computar

ADVANCING VISION SYSTEMS WITH COMPUTAR SWIR IMAGING TECHNOLOGY

ABOUT US

Jonathan is an experienced Application Engineer with a demonstrated history of working in the industrial automation industry.

He has a Bachelor of Science from Texas Tech University, where he studied industrial engineering.

For over 40 years, Computar Optics, a part of the global conglomerate CBC Group, has been a leader in developing innovative lenses worldwide.

COMPONENTS OF SWIR IMAGING

Machine Vision systems typically consist of the following components:

- Cameras: Capture the images of the objects or scenes.
- Lighting: Narrow band LED lighting, Wideband quartzhalogen light
- Filters: Bandpass, Multipass Filters
- Lenses: Focus the light to present a clear image to the camera.
- Image Processing Software: Analyzes the captured images and extracts relevant data.
- Computers/Processors: Perform the computational tasks for image analysis and decision-making.

KEY TAKEAWAYS

- SWIR imaging and how it overcomes the limitations of visible light systems
- Specialized SWIR lens designs
- Unique optical coatings
- Application-specific variants
- Visible+SWIR sensors (IMX990/991/992/993)
- How AR coating technology maximizes lens performance
- Chromatic aberration correction to the limit at 400 nm to 1700 nm
- The ViSWIR Series

Visible vs SWIR (illustrative Example)

TYPES OF SWIR IMAGING

SWIR CAMERAS

Specialized cameras designed to capture images in the SWIR spectrum.

HYPERSPECTRAL SWIR IMAGING

Capturing images at multiple wavelengths within the SWIR range for detailed spectral analysis.

SWIR LINE SCAN IMAGING

Moving objects are scanned line by line to capture SWIR images.

SWIR THERMAL IMAGING

Combining SWIR imaging with thermal imaging for enhanced detection capabilities.

SWIR REFLECTANCE IMAGING

Analyzing the reflectance of SWIR light for various applications, such as material identification and quality control.

HOW SWIR LENSES WORK

- Material and Coating: SWIR lenses use specialized materials and coatings to efficiently transmit SWIR wavelengths and minimize losses through reflection.
- Optical Design: the design of SWIR lenses focuses on reducing chromatic aberration and distortions in infrared wavelengths for clear imaging.
- Detection and Imaging: SWIR lenses focus SWIR light onto InGaAs detectors in cameras, enabling imaging with distinct SWIR characteristics.
- Applications and Advantages: SWIR imaging is advantageous for seeing through opaque materials and finds applications in surveillance, industrial inspection, semiconductor inspection, and agricultural monitoring (more on this later).

ViSVIR

Visionsi Ystems InnliVitors

GOLD HONOREE

Awards

2022 AWARD

INSPECT WORLD OF VISION

Bringing Visible + SWIR into Focus

Compatible with IMX990/991/992/993

Designed specifically for the latest high-resolution Visible+SWIR sensors

Standard Lens

Visible

NIR

SWIR

400nm 550nm 650nm

850nm

1000nm

1200nm

1500nm

1700nm

Features

- High-resolution lens designed specifically for the latest Visible+SWIR sensors.(IMX990/991/992/993)
- AR coating technology that maximizes the performance of ViSWIR lenses and SWIR stray light countermeasures.
- Corrects chromatic aberration to the limit at 400 nm to 1700 nm.

Features

- High-resolution lens designed specifically for the latest Visible+SWIR sensors.(IMX990/991/992/993)
- AR coating technology that maximizes the performance of ViSWIR lenses and SWIR stray light countermeasures.
- Corrects chromatic aberration to the limit at 400 nm to 1700 nm.

400nm 550nm 650nm 850nm 1000nm 1200nm 1500nm 1700nm High resolution is achieved under the $400 \sim 1700$ nm.

Features

- High-resolution lens designed specifically for the latest Visible+SWIR sensors.(IMX990/991/992/993)
- AR coating technology that maximizes the performance of ViSWIR lenses and SWIR stray light countermeasures.
- Corrects chromatic aberration to the limit at 400 nm to 1700 nm.

AR Coating

computar

Transmittance Data

Even in industrial fields where long-term use is expected, we have achieved AR coating with minimal changes in characteristics over time.

Internal Reflection Comparison

Our lenses are designed to suppress internal reflections that adversely affect image quality by applying a special treatment to the mechanical parts that absorbs SWIR light.

Features

- High-resolution lens designed specifically for the latest Visible+SWIR sensors.(IMX990/991/992/993)
- AR coating technology that maximizes the performance of ViSWIR lenses and SWIR stray light countermeasures.
- Corrects chromatic aberration to the limit at 400 nm to 1700 nm.

Axial chromatic aberration

Axial chromatic aberration

Axial chromatic aberration is completely corrected in the 400-1700 nm range.

Axial chromatic aberration(M0818-APVSW2)

Spectral imaging is possible simply by synchronizing the light source switch and camera imaging, as the focus does not change even when the wavelength is changed.

Lateral Color Aberration

Lateral Color Aberration

Lateral color aberration (mm)

Lateral Color Aberration

- Wide bandwidth with chromatic aberration less than one pixel of the latest InGaAs sensor, even around the edges of the image.
- Suitable for a wide range of applications by suppressing the correction of lateral color aberration from INF to MOD.

Synchronizing camera imaging and LED lighting enables the acquisition of multiwavelength images.

Multi-Band Solution

Multi-Band Filter

Multi-band filter transmittance (simulation value)

Multi-Band Solution

One sensor can capture images in four wavelengths.

Multi-Band Solution

Multi-band filter + Near-infrared 4-Band Spectrograph Camera

Multi-band filter

Multi-band filter transmittance (simulation value)

4-band spectrograph camera

Aval Data Web site: https://www.avaldata.co.jp/products/imaging/item/ams-013virlf2

Near-infrared 4-Band Spectrograph Camera

Near-infrared 4-Band Spectrograph Camera

VISIBLE

Standard Lens + CMOS

SWIR

E3Z5247P-MPSW + IMX990

VISIBLE

Standard Lens + CMOS

+ IMX990

520mm

Focal Length

n: number of scattering particles

Features

- High-resolution lens designed specifically for the latest Visible+SWIR sensors.(IMX990/991/992/993)
- AR coating technology that maximizes the performance of ViSWIR lenses and SWIR stray light countermeasures.
- Corrects chromatic aberration to the limit at 400 nm to 1700 nm.

Features

- Broadband AR coating provides high transmittance across all wavelength ranges.
- High cost performance for single-wavelength illumination and narrowband photography applications.
- Compact and lightweight design

SWIR Reflex Zoom Lens VISONIR

E3Z5247P-MPSW	
Focal length	520-1300mm (Zoom ratio 2.5x)
F-number	F4.7
Format	1/1.8"
Mount	С
Supported wavelengths	400-1700nm
Resolution	1.3MP
Remark	Reflection refraction zoom lens

A zoom lens that suppresses chromatic aberration by utilizing reflective surfaces in long-focus lenses, where chromatic aberration correction is difficult.

CONTACT

Phone: +919-414-8098

Website: computar.com/viswir

Email: jhackney@cbcamerica.com

computar@cbcamerica.com

