

# **Hivenet Benchmark**

# Consumer-grade GPUs vs data center-grade GPUs





#### Context

This benchmark evaluates the inference performance of **consumer-grade GPUs** (RTX 4090, RTX 5090) against a **data center-grade GPU** (NVIDIA A100 80GB), focusing on practical inference workloads with medium-sized LLMs and large context windows.

The benchmark is conducted using the official benchmark\_serving.py script from the <u>VLLM</u> project, using the public **ShareGPT** dataset which contains multi-turn conversational prompts.

### **Objectives**

- Evaluate **latency** and **throughput** across different GPU classes.
- Determine whether one or multiple consumer-grade GPUs can surpass or match the A100 for small and medium sized models.
- Provide verifiable results for infrastructure decision-making (cost-effective deployment strategies).

## Static Configuration

| Parameter         | Value                                                                                                                                         |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Context Length    | 8192 tokens                                                                                                                                   |
| Output Length     | 512 tokens                                                                                                                                    |
| Model             | meta-llama/Meta-Llama-3.1-8B-Instruct                                                                                                         |
| Precision         | BF16                                                                                                                                          |
| Batch Size (auto) | Based on GPU memory                                                                                                                           |
| Dataset           | ShareGPT (https://huggingface.co/datasets/anon8231489123/ ShareGPT_Vicuna_unfiltered/resolve/main/ ShareGPT_V3_unfiltered_cleaned_split.json) |
| Benchmark Tool    | vLLM official benchmark_serving.py (vllm/benchmarks at v0.8.3 · vllm-project/vllm)                                                            |



#### **Test Scenarios**

#### 1. Moderate Load (Latency Test)

| Attribute | •          | Value                               |
|-----------|------------|-------------------------------------|
| Request I | Rate       | 1 req/s                             |
| Number o  | of Prompts | 100                                 |
| Goal      |            | Capture average latency (TTFT, E2E) |

#### 2. Extreme Load (Throughput Test)

| Attribute         | Value                                                |
|-------------------|------------------------------------------------------|
| Request Rate      | 1100 req/s                                           |
| Number of Prompts | 1500                                                 |
| Goal              | Measure maximum output token throughput (tokens/sec) |

# Results and Analysis

#### Scenario 1 – Latency under Moderate Load (1 req/s)

| GPU      | Avg ITL(ms) | Avg TPOT(ms) | Avg TTFT(ms) | Avg E2E<br>latency(ms) | Notes                                                |
|----------|-------------|--------------|--------------|------------------------|------------------------------------------------------|
| RTX 4090 | 19          | 19           | 349.9        | 9759.07                |                                                      |
| RTX 5090 | 12.14       | 12.14        | 45.41        | 6058.57                | · E2E: 14% faster<br>than A100<br>· TTFT: 84% faster |
| A100     | 13.25       | 13.25        | 296.44       | 7080.9                 |                                                      |

**Key Insights:** All GPUs handle moderate load scenarios effectively. However, the RTX 5090 significantly outperforms all other tested GPUs, including the high-end A100, in all latency categories:

- **1. End-to-End Latency (E2E):** The RTX 5090 achieves **14% faster** E2E latency than the A100.
- 2. Time-To-First-Token (TTFT): The RTX 5090 dramatically reduces TTFT by 84% compared to the A100, a crucial factor for interactive workloads and low-latency applications.



#### Scenario 2 – Throughput under Extreme Load (1100 req/s)

| GPU      | Avg Token Throughput<br>(Tokens/sec) | Sustained RPS |
|----------|--------------------------------------|---------------|
| RTX 4090 | 737.65                               | 1.47          |
| RTX 5090 | 3802.09                              | 7.58          |
| A100     | 3748.16                              | 7.58          |

#### **Key Insights:**

- **1. RTX 5090 surpasses A100 in raw throughput**, delivering ~1.4% more token/sec under load. This is significant given its lower cost and VRAM compared to A100.
- 2. Data parallelism further shifts the performance curve:
  - a. 2× RTX 5090 (64 GB combined) pushes throughput to ~7604.18 tokens/sec, outperforming A100 by ~103%, essentially doubling the inference capacity while using less VRAM and being potentially more cost-efficient than a single datacenter A100.

#### Conclusion

Across both low-load and high-load inference scenarios with medium-sized model (8B), high-end consumer-grade GPUs demonstrate **comparable or superior performance** to the A100 datacenter-grade GPU.

- Under moderate load (1 req/s), the RTX 4090 offers latencies close to the A100 performances, and the RTX 5090 delivers superior performances.
- Under extreme load (1100 req/s), the RTX 5090 achieves slightly higher throughput than the A100, while dual RTX 5090s are expected to deliver ~100% more token throughput, respectively.

While the A100 remains advantageous for certain workloads requiring larger VRAM, these results show that for medium-sized models, some **consumer-grade GPUs** are **viable alternatives**, especially when **cost**, and **scalability** are key considerations.

For most small to meidum-sized LLMs deployment scenarios, **well-configured consumer GPU clusters offer a practical**, **high-performance option** that challenges the exclusive role of datacenter-grade hardware.