cost and performance data and
captures spatial and temporal variability of renewable energy resources. We also
characterize novel clean technologies—which we collectively refer to as emerging
clean technologies (ECTs)—with a focus on clean hydrogen, sustainable aviation fuels
(SAF), carbon capture, and direct air capture (DAC). To appropriately capture the
market for clean technologies, we also characterize complementary and competitor
technologies and relevant supporting infrastructure.

= Clean technology demand: In the industrial, transport, and building sectors we allow
for fuel substitution and clean technology adoption based on relative costs and
performance, consumer behavior, and historically-calibrated fuel-switching potential.

= |ntegrated supply and demand: Demand is determined endogenously in the model,
based on GDP, population, energy prices, and other drivers. Demand and supply solve
iteratively in the model, producing a general equilibrium solution on an annual basis.

= Regional: RHG-GEM models 16 world regions that consist of countries and country
groupings within the broad divide of the Organization of Economic Cooperation and
Development (OECD) and non-OECD countries (Figure 1).

=  Modular: RHG-GEM has a modular structure. The main modules consist of: electricity
and heat, oil and gas supply, industry, transport, buildings, and non-energy emissions,
along with a climate policy module. This modularity enables us to design the
methodology and assumptions most suited to each sector. RHG-GEM is also designed
to easily link with other models, including FalR.

= Model timeframe: Our time horizon extends to 2100, which allows us to provide a
methodologically consistent set of global emissions and temperature rise projections.
And as 2050 gets closer, looking beyond mid-century provides useful insights into
regional energy and sectoral emissions dynamics.
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FIGURE 1
RHG-GEM regions
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FIGURE 2
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Energy system and emissions modeling
ELECTRIC POWER SECTOR AND CLEAN TECHNOLOGY PRODUCTION

Rhodium’s electricity and emerging clean technology module (REEM henceforth) is built
using the TIMES model framework, which uses a linear programming approach to explore
cost-optimal configurations of the future energy system. The model objective is to
minimize total discounted system costs. Features of this formulation include perfect
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competition (no market power held by specific firms) and perfect foresight (market players
have all information about the present and the future, to inform investment decisions). The
utilization of an optimization framework in modeling the power sector and emerging clean
technology supply allows for the identification of the most efficient and economically
viable pathways to meet energy demands, while explicitly diving into the complex
dynamics that result from the alignment of policy targets with the inherent constraints tied
to the physics of energy systems.

The REEM projects generating capacity (including additions and retirements), generation,
fuel consumption, carbon dioxide (CO,) emissions, and prices for the electric power and
heat sector, hydrogen, and sustainable aviation fuel production. Integrating emerging
climate technologies into the REEM’s least-cost optimization framework allows these
technologies to compete for market share with incumbents and clean alternatives.
Moreover, we are able to capture sector coupling between the electric power system and
electricity-based technologies (e.g., electrolysis, power-to-liquids, and DAC).

The REEM receives electricity, district heat, hydrogen, and sustainable aviation fuel
demand from each end-use sector (residential, commercial, industry, and transport), oil
and gas supply curves from the oil and gas sector, along with captured CO, from the
industrial module. For each of the end-use modules, the REEM provides the following
projections:

= Biomass, electricity, district heat, hydrogen, and sustainable aviation fuel wholesale
prices

= Electricity retail prices

= Fuel consumption to produce electricity, hydrogen, and alternative fuels

= Carbon dioxide transport and sequestration costs

POWER AND HEAT PRODUCTION

The modeling of the existing power stock takes into account the installation year of each
plant and is derived from data sourced from the Platts’ World Electric Power Plant
database and IRENA. Plants under construction are sourced from the Global Energy
Monitor’s integrated project tracker. Renewable electricity potentials, encompassing
solar, wind, and hydro sources, are modeled at the country level. Hourly capacity factors
for renewables can be consolidated into 12 or 36 annual time slices. This allows user
control over the number of annual time slices, offering flexibility in representing seasonal
and time-of-day variations in electric load and supply. For the purposes of the RCO 2025,
we use 12 time slices to lower computational burden, given the need to run many trials in
our Monte Carlo Analysis (MCA).

The model explicitly incorporates early economic retirement and capacity retrofits. While
non-economic capacity often persists in the real world due to local must-run
considerations, institutional practices, and other factors, the REEM introduces decay
constraints. These constraints limit the rate of decrease in coal, gas, and oil power
capacity, specifying a maximum annual percentage rate of decline and a representative
unit size that can be retired beyond the annual percentage rate, allowing capacity to reach
zero. Residual gas and coal plants are constrained to maintain a minimum of 20% annual
capacity factor each.
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FIGURE 3

Overview of the REEM energy system
Clean technologies and related infrastructure are highlighted in blue.
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Grid reliability is addressed through reserve capacity requirements, obligating suppliers
to uphold sufficient generating capacity that exceeds peak demand by a specified margin.
This constraint assigns dependability factors to each power plant type, representing the
percentage of installed capacity the grid can rely on in case of outages or peak power
demand time slices. The reserve capacity requirements constraint applies to each region
and year as follows:

Z dependabilitypiant type i X installed capacitypiant type i

> reservemargin X peak electricity demand

The dependability factors and reserve margin have been sourced through a
comprehensive literature review. Dependability percentages for variable renewable
sources and hydro have been established at 15% and 50%, respectively. Reserve margin
has been set at 25%.

We consider the uncertainty in cost and performance parameters for renewable power
generation technologies in the MCA, including solar, wind and utility scale batteries. Cost
and performance for power generating facilities equipped with carbon capture technology
are informed by Rhodium analysis and current literature. This includes work from the
National Energy Technology Laboratory, which details cost and performance for natural
gas-fueled direct supercritical CO,-fired power plants.
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EMERGING CLEAN TECHNOLOGIES

Clean hydrogen: We model clean hydrogen production from electrolysis, biomass
gasification, methane pyrolysis, and fossil with carbon capture, as well as unabated fossil-
based hydrogen production pathways. Hydrogen demand covers both existing uses of
hydrogen, including in the chemical and refining sectors, and new uses, including other
industries, fuel cell vehicles, power and heat generation, and power to liquids/gas. All
demands except hydrogen used for fuel production are exogenous to the REEM and
originate from other RHG-GEM modules. We assume hydrogen for existing uses can be
sourced by any hydrogen pathway, with the exception of methanol and ammonia
transformed into urea. In those sectors only, unabated or CCS-equipped hydrogen
pathways can fulfill hydrogen demand, reflecting the need for carbon in these industrial
processes. In general, we assume new sources of hydrogen demand can only be produced
by clean pathways.

Sustainable aviation fuels: SAF technologies modeled include Hydroprocessed Esters and
Fatty Acids (HEFA), biomass gasification Fischer-Tropsch with and without CCS and power-
to-liquids Fischer-Tropsch. We assume these fuels can be blended with jet fuel at any ratio
to be used as “drop-in” fuels for domestic and international flights. Demand for SAF
originates in the RHG-GEM transportation demand module.

Direct air capture: DAC modeling in the REEM explicitly differentiates between the solid
sorbent and liquid solvent pathways. We assume heat for the process can be produced
on-site or off-site.

We establish current cost and performance figures for each ECT pathway through
extensive literature reviews, expert interviews, and Rhodium analysis. The costs are a
culmination of the capital costs, non-energy operation and maintenance expenses (both
fixed and variable), financing rates, and energy inputs.

RHG-GEM incorporates endogenous technology learning for clean hydrogen and DAC to
project future capital costs of these technologies based on a learning-by-doing approach.
Capital costs are updated across model run iterations based on cumulative technology
installed capacity. To address the decline in learning rates with deployment, we employ a
three-tiered model for technology learning rates. The "revolution learning rate" pertains
to the early stages of deployment, the "evolution learning rate" signifies a rapid
deployment phase, and the "commercial learning rate" corresponds to the mature stage
of technology deployment. Thresholds for each phase are established through expert
judgment. The uncertainty in technological learning rates is considered in our MCA.

HYDROGEN PRODUCTION, DELIVERY, AND STORAGE

Hydrogen capacity is derived from data developed by the Pacific Northwest National
Laboratory (PNNL) that has disaggregated data for the US, Europe, China, and the rest of
the world. Regional hydrogen demand is used to estimate installed capacity in the rest of
the world by REEM region. Planned hydrogen plants are extracted from the IEA’s 2023
hydrogen projects database and are aggregated by plant and fuel type. Hydrogen supply
is possible through coal gasification without and with carbon capture, steam methane
reforming (SMR henceforth) without and with carbon capture, methane pyrolysis, biomass
gasification without and with carbon capture, and electrolysis. Cost and performance
parameters associated with production technologies are based on Rhodium analysis for
electrolysis and the IEA’s future of hydrogen study for all other production technologies.
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Hydrogen delivery and storage modeling are based on the Joint Research Centre’s work
on hydrogen supply chain architecture for bottom-up models. This includes three
hydrogen storage possibilities: large-scale underground storage (UGS), centralized, and
decentralized tank storage. The efficiency of hydrogen UGS is assumed to be similar to
the current operating natural gas UGS facilities, whereas the efficiency of tank storage is
assumed to be around 80%. We also assume that the three storage technologies could be
used as seasonal storage solutions. Delivery costs range between 7.04 $/kg and 11.38
$/kg depending on the different potential delivery pathways.

CARBON TRANSPORT AND STORAGE

Carbon transport and storage costs are based on the EIA’'s WEPS model and are
estimated to be 40$/tCO,. We assume annual CO, injection rates that become less
constraining over time as new storage resources are developed and technology improves.
For Europe, we limit annual CO; injection rates to 300 Mt, in line with the 1.5Tech scenario
of the EU Long Term Scenarios used in the European Green Deal negotiations.

BIOMASS SUPPLY CURVES

We developed biomass supply curves based on publicly available Globiom-G4M biomass
supply curves from the International Institute for Applied Systems Analysis (IIASA). This
data represents the regional availability of delivered bioenergy at prices ranging between
3$/GJ and 60S$/GJ. To develop HEFA feedstock potentials, we identified different types of
oil feedstocks that constitute potential HEFA feedstock candidates based on a techno-
economic assessment from Tao et al. From there, we used FAOSTAT country-level data on
the yearly production of these oil feedstocks as potentials in 2018. Finally, population
growth is used to project feedstock potential through 2100.

INDUSTRY

Industry is an extremely diverse sector with no one-size-fits-all solution for
decarbonization, and the industrial module is designed to address major subsectors
independently, projecting demand and considering only technologies appropriate to the
constraints of the specific subsector. Special attention is paid to technology
characterization in the highest-emitting subsectors. As a result, industrial fuel demand is
split across 15 sub-industries in RHG-GEM, with specific detailed models for cement,
chemicals, and iron and steel. Methane from oil and gas production is considered part of
the industrial sector, but accounted for in our non-CO, module (see the section on
Agriculture, forestry and other land use and other non-CO, emissions).

Proxy global demand for the products of each industry is projected using regression
models and historic demand, GDP, population or demand for related products. The
regional supply breakdown to meet global demand is calculated by indexing historical
production to changes in GDP, fuel prices, or population. A price elasticity of demand is
then applied to the projections to capture sensitivity to energy prices. In addition, we
calculate the historic fuel intensity of production and fit a regression model to calculate
any improvements in energy intensity over time and project total energy demand. The
metrics used as a proxy for demand for products in each subindustry and data sources
are outlined below.
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TABLE 1

Drivers of industrial demand

Industry

Iron and Steel

Chemicals

Non-Metallic Minerals

Food, Agriculture

Motor Vehicles

Paper

Non-Ferrous Metals

Construction

Oil Extraction, Coal
Extraction

Other Industry, Other
Feedstocks, Other Metal-
Based Durables, Other
Extraction

Demand drivers

Steel production and
consumption, iron
production

Ammonia production,

petrochemical feedstocks

Cement production, Lime
production

Total calorie supply, food
production

Passenger vehicle
production, commerical

vehicle production

Paper products
production

Aluminum production

Building demand

Fuel demand from all
sectors

Data source

World Steel in Figures. World Steel Association.
2000-2023.

USGS Mineral Commodity Summaries, Nitrogen
(fixed) -Ammonia. 2000-2022

IEA Energy Balances, 2023

USGS Mineral Commodity Summaries, Cement.
2000-2023

USGS Mineral Commodity Summaries, Lime.
2000-2023

FAOSTAT Food and Commodity Balances. 1960-
2023

International Organization of Motor Vehicle
Manufacturers. Production Statistics 1999-2023
FAOSTAT Forest Product Statistics. 1968-2023.
USGS Mineral Commodity Summaries,
Aluminum. 2000-2023

Modeled metric

EIA International Coal and Coke Production.
2023.

OECD Data. Crude Oil Production. 2023.

Fuel demand grows proportional to all other
industries

In our generic approach, fuel for a given industry was subdivided into end-use categories
(boilers/CHP, process heat, feedstock and other) based on Manufacturing Energy
Consumption Survey (MECS) categorizations. A logit choice model was calibrated against
the historic fuel shares for each category and used to project the future fuel shares for
demand in each category. The logit is defined by the following equation:

a; exp(Bp;)

Si =

Y1 a; exp(Bp;)
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Where s is the share of total demand met by a given fuel, a is a preference parameter
calibrated from historic data, 8 is a user-defined parameter. and p is the fuel price. The 8
parameter is set to a higher or lower value depending on if the sector is expected to be
very price sensitive; in other words, if industrial facilities can be expected to quickly switch
over to the least-cost alternative, or if incumbent technologies will persist due to either
high variability in actual prices or other preferences. The a preference parameter captures
any additional factors (e.g., fuel transport costs, equipment costs, labor) that may explain
historic preferences for fuels but are not captured in fuel price alone.

The inverse of the equation is solved using historic fuel prices and shares to generate a
time series of historic preference parameters. These preference parameters are either set
constant to the historic average or allowed to trend up and down over the model period,
depending on the strength of the historic trend.

The model assumes that industrial equipment has long turnover times and only a fraction
of the total capacity will switch fuels in a given year. A typical stock lifetime is set for each
category, and the inverse defines the fraction that can turn over in a given year. In each
modeled year, the logit shares are applied to that fraction of the total demand from the
previous year, plus any new demand in a given year, and the remaining demand shares are
set equal to the overall shares in the previous year.

For each industry, the fuel consumed for process heat and boilers/CHP was split
proportionally to the demand for low (<100C) and high heat in the industry. Heat pumps
were introduced as a technological choice in the logit to meet low heat demand. The
preference parameter for heat pumps was derived from the historic preference for direct
electrification on a cost per unit of heating basis, taking into account the relative efficiency
and capital/fuel costs of heat pumps. Additional modeling assumptions were made for
major-emitting industries to capture sector-specific technologies and dynamics. These
assumptions, as well as details for sector-specific demand modeling, are outlined below.

IRON AND STEEL

There are two main stages to steelmaking: the production of iron from iron ore, which
requires a reducing agent, and the conversion of iron to steel, with a limited set of
technologies appropriate for each step. Ironmaking is the most carbon-intensive step in
the steelmaking process, and decarbonization of the sector can be achieved with both a
transition to lower-emitting technologies, as well as replacement of iron with recycled
steel. As a result, the iron and steel submodule projects demand for both iron and steel
and available recycled scrap, and employs a stock accounting model to determine the
least-cost technology able to meet demand for each step.

Total demand for steel is projected by fitting a rational model of the form:

a-GDPpc
b-GDPpc? + ¢

Qpc =

to the historic time series of demand per capita, as a function of GDP per capita. The
rationale behind this model was to capture multiple stages in a country or region’s
economic development: An initial, low industrialization stage when GDP per capita is low
and demand for basic materials is low, a “development” period during which per capita
demand for materials grows rapidly with increasing wealth as infrastructure is rapidly built
out, to a saturation point, and then a post-industrialization stage, during which demand
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per capita decreases from its historic maximum to a long term, stable level needed to
maintain existing infrastructure.

The model was fit to historic data for each GEM region. In OECD-member
countries/regions, the historic “saturation” point (the point of peak per capita demand)
was found in the historic time series, and the cumulative steel consumed through that year
was calculated in order to estimate the long-term steady state demand required to
maintain previous infrastructure, and constrain the a, b and c parameters of the regression
model. For developing regions, the cumulative per-capita demand from the OECD was
used to project the expected inflection point, and constrain the fitted rational model—
projecting demand in these regions to grow as according to their historic pace with respect
to expected GDP growth, but to eventually taper off once infrastructure levels reach those
similar to that at which OECD members saw a reversal in demand growth.

We then apply a sector-specific stock accounting model to calculate demand for total
steel production by technology and retirements in every year. Demand not covered by
existing capacity is met with the lowest-cost technology. This model calculates available
scrap from historic production data and assumes scrap is maximally utilized to meet
demand for new steel via electric arc furnace production. Any additional demand is met
via ironmaking pathways, either blast furnaces or direct reduction (which may be natural
gas, coal, or hydrogen-based).

In each year, capacity that has reached the retirement age is subtracted from the existing
stock, and the difference between total iron demand and total stock is assumed to be met
with the lowest cost technology. Annual new deployment of a given technology is
restricted to no more than doubling existing stock of the technology to reflect
infrastructure and construction constraints.

CEMENT

Cement is an extremely carbon-intensive industry, historically requiring both high-CO,
fossil fuels capable of producing high heat and releasing large quantities of process
emissions during the chemical reaction required to make clinker, one of the main
ingredients in cement. Since fuel substitution can only address a portion of the emissions
from cement, solutions like carbon capture and reduction of clinker ratios are required to
fully decarbonize, and the cement submodule focuses on these technologies.

Total demand for cement is calculated using the same rational model and methodology
as employed for the iron and steel sector. Demand for lime is assumed to grow
proportionally to changes in demand for the major end uses of lime—steel, basic
chemicals, paper, food, agriculture, and construction. Regional production is adjusted
based on price elasticity factors. Demand for energy aside from kiln process heat is
assumed to grow proportionally to cement demand. Total clinker demand is calculated
assuming a decline in ratios from current regional levels to the current ratio in China, which
has the lowest clinker ratio of any region.

The generic logit model is applied to all fuel usage categories in the cement sector except
for fuel used to heat cement and lime kilns, which accounts for approximately a quarter
of total energy demand in the sector. We assume that carbon capture is the most viable
low-carbon alternative for cement and exclude other technology solutions in the earlier
stages of development (e.g., electric kilns). We use carbon capture costs consistent with
Rhodium’s ICAP model, a facility-level US industrial carbon capture model developed and
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maintained by Rhodium Group. Data on existing cement plants with carbon capture was
used to calculate the average and standard deviation of prices for this technology and
generate a normal curve, reflecting uncertainty in plant-level costs. In each year, the cost
of emitting a ton of carbon is compared to the price curve, and the fraction of the cost
curve that falls below the carbon cost is assumed to be the share of total cement plants
that have carbon capture in that year.

CHEMICALS

We divided fuel use in the chemicals industry into three major sectors: ammonia,
methanol, and high-value chemicals (HVCs). Demand for ammonia is projected using a log-
linear regression on global population and historic production. Production is downscaled
to regions based on relative changes in population and fuel costs. Chemical fuel
feedstocks are used as a proxy for HVC demand and projected using a log-linear
regression on global GDP and historic quantities. Production is downscaled to regions
based on relative changes in fuel prices and GDP. Methanol and demand for non-process
or feedstock energy are assumed to grow proportionally to demand for HVCs.

Process heat in the ammonia and methanol sectors was assumed to be used primarily as
a feedstock and heat source for the generation of hydrogen, which is required for the
chemical reaction process. The fuel used for hydrogen generation is removed from the
chemicals sector and included instead in the REEM. We calculate hydrogen demand for
the chemical industry based on ammonia and methanol production, and send this to the
REEM where hydrogen production mix is determined based on a least-cost optimization.
Given that urea and methanol require a source of carbon, we assume that hydrogen for
those products is produced with carbon-based hydrogen (including with capture).
Remaining fuel usage in the chemicals sector is determined using the logit approach
described above.

REFINING

In the oil refining sector, which currently accounts for 33% of global hydrogen demand, we
focus on opportunities for clean hydrogen deployment and carbon capture. The RHG-GEM
model projects demand for fuel use in refineries based on global oil product demand and
historic refinery gain, and calculates the amount of associated hydrogen demand required
to remove sulphur from crude oil. The resulting hydrogen demand is sent to the REEM,
where the least-cost mix of hydrogen technologies is deployed to meet demand. We
exclude hydrogen supplied by refinery by-products, since this is sometimes produced
from integrated systems that would be difficult to retrofit. We model carbon capture on
fluid catalytic cracker units using the same approach as we do for cement. Capture costs
are based on Rhodium’s ICAP model.

FOOD AND AGRICULTURE

Regional food demand in terms of calories supplied per capita is assumed to grow with
GDP per capita. A global log-log model is fit to historic calorie per capita data and
projected forward, and a saturation point is assumed at the current calorie per capita
consumption level of the United States. This trend is then applied to the current regional
consumption levels in order to project regional demand, and regional demands are
summed to determine global demand. Food is assumed to be highly traded, with global
demand being met with supply from any region. Current regional supply fractions are
calculated from historic production data, and these supply fractions are scaled and
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normalized over time with changes in regional demand, then applied to global demand in
order to calculate regional production levels in terms of tons of food produced. The same
calculations are applied to scale energy demand from the agricultural sector over time.

PAPER

Global paper demand is calculated by applying a log-log regression to global historic
paper production per capita and GDP per capita. Regional trendlines are set by applying
the global trend and scaling the intercept to match current regional production levels. A
saturation point is set at the current production levels for the United States, which has
both steady production levels and the highest current levels of production per capita.

NON-FERROUS METALS

Aluminum is a key input for many higher-level products, with the bulk of demand coming
from buildings, vehicles, electric power, and consumer goods. Thus, demand for aluminum
is projected to grow with demand in these sectors. Historic aluminum demand per unit
demand for each end use is calculated by applying current end-use fractions to global
historic aluminum production data and dividing by demand indicators for each end use—
vehicle production, total electricity demand, total buildings energy demand, with
population used as a proxy catch-all for consumer goods. This aluminum material intensity
is then applied to global projections of each demand indicator to calculate global
aluminum demand. Regional production fractions are then calculated by scaling current
production fractions over time with relative changes in GDP and electricity prices,
assuming aluminum production will grow more in areas with high economic growth and
low electricity prices.

ROAD VEHICLES

Global demand for new vehicles is calculated in the GEM Transport module. Regional
production fractions are calculated from historic production data. These fractions are
scaled over time with relative changes in regional GDP and demand, normalized, and then
applied to global demand quantities to obtain number of new vehicles produced by region.

OIL AND COAL EXTRACTION

Total fuel demand from oil and coal extraction is assumed to grow proportionally to
economy-wide demand for these fuels. Production quantities are obtained by multiplying
the historic ratio of extracted fuels to total demand by future demand for fuels. For coal,
regional production fractions are calculated from historic data and applied to production
projections, assuming relative production fractions do not change over time. For oil,
regional production fractions are calculated from the GEM Oil and Gas module outputs of
oil production by region.

OTHER INDUSTRIES

“Other industries” represents fuel demand from various uncharacterized industrial
sectors—high-level manufacturing of consumer durables, textiles, leather, wood, and
other products, and unspecified extraction. In addition, some countries do not report
sector-specific fuel demand in the IEA Energy Balances, and all industrial energy demand
is categorized as “other” and represented here. Since all fuel demand in other industries
represents either such uncharacterized demand or demand from refinement of basic
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materials characterized elsewhere, fuel demand in “Other Industry” is assumed to grow
proportionally to fuel demand from all other industrial sectors.

TRANSPORTATION

The transport model projects demand for passenger and freight transportation based on
demographic and economic drivers. For on-road transportation, we take a technology
rich, stock-accounting approach with an aim to capture new technology adoption based
on relative costs and performance, taking into account policy, infrastructure barriers, and
consumer behavior. In air and marine transportation, we take a simpler approach due to
data constraints, but similarly capture cost, efficiency and infrastructure for a range of
conventional and novel technologies.

LIGHT-DUTY VEHICLES (LDVS)

Light-duty vehicle fuel consumption is calculated using a stock-based approach for vehicle
kilometers traveled and average fuel economy of the existing stock. This submodule uses
a vintage stock accounting model to calculate the sales and stocks across regions. LDV
stocks per capita are projected using the Gompertz curve related to GDP per capita and
vehicle ownership. The survival curve is subsequently applied to calculate the surviving
stock and finding sales required to satisfy the demand. The historical stocks are calibrated
to 2021 IEA Mobility Model for the Transport Model (MoMo) data. The market share of the
sales is determined using a logit choice model based on the total cost of ownership (TCO)
of the LDVs (see Industry section for logit equation). The CO for each technology is
calculated using the upfront cost of the vehicle, maintenance cost, and fuel cost per mile.
After the market shares are computed, the average fuel economy is adjusted to meet the
fuel economy standards. The LDV fuel consumption is then calculated by multiplying
average stock fuel economy by the stock and average vehicle kilometer traveled by each
vehicle.

ON-ROAD FREIGHT

Freight (including passenger buses) is categorized into three classes based on the gross
weight of the vehicle (GVW)—light (< 3.85 tons), medium (3.85 - 16.5 tons), and heavy (>16.5
tons) trucks. Medium and heavy trucks are further split based on their operation range
into short-haul (<500 miles) and long-haul trucks (>500 miles) based on the US Vehicle
Inventory and Use Survey.

Along with the projected travel demand for trucks, a stock accounting model is used to
project future sales and stocks. The module consists of seven vehicle technology types—
gasoline, diesel, natural gas, LPG, battery electric vehicle (BEV), plug-in hybrid electric
(PHEV), and fuel cell electric vehicles (FCEV). We assume FCEVs will be more suited for
medium and heavy trucks due to their longer range, faster refueling times, and lower risk
of lost cargo capacity. The market share of sales by drivetrain is determined by using a
logit choice model based on the TCO of the trucks. The TCO for each technology is
calculated for the first user over a period of five years using the upfront cost of the vehicle,
resale price, infrastructure cost (for BEV and FCEVs), maintenance cost, and fuel cost per
mile.

Further, we assume fuel economy standards currently on-the-books are met, plus
moderate fuel economy improvements for all regions through 2050, based on expert
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judgement and historical trends. For both LDVs and freight, we assume all zero-emission
vehicle policies are met, including mandates and subsidies.

MARINE

Domestic marine travel demand is projected by growth in nine industrial commodities
(chemicals, iron and steel, food, paper, refinery (petroleum products), non-metallic
minerals, other industry, agriculture, and extraction). International marine demand is
projected by growth in energy commodities (industrial outputs, coal, LPG, natural gas, and
petroleum product) and oil price. The future share of fuels in marine consumption is
determined using a logit choice model based on the TCO of different powertrains in
shipping. The TCO is calculated based on_IEA assumptions for base ship cost, fuel
cell/engine cost, fuel storage, infrastructure, and delivery costs.

AVIATION

For passenger air travel, revenue passenger miles (RPM) per capita is projected based on
the historical relationship between GDP per capita and demand. RPM per capita is
assumed to follow an s-curve shape to reflect more rapid growth as regions develop and
saturation at higher levels of income. GDP per capita is also used to project revenue ton
miles for freight air demand. The future shares of conventional and sustainable aviation
fuels are determined by a logit choice function based on projected fuel prices.

BUILDINGS

Residential and commercial energy demands by fuel are calculated based on projected
changes in GDP, population, and fuel prices. As shown in the formula below, each service
demand is assigned a socioeconomic driver of growth as well as an elasticity factor to
inflate/deflate demand growth above/below the driver alone. Demand is also subject to
changes in the weighted-average fuel price and fuel price elasticity.

demand, = demand;_,
* (driver,
/drivert_l)drwer elasticity , (pricet/pricet_l) price elasticity

Historical energy consumption by energy service is calibrated to data from GCAM. For
each service demand, region, and year, fuel mix is determined using a logit choice model
calibrated against the historic fuel shares.

DATA CENTERS AND Al

Electricity demand from data centers and artificial intelligence (Al) applications is
represented as a distinct component of total power demand. This demand is implemented
as a deterministic trajectory based on a review of recent literature, including the
International Energy Agency’s Energy and Al report. The projection captures the expected
increase in global electricity use associated with the expansion of digital infrastructure
and Al computing workloads. While stylized, this representation ensures that RHG-GEM
reflects the incremental power requirements from growing data center operations.
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Section 2: Probabilistic Projections

RHG-GEM is an integrated platform that produces fully probabilistic policy,
socioeconomic, energy price, technology cost and behavioral projections of the energy
system and emissions. We do so using a Monte Carlo Analysis (MCA), which relies on
repeated random sampling to estimate a probability distribution of outcomes. Global
emissions are then fed into the FalR model to produce internally-consistent probabilistic
global average temperatures.

Emission uncertainties

We parameterize the following sources of socioeconomic, energy market, and behavioral
uncertainty as inputs to the energy system model. Policy and climate uncertainties are
discussed in subsequent sections. To define our sensitivities, we draw on the best
available third-party data and research. For data sources with probabilistic projections,
we sample from those distributions. Otherwise, we establish probability distributions to
be consistent with the most recent research and to reflect the range of market and
economic uncertainties.

= GDP per capita: GDP per capita data is taken from Stock, Watson, and Mueller’s
Bayesian latent factor modeling of international long-run growth. Their projections
produce a joint predictive distribution of per capita GDP for 113 countries through the
end of the century. To ensure near-term projections align with the latest outlook for
growth, data through 2028 is aligned with the International Monetary Fund’s World
Economic Outlook with the exception of China, where we rely on in-house projections
from Rhodium’s China practice. GDP growth assumptions for China reflect a projected
growth rate of 2.3% in 2024 and 4.2% in 2025, with long-term growth averaging 2.2%
between 2024 and 2030, and 1.9% after 2030 on average. We sample jointly
distributed country-level GDP per capita from this dataset and aggregate up to the
RHG-GEM regional level where needed.

= Population: Population data through 2100 is taken from the UNDP’s probabilistic
global projections. We assume independence of GDP per capita and population due
to a lack of reliable information on their joint distribution.

= QOil and gas markets: We consider a distribution of oil and natural gas prices based on
the historical range, with median prices of $63 per barrel for Brent crude and $4.8 per
mmBTU for Henry Hub natural gas. Henry Hub prices are adjusted by region based on
the historical relationship between Henry Hub and other regional market prices.

= Coal markets: We consider a distribution of thermal and metallurgical coal prices
based on the historical range. US coal prices are extracted from EIA and adjusted by
region based on the historical relationship between the US market and other regional
market prices.

= Renewable technology cost: Overnight capital and operating costs for key renewable
technology costs are based on the National Renewable Energy Laboratory’s (NREL)
Annual Technology Baseline. We construct a probability distribution of costs based
on the NREL's Conservative, Moderate Technology Innovation, and Advanced
Technology Scenarios for solar, wind, and utility-scale storage. Costs are jointly
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sampled for wind and solar, while utility-scale batteries are sampled with electric
vehicle (EV) battery costs, with the assumption that they continue to rely primarily on
lithium-ion technology.

=  Electric vehicle battery costs: A major factor in EV adoption for passenger vehicles is
upfront costs. We therefore consider uncertainty in the year cost parity is achieved
between EVs and conventional vehicles between 2025 and 2040. For freight, we
consider uncertainty in the cost of lithium-ion batteries. We construct a probability
distribution based on AEO 2025 reference and BNEF battery cost projections. We
assume battery costs for the suite of heavy-duty EV technologies modeled in RHG-
GEM match these reduction pathways.

= Emerging climate technologies (ECTs) learning rates: Currently, ECTs are typically
more expensive than their fossil-fuel incumbents. Over time, these costs are expected
to come down as a function of deployment, often referred to as a learning rate or
experience curve. For direct air capture and clean H2 technologies, we consider a
range of learning rates—defined as the cost reduction for each doubling of
deployment—to reflect uncertainty in future cost reductions.

=  “Friction” in clean technology uptake: Clean technologies face many non-cost
barriers today that may continue to slow their adoption. For passenger and freight
EVs, this includes insufficient charging infrastructure—real or perceived—limited
model availability, and political politicization. For clean electricity generation, barriers
include lengthy permitting times, insufficient transmission, and public opposition. We
capture these barriers in aggregate as uncertainty in the pace of deployment. This is
modeled as a shift in the deployment curve for EVs and as an increase in the
construction time for wind and solar projects.

= Land-use emissions: To project land-use emissions, we utilized historical data from
FAOSTAT, aggregated by country and grouped into regions based on the regional
granularity previously described. Given the inherent variability in historical land use
emissions, we designed a uniform probability distribution for each region. The
distribution was defined by the minimum and maximum historical emissions values,
capturing the range within which future emissions are likely to fall. By drawing from
these distributions, we generated probabilistic land use emissions projections for
each region, accounting for the uncertainty in future trends while aligning with
historical patterns.

Section 3: Climate Policy Projections—What Are We
On Track For?

As more countries adopt emission reduction targets or net-zero emission pledges, the gap
between current policies and the mitigation actions needed to achieve these goals
continues to widen. Assessing that gap is crucial, and Integrated Assessment Models
(IAMs) can contribute by projecting the evolution of GHG emissions and temperature over
the next century under alternative policy developments. IAMs generally project where
current policies (and sometimes announced policies) take us if no further action is
implemented. These current policy pathways are compared with stylized policy scenarios
where the world meets specific targets (e.g., 1.5°C warming) to alert of this policy gap and
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spur governments into further action. But policy is not static. It is the product of evolving
social, economic, and political drivers. Climate policy will continue to develop over time,
and quantitative assessments of this evolution are critically missing for decision-makers,
who invest in new equipment, processes, and technologies across the world.

The latest addition to RHG-GEM, the Climate Policy Projections (CPP), aims to fill this gap.
Based on an econometric model of climate policy, the CPP charts the likely evolution of
climate action over time. Underlying Rhodium’s CPP is a panel data analysis of policy
evolution in 51 countries from 2000 to 2020. Rather than a deterministic forecast, the CPP
is a policy-modeling tool that responds dynamically to projections of political and
socioeconomic drivers. Incorporated into Rhodium’s suite of global energy system, GHG
emissions, and temperature models, it allows us to answer the question: What are we on
track for?

What drives a country’s climate action?

As climate change rises on the political agenda, research has increasingly focused on the
forces influencing climate policy action at different levels of government. From quantifying
local lobbying efforts to multi-country comparisons of carbon pricing policies, a review of
this broad political economy literature suggests that climate policy is linked to three types
of factors:

ECONOMIC

Higher levels of GDP per capita tend to be associated with more ambitious climate policy.
Wealthier economies have more resources to devote to climate mitigation and can afford
to invest in new technologies. They also tend to have greater historical emissions, implying
higher responsibility. Climate policy is also responsive to energy prices. With higher fuel
prices, affordability and competitiveness concerns quickly come to the forefront of the
political agenda. On the other hand, reliance on fossil fuel revenues (so-called fossil fuel
rents) reduces a country’s likelihood of implementing policies curbing their extraction or
use.

POLITICAL

A rise in public awareness of climate change and its impacts has been a critical factor in
bringing the issue to the recent political agenda, increasing policy action. Organized
private interests have been shown to actively mobilize and lobby against more ambitious
climate policies historically, on the basis that they increase costs and affect profitability
(e.g., fossil-fuel extraction and supply, fossil-based power generation, energy-intensive
industries). On the other hand, as the economic opportunities from the energy transition
arise, it is likely that a growing influence of clean technology lobbies could influence
climate policy action positively.

INSTITUTIONAL

The influence of these political forces on climate action is catalyzed by a country’s
institutions. Good governance tends to be linked to more transparent formulation and
implementation of policies, more independence from private influence, less subject to
corruption, and more closely related to public opinion. Good quality institutions should
therefore deliver more climate action as public concern rises on the topic.
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In a panel data analysis, we relate these drivers to the historical evolution of climate action
to verify and quantify these mechanisms.

Historical evolution of climate policy

Climate policy has evolved differently across the world, and policy instruments differ
widely. Our quantitative approach to the CPP delivers a single measure of climate action
(both its coverage and stringency) that can be consistently compared across countries
and over time. Studies have used different proxies for this: most rely on GHG emissions
reductions as an indicator of climate change mitigation. But emissions are directly linked
to economic output and are therefore greatly affected by non-policy factors (e.g.,
recession, natural disaster, pandemic). Others focus on countries that have implemented
a carbon price as a comparable indicator of climate ambition—a method that discounts
climate policy implemented through other instruments (subsidies, regulation, etc.).
Another common method is to consider “policy density”, i.e., the number of climate
policies and laws implemented in one country, abstracting from the effectiveness or at
least ambition underlying these policy packages.

For our analysis, we built a novel national index of climate action, based on the OECD’s
Climate Actions and Policies Measurement Framework’, a structured and harmonized
database of climate policies across countries and years. We base our analysis on the 2023
database version, covering from 2000 to 2022 and 49 countries participating in the
International Programme for Action on Climate (namely OECD members and accession
candidates, G20 countries, and the European Union). Several global databases of climate
policies are publicly available, but the CAPMF is the most comprehensive harmonized
database. It brings together 56 policies and climate actions, ranging from sectoral
instruments (e.g. solar feed-in-tariffs or minimum efficiency performance standards for
appliances), to cross-sectoral policies (e.g. carbon prices, targets) as well as international
actions (e.g. participation in climate agreements). The database tracks the implementation
of each of these 56 policies across countries, as well as their stringency using a normalized
scale: from zero when a policy is not in place, to 1 capturing the most stringent
implementation across all countries and years in the database.

For each country in the database, we construct an aggregate climate policy index, as a
weighted average of each of the policies’ stringency in each country and year. Since the
CAPMF deliberately includes both climate mitigation policies and non-climate policies that
have climate mitigation benefits, we must assign weights to each policy to give more
importance to those directly intended to reduce emissions (see Table 2).

1 Nachtigall, D., et al. (2022), "The climate actions and policies measurement framework: A structured and
harmonised climate policy database to monitor countries' mitigation action", OECD Environment Working Papers,
No. 203, OECD Publishing, Paris, https://doi.org/10.1787/2caaé0ce-en
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TABLE 2
Policy weights in Rhodium’s Climate Policy Index
Weight
in Example policies in the
Policy classification index CAMPF
Market and regulatory instruments directly aimed at 1 Prices, taxes, deployment subsidies,
reducing emissions standards
Enabling instruments to facilitate emission reductions 0.75 Planning for renewables, R&D
but not reduce them directly subsidies
Non-constraining instruments with aspirational value 0.5 Targets, signatures of international
agreements
Actions with informational or advisory value 0.25 Labels, reporting commitments,
voluntary mechanisms
Non-climate policy instruments 02 Speed limits, rail expenditures

Our final index captures a general increase in climate policy ambition within and across
sectors, in a consistent way that allows for comparison both across countries and over
time.

Climate policy projection drivers

Using a panel data analysis, we estimate how various drivers (economic, political,
institutional) impacted climate policy over the 20-year time period of analysis and across
50 countries. The econometric model is presented below.

THE ECONOMETRIC MODEL

We chose a country-fixed effect model to control for unobserved heterogeneity between
countries:

Idxl-t = VD_LL‘ + oy + €
Where:

it country, year

Idx;; Dependent variable: Climate Action Index
D, Climate action drivers

1% Associated coefficients

We test a range of drivers and different model specifications. Table 3 summarizes the
results. Our measure of fossil fuel lobby and a country’s income level have historically
been the largest drivers of climate action. While higher GDP per capita results in more

2 We assign a weight of 0 to policies with incomplete data over the period, to avoid artificial breaks in the policy
index (i.e., fossil fuel subsidies reforms and energy efficiency policies reported only after 2010).
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climate action, a high reliance on oil, gas and coal in the energy system tends to lead to
less ambitious policies. Economic dependency on oil (i.e., higher oil rents) and a large share
of manufacturing in GDP both have historically negatively impacted climate action. In
contrast, higher oil prices have spurred more climate action, although the analysis
suggests a delayed policy reaction to oil prices.

Institutional drivers (government effectiveness and regulatory quality) do not add
explanatory power to the model, regardless of the specification chosen, and neither do
our measures of climate technology industrial leadership (patents) and public awareness
(media coverage). We expect public opinion (awareness but also concern) to have played
a role in policy formation, but there is limited data available to test this in a robust way?.

Based on the results of the econometric analysis, we build our Climate Policy Projections
tool, where future climate action in a given country or region is a function of the selected
drivers above, namely GDP per capita, the shares of oil, gas, and coal in energy demand,
oil rents, the share of manufacturing in value added and the lagged oil price. The
relationships between drivers and climate action are informed by the coefficients of the
fixed effect model. We also account for uncertainty in our projections (i.e., capturing the
drivers we do not currently model) using projected residuals, randomly sampled from the
results of a bootstrapping exercise.*

TABLE 3
Results of the panel data analysis

Variable or proxy (and

Drivers source) Results of analysis Inclusion in CPP
Income GDP per capita (World Bank) Positive relationship, Yes
significant (1% level)
Oil price WTI Brent crude oil price & Positive & small Yes, lagged
lags, (IEA) relationship with lagged
variable, significant (1%
level)
Economic reliance on Qil rent, Gas rent, Coal rent Negative & small Yes, oil rent only
fossil fuels (World Bank) relationship, only oil is

significant (1% level)

Fossil fuel lobby Share of oil/gas/coal in Negative significant Yes
energy demand (IEA) relationship for all three
(1% level)

Weight of industry in Share of manufacturing in Small negative and Yes
economy Value-Added (%) (World significant relationship (5%
Bank) level)

3 International public opinion surveys on climate change vary in geographical coverage and are not available
historically on a yearly basis. They also differ in the wording of questions and could not be used to reconstruct a
large enough panel to include in our analysis.

4 Our bootstrap method estimates our panel data model 1000 times, resulting in 50,000 20-year sequences of
residuals, from which projections can be randomly sampled.
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Industrial leadership in Number of clean energy Not significant No
cleantech patents (IEA)
Good governance Government Effectiveness &  Negative, contrary to No
Regulatory Quality Indices hypothesis, significant for
(World Bank) government effectiveness

(10% level)

Public awareness of Number of media articles on  Very small positive No
climate change climate change or global relationship but not

warming + lags, (Media and significant.

Climate Change

Observatory)

Projecting policy action in the RHG-GEM

The Climate Policy Projections are integrated as a module into RHG-GEM. The module
endogenously projects the evolution of climate policy in each of the RHG-GEM's 16
regions and countries, based on socio-economic inputs (GDP, population, fuel prices) and
on the evolution of the energy system itself via feedback from other RHG-GEM modules.
The projected policy pathways feed into the decision-making process throughout the
model: as climate policy becomes more or less stringent in a given scenario, final demand
consumers (household, industry, transport) and suppliers (electricity generation, fuel
production) can adapt their technology choices to more or less carbon-intensive options.
Figure 2 represents the integration of CPP and its linkages in RHG-GEM.

The Climate Policy Projections module projects policy stringency levels by sector and
region, reflecting variation in the maturity of existing policy frameworks across
geographies and segments of the energy system. Initial policy ambition is derived from an
extensive review of international and national policy databases and academic literature
assessing the scope and ambition of current measures in the power, transport, buildings,
industry, and other sectors. Sectoral policies are translated into an effective carbon price.

To represent uncertainty in translating existing policies into an equivalent carbon-price
metric, each sector-region starting point follows a uniform probability distribution around
a central estimate. This probabilistic initialization allows sampling across plausible ranges
of policy ambition in the base year. The econometric model governing policy evolution
then projects policy pathways through 2100 as a function of economic, political, and
institutional drivers based on the econometric modeling described in the section above.
The result is a probabilistic ensemble of climate policy trajectories that reflects cross-
sectoral differences in policy maturity, uncertainty in the precision of the equivalent
carbon price metric, and the evolving nature of policy over time as influenced by its key
drivers.

The full integration of CPP as a module in RHG-GEM allows us to project the likely
evolution of policy in a dynamic way that is consistent with the underlying economic,
energy system, and technological assumptions. Combined with the MCA of the major
uncertainties behind the clean energy transition, we can provide probabilistic ranges of
GHG emissions and temperature outcomes, inclusive of a dynamic climate policy
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evolution. With the CPP, RHG-GEM is the first model to provide an endogenous, internally
consistent probabilistic answer to the question: What are we on track for?

Current policies in RHG-GEM

In addition to our stylized projections of future policy, we also include current policy from
all actionable and quantifiable existing national policy that we expect will have a
meaningful emissions impact beyond what the projected policy will deliver. For example,
we don’t anticipate a carbon price to provide a good proxy for targeted subsidies for
electric vehicles or emerging clean technologies. To remain consistent with United Nations
guidelines for reporting the impact of current measures, we include only policies that have
been finalized and adopted. We do not include aspirational goals or economy-wide targets
that have yet to be solidified in specific, actionable policy. We include sub-national policies
where relevant—for example, state-level renewable energy mandates in the United
States. The following is a non-exhaustive list of policies included in our RCO 2025:

= Renewable portfolio standards and clean energy targets
= Fuel economy and CO, standards for light-duty vehicles and freight
= Zero-emission vehicle mandates

= Climate technology subsidies

Section 4: Temperature Outcomes: The Finite-
Amplitude Impulse Response (FAIR) Model

RHG-GEM'’s emissions modeling is coupled with the FalR model to provide probabilistic
global temperature rise. FalR simulates the global climate's response to greenhouse gas
emissions, considering climate uncertainty. This simple model provides an accurate
representation of the climate’s response to emissions, while minimizing the computational
burden of running thousands of simulations in a Monte Carlo framework.

Model description

The Finite-amplitude Impulse Response (FalR) model is a reduced-complexity climate
carbon-cycle model representing the global average climate system, taking into account
the timescales of carbon and heat exchange, and of different greenhouse gas (GHG) and
aerosol species. It is a lightweight, fast, transparent, and simple model that accurately
reflects the climate response to emissions. FalR calculates atmospheric GHG
concentrations from GHG emissions, the effect of changing concentrations on radiative
forcing (how much the planet's energy imbalance changes), and ultimately the change in
global average temperature resulting from the changing energy imbalance. This model
was used extensively in the IPCC's 6th Assessment Report and was identified by NASEM
as an exemplar of a simple climate model meeting criteria for social cost of greenhouse
gas calculations. These criteria include transparency, simplicity, and the ability to
accurately and probabilistically represent climate and carbon cycle systems and their
uncertainties in a manner consistent with IPCC assessments and insights from more
complex Earth system models. Note that FalR does not contain sub-global or regional
patterns, such as the hemispheric nature of aerosols, nor does it contain internal
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variability (e.g. weather) or tipping point representation but is rather a smooth
representation of global averages.

For this report, we use FalR version 1.6.4, which is a slightly updated version from that
used in AR6 but with identical results. A description of how GEM emissions were prepared
and how FalR simulations were executed follows.

Emissions

GHG emissions for the RCO baseline scenario were extracted from the RHG-GEM, while
for other scenarios, emissions data was derived based on the calculations detailed in
Section 7. Global emissions reflect the probability distribution of global GHGs through
2100 under uncertainty. Emissions for six gases from GEM in CO,-equivalent units were
disaggregated, unit converted, and formatted into the format expected by FalR (a 39-
species array by year).

To represent historical emissions and emissions of gases not included in RHG-GEM,
emissions from the Reduced Complexity Model Intercomparison Project (RCMIP) were
obtained for the SSP2-4.5 emissions scenario, which includes historical emissions and a
projection of future emissions for a middle-of-the-road mitigation future in which radiative
forcing reaches ~4.5W/m2 by 2100. SSP2-4.5 emissions are used until year 2023, when
GEM emissions projections begin, at which time projected GEM emissions for each of the
included gas species are delta-shifted to the SSP2-4.5 level and carried forward based on
GEM trends.

The trend for emissions of NOx and SOx was calculated based on relative changes in the
combustion of fossil fuel, assuming 85% of aerosol emissions today come from fossil fuel
combustion. The SSP2-4.5 level of these aerosols was similarly carried forward based on
the GEM trend of fossil fuel combustion.

The resulting emissions are used as inputs to FalR in combination with climate parameters
representing climate uncertainty, as described in the next section.

FalR simulations

A key feature of FalR is its ability to run quickly, and efficiently produce probabilistic time
series of the temperature response to GHG emissions that captures the uncertainties in
the climate system. The response to emissions is captive to uncertain values of carbon
and heat uptake by the ocean, climate sensitivity, and radiative forcing, to name a few
factors. Many of these uncertain parameters are exogenous to FalR and can be set by the
user to sample a physically plausible range, for example. Here we have used a set of
calibrated input parameter samples that were developed for use in the AR6 to determine
the global mean temperature response to emissions, reflecting the current best estimates
of climate uncertainty (see Forster et al. 2021 Box 7.1 and Chapter 7 Supplementary
Material 7.SM.2 for additional details).

The FalR input parameter samples were chosen following a set of constraints applied to a
1-million-member ensemble of emissions-driven FalR simulations over years 1750 - 2019,
as described in Ch. 7 of AR6 WG1 and its Supplementary Material (Section 7SM.2). The
initial parameter draws were sampled from assessed and/or published uncertainty ranges
of effective radiative forcing (ERF), the climate response (surface and deep ocean effective
heat capacities, efficacy of ocean heat uptake, heat transfer coefficient between the
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surface and deep ocean layers, and climate feedback parameter), and the carbon cycle
(airborne fraction of CO,, and change in airborne fraction of CO,). The resulting constrained
parameter set consists of 2,237 samples of 15 parameters. Together the resulting climate
simulations satisfy criteria for matching the following: the trend in historical global average
temperature, the assessed historical ocean heat uptake, 2014 atmospheric CO,
concentrations, and airborne fraction of CO, concentrations in transient CO, increase
simulations. The climate simulations run with this parameter set are consistent with the
assessed ranges of equilibrium climate sensitivity (ECS) and transient climate response
(TCR), and the ranges of global average temperature change for the AR6 emissions
scenarios (see Ch 7 Cross-Chapter Box 7.1 of Forster et al. 2021). Version 1.0 of the FalR
parameter set was used. The final parameter set consists of 2,237 samples that give FalR
simulations with physically plausible and historically consistent time series of global
average temperature.

Section 5: Monte Carlo Analysis

Monte Carlo Analysis (MCA) is a mathematical technique used to estimate possible
outcomes in a highly uncertain system. The method relies on repeated and simultaneous
sampling of uncertain input parameters, represented by probability distributions, which in
turn generates a probability distribution of outcomes. MCA is well-suited for producing
probabilistic projections of the energy and climate systems, both of which are highly
complex and dependent on numerous uncertainties.

Sampling strategy

We leverage Latin hypercube sampling (LHS) to construct samples for uncertain
parameters. The decision to employ LHS is rooted in its ability to systematically explore
the entire spectrum of uncertainty associated with these parameters while simultaneously
minimizing the number of samples required. Unlike random sampling methods, LHS
ensures more even coverage across the range of each uncertain parameter, providing a
representative set of scenarios for our analysis.

We ran 4950 MCA simulations, which provided a reasonable level of precision in global
emissions outcomes while minimizing computational burden. Considering that each GEM
simulation requires an average of 3 hours to run, we addressed the challenge of runtime
constraints by parallelizing our simulations. To achieve this, we utilized GAMS engine, a
Software as a Service (SaaS) provided by GAMS, accessed through their API. This
parallelization strategy allowed us to run ~2000 simulations simultaneously, significantly
optimizing our overall runtime.

An integrated energy-climate MCA
UNCERTAINTY IN CLIMATE POLICY PROJECTIONS

The climate policy projections are derived internally to RHG-GEM, enabling uncertainty in
parameters and assumptions above (e.g., GDP, population and oil prices) to feed into the
evolution of climate policy. Two-way interactions between the energy system and the
climate policy projections are enabled through running iterations of RHG-GEM, ensuring
consistency between the emission pathway and climate policy projections under a given
set of sampled parameters. We also model uncertainty in our climate policy projections
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(i.e., capturing the drivers we do not currently model) using projected residuals, randomly
sampled from the results of a bootstrapping exercise. Lastly, we capture uncertainty in
the estimates of the regression parameters.

PAIRING OF EMISSIONS AND CLIMATE UNCERTAINTY

To manage computational resources, a method was established to link RHG-GEM
emissions uncertainty with a representative sample of FalR climate uncertainty. A full
pairing of the 2,237 FalR samples with all RHG-GEM emissions pathways was not viable
due to the excessive number of simulations required. Instead, each RHG-GEM emissions
pathway was paired with 7 randomly selected climate parameter samples with
replacement, to ensure an adequate spread of the climate uncertainty is accounted for
each emissions pathway. The FalR model was then executed for each emissions-climate
parameter pairing, resulting in a set of 33,066 climate simulations. For the purpose of
analysis, the simulation data was confined to the years 2022 - 2100.

Uncertainty decomposition analysis

Beyond reflecting the uncertainty in global emissions pathways and temperature
outcomes, the MCA allows us to explore the contributions of each of the uncertain
parameters considered on model results. The MCA framework is useful to move away
from punctual sensitivity analysis of each parameter, towards a global sensitivity analysis,
which considers all parameters and their interactions on our modeled outcomes.

Following Saltelli et al. (2008), we perform multivariate regression analysis on our MCA
results and compute the Standardized Regression Coefficients (SRC) in order to determine
the importance of each of our uncertain parameters on our model outputs. Although the
relationships between inputs and outputs are not linear in the RHG-GEM, we do not aim
to quantify that relationship through the linear regression, but rather to inform our results
on the relative importance of each uncertain parameter on the outcome.

We perform two regressions, the first on temperature outcomes, and the second on global
emissions, as follows:

Tyt = Bro + Br1Ei: + Z Brj Xjit
j

Eit =PBro+ z Bk Zi,i¢
k

Where T and E represent the global mean temperature and global cumulative GHG
emissions in sample i and year t, respectively, while X;are the j uncertain climate input
parameters to the FalR model, and Z; are the k uncertain input parameters to the RHG-
GEM. B and B therefore represent the regression coefficients of the multivariate
regressions on global mean temperatures and global cumulative emissions, respectively.
To avoid multicollinearity issues, we only include a single parameter in a set of jointly
sampled uncertainties (e.g., renewable capital costs as a whole). We also exclude
uncertainties with negligible impacts on global emissions. We normalize the data inputs to
the regression so as to obtain regression coefficients that are already standardized to the
variance of our model outcome and can be used directly for sensitivity analysis.
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The R-square statistic, which reflects the goodness of fit of the linear model and can be
interpreted as the fraction of the variance explained by our regression is high - 0.73 for
temperatures in 2100 and 0.75 for emissions. The uncertainty parameters we include as
independent variables all show statistical significance at the 95% level. Given our large
sample size (N=4950 for global emissions and N= 33085 for temperature outcomes), the
SRC can be interpreted as the relative first-order contribution of each parameter to the
portion of the variance explained by our model. In other words, we cannot capture the
full effect of each parameter’s variance on the variance of the model outcome, but these
higher order effects (interactions between parameters) are captured in the unexplained
portion of the variance.

Our findings show that 80% of uncertainty in global mean temperature rise by 2100 comes
from climate sensitivity—the amount of warming for a given increase in GHG
concentrations. In contrast, uncertainty in global emissions contributes 15%, with the
remainder due to interactions between these sources of uncertainty.

For global emissions, the largest source of uncertainty is economic growth, specifically
GDP per capita, reflecting long-term unpredictability in emerging economies. Energy
market factors, such as fossil fuel prices, also play a significant role. While population
growth has a negligible impact on emissions by 2050, its influence increases toward the
end of the century.

In addition to these first-order effects, interactions between uncertainties are significant,
underscoring the non-linearity of the energy system. This non-linearity is reflected in the
widening of variance over time, with the range of plausible emissions nearly doubling from
2050 to 2100. Our uncertainty decomposition underscores the need for robust mitigation
efforts that address these wide-ranging drivers of uncertainty, particularly through the
accelerated deployment of low-carbon technologies and innovations in hard-to-abate
sectors.

Section 6: Agriculture, Forestry and Other Land Use
and Other Non-CO; Emissions

RHG-GEM provides comprehensive, methodologically consistent projections of economy-
wide emissions of all six gases included under the Kyoto Protocol (CO,, methane, nitrous
oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride), including for
agriculture, forestry and other land uses (AFOLU). For most AFOLU and non-CO; emissions,
changes in emissions over time are driven by changes in the underlying socioeconomic
drivers (e.g., population and economic growth). Unlike for energy CO,, we assume no
evolution in climate policy throughout the projection period (with the exception of HFCs).
There is not yet enough historical evidence of climate policy applied across geographies
in these sectors to provide robust data to model the potential evolution of future policy
using our Climate Policy Projection model. As climate policy deploys across these sectors
in the coming years, we hope that data collection will allow us to include these sectors in
our CPP. For now, we assume that emission rates remain consistent with today’s levels.
Below we outline the specific methods we apply to each sub-sector category.

FOR MORE INFORMATION REGARDING OUR RESEARCH, PLEASE EMAIL CLIENTSERVICE@RHG.COM 26



RHODIUM GROUP | ENERGY & CLIMATE RHODIUM CLIMATE OUTLOOK 2025 TECHNICAL APPENDIX

Agriculture, forests and other land use GHG emissions

To establish a methodologically consistent historical emissions inventory for agriculture,
we use Food and Agriculture Organization (FAO) data, which we align with inventory
categories defined by the Intergovernmental Panel on Climate Change (IPCC). For
projections extending to 2100, we start with emission trends aligning with scenarios
modeled by the International Institute for Applied Systems Analysis (IIASA) in their
GLOBIOM-G4M projections. This scenario is based on SSP2, which describes a world in
which agricultural yield improvements are more pronounced in developing economies,
gradually converging with those in developed nations. It does not assume that the world’s
sustainability goals are met. In this scenario, emissions from agriculture are projected to
decrease through 2100, due in part to ongoing afforestation efforts and productivity
enhancements, counterbalanced by population growth and consequent land scarcity.

We align the emissions trends for CO,, methane, and nitrous oxide from lIASA’s projections
with the underlying socioeconomic assumptions (e.g., economic and population growth)
and uncertainties in RHG-GEM, which provides a range of potential emission outcomes for
emissions from agriculture. Specifically, we take the range of scenarios that assume no
carbon price is applied in this sector throughout the projections and assume biomass
prices ranging from $0-60 per gigajoule. This does not capture the full range of potential
emissions from this sector, however, as we do not capture the effect of potential climate
or sustainable development policies that may shape the future of GHG emissions and
removals from this sector.

To project land use emissions, we used historical data from FAOSTAT, organized by
country and grouped into regions based on the previously defined regional structure. Due
to the inherent variability in historical land use emissions, we created a uniform probability
distribution for each region. This distribution, defined by the minimum and maximum
historical emission values, represents the range within which future emissions could fall.
By sampling from these distributions, we generated probabilistic land use emissions
projections for each region, capturing the uncertainty in future trends while reflecting
historical patterns.

Industry

For vented and flared methane emissions from coal, oil, and natural gas production and
transportation, we take coal, oil and gas production and consumption outputs from RHG-
GEM and apply regional emission factors from the International Energy Agency (IEA). For
the United States, we apply emission factors from Taking Stock 2025, reflecting current
policies and regulations targeting emissions in production, distribution, and processing as
of June 2023. We have not incorporated methane emissions abatement policy from the
rest of the world due to a lack of modeling of how recently announced policies existing
policies will impact emissions. There is not yet sufficient evidence in the historical record
of methane abatement from oil and gas to allow us to incorporate it into our econometric
Climate Policy Projection. For now, we assume current emission-intensity rates continue
at historical rates throughout the projection period.

The projection of nitrous oxides follows a similar behavior to CO, emissions and activity
data from the relevant sub-industries projection in RHG-GEM industrial module. In a
similar way, the projection of F-gases emissions is correlated with regional GDP per capita,
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reflecting their association with industrial production and the manufacturing of specific
products.

Hydrofluorocarbons

We assume global implementation of the Kigali Amendment of the Montreal Protocol,
which provides a legally binding pathway for phasing down the consumption and
production of hydrofluorocarbons (HFCs). We apply the Kigali implementation scenario
from the recent Velders study, which finds that HFC emissions under Kigali implementation
decline to 1 gigaton of CO, equivalent by 2050 and then level off by 2080, remaining below
0.5 gigatons up to 2100.
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ABOUT RHODIUM GROUP

Rhodium Group is an independent research provider with deep expertise in policy and
economic analysis. We help decision-makers in both the public and private sectors
navigate global challenges through objective, original, and data-driven research and
insights. Our key areas of expertise are China’s economy and policy dynamics, and global
climate change and energy systems. More information is available at www.rhg.com.
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