

CENTRO UNIVERSITÁRIO DE MACEIÓ

CURSO DE CIÊNCIA DA COMPUTAÇÃO

JOÃO BATISTA NETO

LEONARDO LIMA DE VASCONCELOS

LUCAS DANIEL ALVES CARNEIRO

Um Gerenciador de Medicamentos Inteligente utilizando a tecnologia a serviço da

saúde

Maceió-AL

2025

JOÃO BATISTA NETO

LEONARDO LIMA DE VASCONCELOS

LUCAS DANIEL ALVES CARNEIRO

Um Gerenciador de Medicamentos Inteligente utilizando a tecnologia a serviço da

saúde

Trabalho de Conclusão de Curso

apresentado ao Centro

Universitário de Maceió como um

dos pré-requisitos para a obtenção

de grau de Bacharel em Ciência da

Computação.

Orientador: Esp. Victor Brunno

Dantas de Souza Rosas

Coorientador: Esp. Icaro Santos

Ferreira

Maceió-AL
2025

JOÃO BATISTA NETO

LEONARDO LIMA DE VASCONCELOS

LUCAS DANIEL ALVES CARNEIRO

Um Gerenciador de Medicamentos Inteligente utilizando a tecnologia a serviço da

saúde

Monografia apresentada ao Centro
Universitário de Maceió como um dos
pré-requisitos para a obtenção de grau de
bacharel em Ciência da Computação.

Aprovada em _____/_____/_____.

Banca Examinadora

Esp. Victor Brunno Dantas de Souza Rosas

Centro Universitário de Maceió

Esp. Icaro santos ferreira

Centro Universitário de Maceió

Me. Izaac Duarte de Alencar

Centro Universitário de Maceió

Me. Marcos Vinicius Silva Bento

Centro Universitário de Maceió

Catalogação na fonte: Biblioteca do Centro Universitário de Maceió, Unima | Afya

Bibliotecária responsável: Adriele da Silva Lima CRB-4/1898

V331g Vasconcelos, Leonardo Lima de

 Um gerenciador de medicamentos inteligente utilizando a tecnologia

a serviço da saúde / Leonardo Lima de Vasconcelos, João Batista Neto,

Lucas Daniel Alves Carneiro ; orientação [de] Victor Brunno Dantas de

Souza Rosas ; coorientação [de] Icaro Santos Ferreira. – Maceió, 2025.

 66 f. : il.

 Trabalho de Conclusão de Curso (Graduação em Ciência da

Computação) -Centro Universitário de Maceió – Unima | Afya, Maceió,

2025.

 Inclui Bibliografias: p. 61-65.

 1. Gerenciamento de medicamentos. 2. Sistema web. 3. Saúde. I.
Batista Neto, João. II. Carneiro, Lucas Daniel Alves. III. Rosas, Victor

Brunno Dantas de Souza. (orient.). IV. Ferreira, Icaro Santos. (coorient.).

V. Centro Universitário de Maceió. VI. Título.

 CDU: 004

 DEDICATÓRIA

Dedicamos este Trabalho de Conclusão de Curso aos nossos pais, por todo o amor, apoio e

força em cada etapa dessa jornada. Esta conquista é também de vocês, que estiveram sempre

ao nosso lado, mesmo nos momentos mais difíceis.

Agradecemos igualmente aos nossos professores, que, com paciência e dedicação,

contribuíram de forma essencial para a nossa formação. Cada ensinamento será levado

conosco para além da sala de aula.

AGRADECIMENTOS

João

Agradeço, principalmente, aos meus pais, por todo o suporte oferecido durante todo o

tempo de faculdade. Seu amor, dedicação e incentivo foram essenciais para que eu pudesse

conquistar mais esta etapa da minha vida acadêmica. Agradeço também a todos que, de

alguma forma, fizeram parte dessa trajetória. Meu sincero muito obrigado a todos.

Leonardo

Devo toda a minha carreira acadêmica aos meus pais, tenho toda gratidão por eles e

dedico este e todos os trabalhos futuros a eles e aos amigos que me apoiaram nesta trajetória e

me auxiliaram de alguma maneira, todos os elogios e críticas fizeram ser o que sou hoje e

tenho orgulho disso, aos meus pais, família e amigos, dedico esse trabalho e essa formação a

todos vocês.

Lucas

Agradeço, em especial, aos meus pais, pelo amor incondicional, apoio constante e por

sempre acreditarem em meu potencial. Foram a base que sustentou minha caminhada

acadêmica, oferecendo não apenas suporte material, mas também emocional, mesmo nos

momentos mais desafiadores. Esta conquista é fruto da dedicação de vocês, que nunca

mediram esforços para que eu pudesse alcançar meus objetivos. Meu mais profundo

reconhecimento e gratidão.

RESUMO

Desenvolvimento de um sistema web para o gerenciamento e monitoramento seguro da

administração de medicamentos em instituições de saúde, como casas de apoio e clínicas de

longa permanência. A proposta surge diante dos desafios enfrentados por profissionais da

área, como o esquecimento de doses, registros imprecisos, baixa rastreabilidade e o uso

recorrente de métodos manuais, como planilhas físicas. A aplicação desenvolvida integra

tecnologias modernas e acessíveis React.js no frontend e Supabase com PostgreSQL no

backend com foco em automação, usabilidade e escalabilidade. Entre as funcionalidades

implementadas, destacam-se o cadastro de pacientes e medicamentos, controle de horários de

medicação, marcação de doses como administradas, alertas visuais e controle de estoque. A

plataforma também conta com registros de auditoria e suporte a múltiplos usuários

autenticados. Os testes demonstraram que o sistema apresenta desempenho eficiente e atende

às necessidades de cuidadores e profissionais da saúde com diferentes níveis de familiaridade

tecnológica. Conclui-se que a solução proposta contribui para a redução de erros humanos,

otimiza processos internos e oferece potencial para uso em ambientes reais, com possibilidade

de futuras expansões, como uma versão mobile e melhorias na interface.

Palavras-chave: Gerenciamento de medicamentos; Sistema web; Saúde; Supabase.

ABSTRACT

Development of a web system for the secure management and monitoring of medication

administration in healthcare institutions, such as nursing homes and long-term care clinics.

The proposal arose in response to the challenges faced by professionals in the field, such as

forgotten doses, inaccurate records, poor traceability, and the recurrent use of manual

methods, such as physical spreadsheets. An application developed integrates modern and

easy-to-use React.js technologies on the frontend and Supabase with PostgreSQL on the

backend, with a focus on automation, usability, and scalability. Among the innovative

features, the following stand out: patient and medication registration, medication schedule

control, dose marking as administered, visual alerts, and inventory control. The platform also

has audit logs and support for multiple authenticated users. Tests demonstrated that the

system performs efficiently and meets the needs of caregivers and healthcare professionals

with different levels of technological familiarity. It was concluded that the proposed solution

contributes to the reduction of human errors, optimizes internal processes, and offers

potential for use in real environments, with the possibility of future expansions, such as a

mobile version and interface improvements.

Keywords: Medication management; Web system; Health; Supabase.

SUMÁRIO

1 INTRODUÇÃO..13
2 OBJETIVOS...14

2.1 Objetivo Geral...14
2.2 Objetivos Específicos..14

3 ASPECTOS TEÓRICOS...15
3.1 Necessidade de Soluções Tecnológicas para a Gestão de Medicamentos.................... 15
3.2 Fatores Etários e Psicossociais na Não Adesão Medicamentosa..................................15
3.3 Erros na Administração de Medicamentos... 16
3.4 Erros de Medicação e Farmacovigilância... 16
3.5 Dificuldades no Uso de Medicamentos por Idosos...17
3.6 Fatores Socioeconômicos e Saúde.. 18
3.7 Adesão Medicamentosa e o Monitoramento no Cuidado de Idosos.............................18
3.8 Banco de Dados PostgreSQL..19
3.9 Supabase..20

3.9.1 Jwt token.. 21
3.9.2 Row level security (RLS)...22
3.9.3 Supabase auth e o gerenciamento de autenticação...24

3.10 Prisma ORM... 24
3.11 Axios e Express...25
3.12 Insomnia..26
3.13 Monitoramento de métricas com prometheus...26
3.14 Visualização e monitoramento com grafana... 27
3.15 Linguagem de programação..28

3.15.1 Framework... 28
3.15.2 Javascript..29
3.15.3 React...30

3.16 GitHub...30
3.17 Vercel.. 31
3.18 Docker...32
3.19 Webhooks..33
3.20 Aplicativos existentes para gerenciamento de medicamentos.................................... 33

4 METODOLOGIA.. 34
4.1 Métodos de Desenvolvimento...34
4.2 Levantamento de Requisitos... 35
4.3 Processo de Desenvolvimento.. 36

4.3.1 Modelagem e gerenciamento do banco de dados...37
4.3.2 Segurança e controle de acesso: jwt e row level security.................................... 39
4.3.3 Implementação da Autenticação com Supabase.. 40
4.3.4 Registro de logs..42
4.3.5 Utilização do prisma orm e flexibilização da modelagem...................................43
4.3.6 Estrutura e lógica da aplicação (back-end).. 44
4.3.7 Desenvolvimento da interface do usuário (front-end)... 46
4.3.8 Ambiente de desenvolvimento e conteinerização..46
4.3.9 Versionamento de código e deploy contínuo... 48
4.3.10 Testes e validação da aplicação..49
4.3.11 Envio de notificações via telegram.. 50

4.4 Fluxo de navegação da aplicação..52
4.4.1 Descrição do Fluxo.. 53

5 RESULTADOS E DISCUSSÕES..55
5.1 Avaliação da Solução Desenvolvida em Relação ao Mercado..................................... 55
5.2 Comparação entre Soluções Existentes e a Aplicação Desenvolvida...........................55
5.3 Tempo de respostas das apis... 56
5.4 Avaliação geral..58
5.5 Considerações finais... 58

6 CONCLUSÕES.. 59
7 SUGESTÕES PARA TRABALHOS FUTUROS..60
REFERÊNCIAS.. 61
ANEXO A — Link do Repositório no GitHub...66

LISTA DE FIGURAS

Figura 1:RLS para tabela perfis...23

Figura 2: RLS para tabela pacientes…………………………………………………………23

Figura 3: RLS para medicamentos…………………………………………………………..23

Figura 4: Diagrama Entidade-Relacionamento (ERD)……………………………………....38

Figura 5: Fluxo de dados…………………………………………………………………….39

Figura 6: Autenticação de e-mail……………………….…………………………...……….41

Figura 7: Status de verificação da conta do usuário……………………................................41

Figura 8: Registro de logs………………………………..43

Figura 9: Requisições HTTP entre o Front-end e Back-end………………………………....45

Figura 10: Container docker…………………………………………………………………48

Figura 11: Deploy contínuo no vercel e sistema CI……………………………………..…..49

Figura 12: Teste de rota no insomnia…………………………………………………….….50

Figura 13: Webhooks via telegram…………………………………………………………..52

Figura 14: Fluxograma da Aplicação Geral………………………………………………....53

LISTA DE QUADROS

Quadro 1: Características do JavaScript..30

Quadro 2: Requisitos funcionais e não funcionais……………………………………….….35

Quadro 3: Comparativo entre soluções existentes e o sistema proposto……………...……..56

Quadro 4: Tempo de respostas da api………………………………………………………..57

13

1 INTRODUÇÃO

O gerenciamento adequado de medicamentos é um fator crítico para assegurar a

eficácia dos tratamentos e a segurança dos pacientes em diversos contextos de cuidado à

saúde. Com a crescente complexidade dos regimes terapêuticos, o uso simultâneo de

múltiplos fármacos(polifarmácia) e a sobrecarga enfrentada por profissionais da saúde,

surgem desafios significativos, como o esquecimento de doses, registros imprecisos, controle

ineficiente de estoque e a dependência de métodos manuais para o monitoramento de

administrações. Estudos recentes destacam que essas falhas podem acarretar complicações

clínicas evitáveis, internações desnecessárias e maior vulnerabilidade para pacientes em

situação de fragilidade (GUTTIER et al., 2023).

Ambientes como hospitais, clínicas, casas de apoio e instituições de longa

permanência para idosos ainda recorrem com frequência ao uso de planilhas impressas ou

anotações manuais, o que acentua os riscos associados à falta de digitalização. A ausência de

sistemas informatizados e alertas automatizados compromete não apenas a rastreabilidade das

doses aplicadas, mas também a organização do estoque e a agilidade no cuidado prestado.

Com base nesse cenário, este trabalho tem como objetivo propor o desenvolvimento de

um sistema web voltado ao monitoramento e gerenciamento seguro de medicamentos. A

proposta busca contribuir para a organização do fluxo de trabalho dos profissionais da saúde,

promovendo automação de tarefas como o controle de horários, a marcação de doses

administradas e a gestão de estoque, reduzindo a incidência de erros humanos.

A aplicação foi desenvolvida com tecnologias modernas e acessíveis, utilizando

React.js no frontend e Supabase com banco de dados PostgreSQL no backend, garantindo

robustez, escalabilidade e integração entre os módulos. A interface foi projetada com foco em

simplicidade e usabilidade, visando atender tanto técnicos especializados quanto profissionais

com menor familiaridade digital.

Este documento apresenta os fundamentos teóricos que embasam o projeto, descreve a

metodologia utilizada durante o desenvolvimento, analisa os resultados obtidos a partir da

aplicação prática da solução e propõe melhorias futuras com vistas à ampliação de seu escopo,

incluindo a possibilidade de adaptação para dispositivos móveis.

14

2 OBJETIVOS

2.1 Objetivo Geral

Desenvolver um sistema web para o monitoramento e gerenciamento seguro de

medicamentos, voltado para casas de apoio, cuidadores de idosos e instituições de saúde,

incluindo a funcionalidade de marcar medicamentos como medicado.

2.2 Objetivos Específicos

●​ Desenvolver um sistema de cadastro e alerta de medicamentos utilizando banco de

dados relacional (PostgreSQL) com suporte do Prisma ORM;

●​ Permitir o registro das doses administradas para reduzir falhas na aplicação de

medicamentos;

●​ Estabelecer um mecanismo de controle de estoque para evitar a ausência de itens

essenciais.​

15

3 ASPECTOS TEÓRICOS

3.1 Necessidade de Soluções Tecnológicas para a Gestão de Medicamentos

A gestão inadequada de medicamentos, especialmente no ambiente doméstico,

representa um risco significativo à saúde pública. O uso de medicamentos vencidos

compromete sua eficácia terapêutica, pode causar efeitos adversos indesejados e aumentar o

risco de intoxicações. Em razão disso, cresce a necessidade de soluções tecnológicas que

auxiliem os usuários no controle seguro e eficiente de seus medicamentos.

Nesse contexto, o estudo de Ontoria (2023) propõe uma aplicação móvel que facilita a

identificação dos medicamentos e suas datas de validade, alertando os usuários sobre o

vencimento por meio de tecnologias de reconhecimento de imagem (OCR) e notificações

automáticas. Essa abordagem tecnológica contribui para a precisão e agilidade na gestão de

medicamentos, reduzindo erros humanos como a introdução manual de dados. O uso de

plataformas em nuvem, como o Firebase, e a integração com bases de dados oficiais tornam a

solução mais confiável, acessível e colaborativa, especialmente para públicos com

dificuldades digitais.

A relevância desse tipo de iniciativa reside no seu potencial de ampliar o acesso à

informação, promover maior autonomia no cuidado com a saúde e minimizar falhas comuns

na administração de medicamentos. Além disso, tais soluções estão alinhadas com o avanço

da transformação digital na área da saúde, que busca integrar tecnologias acessíveis ao

cotidiano dos usuários, promovendo práticas mais seguras e responsáveis no uso de

medicamentos em contextos não hospitalares.

3.2 Fatores Etários e Psicossociais na Não Adesão Medicamentosa

A compreensão dos fatores que levam à não adesão medicamentosa em diferentes

faixas etárias é essencial para o desenvolvimento de estratégias eficazes de cuidado

farmacoterapêutico. De acordo com Ge, Heng e Yap (2023), adultos mais velhos apresentam

maior incidência de não adesão relacionada à memória, múltiplas comorbidades, efeitos

colaterais e baixa motivação, ao passo que os mais jovens são mais afetados por falta de

percepção da necessidade do tratamento e estilos de vida irregulares.

O estudo, de natureza transversal, comparou adultos jovens e idosos residentes na

comunidade e evidenciou que intervenções devem ser segmentadas conforme o perfil etário e

16

psicossocial. Entre os idosos, o suporte familiar, lembretes tecnológicos e revisão do esquema

terapêutico são estratégias que podem melhorar significativamente a adesão. O estudo

também reforça que quanto maior a complexidade do regime e menor a literacia em saúde,

maiores são os riscos de não adesão.

3.3 Erros na Administração de Medicamentos

A segurança na administração de medicamentos é um componente crítico na

assistência hospitalar. Estudos internacionais revelam que falhas nesse processo

comprometem diretamente a qualidade do cuidado e a segurança do paciente. Mohammed et

al. (2022), em um estudo transversal hospitalar realizado com 423 enfermeiros de hospitais

federais de Addis Ababa, Etiópia, identificaram que 59,9% dos profissionais cometeram pelo

menos um erro de administração medicamentosa nos 12 meses anteriores à pesquisa. Os tipos

mais comuns foram: administração em horário incorreto (56,8%), documentação inadequada

(33,3%) e aconselhamento equivocado (27,8%).

Os principais fatores associados aos erros incluíram baixa experiência profissional,

ausência de treinamentos regulares, indisponibilidade de diretrizes de administração de

medicamentos e interrupções durante o processo de medicação. Tais condições refletem a

necessidade de ambientes hospitalares mais estruturados, com protocolos bem definidos,

treinamentos periódicos e apoio tecnológico, para mitigar falhas humanas e garantir a eficácia

terapêutica.

Essa realidade reforça a importância de implementar sistemas que automatizam

alertas, organizem rotinas e apoiem a tomada de decisão dos profissionais de saúde,

contribuindo para a redução de danos evitáveis e para a melhoria dos desfechos clínicos.

3.4 Erros de Medicação e Farmacovigilância

A segurança do paciente é um dos pilares fundamentais na prestação de serviços de

saúde de qualidade, especialmente no que se refere ao uso racional e seguro de medicamentos.

Os erros de medicação, definidos como falhas que podem ocorrer em qualquer etapa do

processo da prescrição à administração e representam um risco relevante para a saúde pública,

com impacto direto sobre a morbimortalidade dos pacientes e os custos assistenciais. Segundo

a Anvisa (2019), esses eventos são evitáveis e, por isso, demandam atenção estratégica no

17

contexto da farmacovigilância, que envolve a detecção, avaliação e prevenção de efeitos

adversos e demais problemas relacionados ao uso de medicamentos.

Nesse contexto, a vigilância de erros de medicação busca não apenas quantificar e

qualificar os eventos, mas também identificar causas e propor medidas de prevenção. A

integração de protocolos padronizados, a capacitação contínua das equipes e o uso de

tecnologias, como sistemas eletrônicos de prescrição e dispensação, são medidas essenciais

para minimizar riscos. Além disso, adotar uma cultura institucional de notificação voluntária e

não punitiva permite transformar erros em oportunidades de aprendizado, fortalecendo a

melhoria contínua da assistência. O estudo de Almeida et al. (2022), realizado em um hospital

universitário da Bahia, ilustra bem esse cenário: das 1.599 notificações analisadas, 56,2%

foram quase-falhas e 43,8% erros sem dano, sendo a prescrição (31,3%) e a administração

(30,8%) as etapas mais críticas do processo. Os tipos mais frequentes foram omissão de dose

e administração de dose incorreta, com destaque para a sobrecarga de trabalho e interrupções

como causas predominantes.

Assim, compreende-se que a farmacovigilância, associada à responsabilidade

compartilhada entre profissionais, gestores e órgãos reguladores, é fundamental para garantir

a segurança no uso de medicamentos. O desenvolvimento de estratégias de prevenção

baseadas em evidências, aliado à valorização da cultura de segurança, consolida-se como

ferramenta indispensável para qualificar os serviços de saúde.

3.5 Dificuldades no Uso de Medicamentos por Idosos

O uso correto de medicamentos por idosos representa um desafio amplamente

documentado na literatura, especialmente diante do envelhecimento populacional e da alta

prevalência de doenças crônicas nessa faixa etária. Um estudo de corte realizado com 1.161

idosos acompanhados pela Estratégia Saúde da Família no Sul do Brasil identificou que

aproximadamente 15,5% dos participantes necessitam de auxílio para administrar

corretamente seus medicamentos. Esses dados evidenciam um perfil de maior

vulnerabilidade, que afeta diretamente a autonomia e a adesão ao tratamento. Entre os

principais obstáculos relatados, destacam-se o esquecimento de doses, mencionado por 25,1%

dos idosos, além de dificuldades físicas, como limitações para manusear embalagens e ler

bulas ou rótulos, fatores que comprometem o uso seguro e eficaz dos medicamentos.

Estima-se ainda que entre 5% e 6% das hospitalizações estejam relacionadas ao uso

18

inadequado de medicamentos, com taxas mais elevadas entre os idosos. Esses achados

reforçam a necessidade de intervenções que considerem não apenas as dificuldades físicas e

cognitivas dessa população, mas também os aspectos socioeconômicos que influenciam a

adesão ao tratamento (GUTTIER et al., 2023).

3.6 Fatores Socioeconômicos e Saúde

Os determinantes sociais da saúde desempenham um papel crucial na capacidade dos

idosos de gerenciar seus medicamentos. Indivíduos com menor escolaridade e em condições

econômicas desfavoráveis demonstram maior necessidade de auxílio para a administração

correta dos fármacos (GUTTIER et al., 2023). Além disso, a autoavaliação negativa da saúde

também surge como um fator importante, visto que idosos que consideram sua saúde como

ruim ou muito ruim tendem a apresentar maiores limitações, tanto físicas quanto cognitivas.

Esse contexto exige a implementação de intervenções que contemplem não apenas as

condições objetivas de saúde, mas também as percepções subjetivas dos idosos sobre seu

bem-estar, além das condições socioeconômicas que os afetam.

3.7 Adesão Medicamentosa e o Monitoramento no Cuidado de Idosos

O uso adequado de medicamentos por idosos representa um dos principais desafios no

contexto da assistência à saúde, especialmente em ambientes como casas de apoio e asilos,

onde o monitoramento contínuo é essencial. A adesão ao tratamento medicamentoso entre

idosos polimedicados é frequentemente comprometida por fatores como o esquecimento de

doses, a complexidade das prescrições e dificuldades cognitivas e físicas, conforme

demonstrado por Gomes et al. (2019), que observaram que grande parte dos idosos

acompanhados apresentava dificuldades em seguir corretamente os esquemas terapêuticos,

seja pela quantidade elevada de medicamentos(polifarmácia), seja por limitações no

entendimento das orientações médicas. Esses dados reforçam a necessidade de estratégias de

suporte, como sistemas digitais de monitoramento, capazes de organizar horários e doses de

medicamentos de forma clara e acessível para cuidadores e pacientes.

Complementando essa perspectiva, pesquisa realizada por Lopes et al. (2013) destacou

a influência dos fatores sociodemográficos e da ausência de suporte sistemático no manejo

dos medicamentos por idosos da comunidade. Os autores propõem ações específicas de

enfermagem para promover o uso racional de medicamentos, evidenciando a importância de

19

intervenções que facilitem a organização do tratamento no cotidiano dos idosos. No contexto

de casas de apoio e lares para idosos, a implementação de sistemas de monitoramento

eletrônico, como o proposto neste trabalho, surge como uma ferramenta promissora para

aumentar a adesão medicamentosa, reduzir erros e contribuir para a melhoria da qualidade de

vida dos residentes.

Assim, a criação de um site web destinado ao acompanhamento da administração de

medicamentos em instituições de longa permanência é justificada não apenas pelas

dificuldades práticas enfrentadas pelos idosos, mas também pelo respaldo científico que

aponta para a necessidade de soluções inovadoras no apoio ao tratamento farmacológico.

3.8 Banco de Dados PostgreSQL

O PostgreSQL é um sistema gerenciador de banco de dados relacional

objeto-relacional de código aberto, desenvolvido para oferecer alta confiabilidade, robustez e

aderência aos padrões da linguagem SQL. Sua arquitetura é baseada no modelo

cliente-servidor e incorpora mecanismos avançados de controle de concorrência multiversão

(MVCC), permitindo a execução de transações simultâneas sem conflitos de leitura, o que

assegura maior desempenho em ambientes multiusuário (STONEBRAKER; Rowe, 1986).

Uma das características fundamentais do PostgreSQL é o suporte completo às

propriedades ACID (Atomicidade, Consistência, Isolamento e Durabilidade), que garantem a

integridade das transações e a consistência dos dados, mesmo em situações de falha do

sistema). Além disso, o PostgreSQL distingue-se pela sua extensibilidade, possibilitando aos

usuários criar novos tipos de dados, operadores, índices e linguagens de procedimento

(MOMJIAN, 2001).

O sistema também suporta diversos padrões internacionais, como o SQL:2011, e

apresenta recursos nativos para replicação de dados, particionamento de tabelas, execução de

consultas paralelas e armazenamento de dados não estruturados por meio do suporte ao tipo

JSON (GUPTA et al., 2014). Tais características tornam o PostgreSQL uma opção estratégica

para aplicações que exigem alta disponibilidade, escalabilidade horizontal e integração com

sistemas analíticos complexos.

20

3.9 Supabase

O Supabase é uma plataforma de desenvolvimento backend-as-a-service (BaaS) de

código aberto que surgiu como uma alternativa ao Firebase, com o diferencial de utilizar o

PostgreSQL como banco de dados relacional. Desenvolvido com o objetivo de simplificar o

processo de desenvolvimento para aplicações web, o Supabase oferece uma série de

funcionalidades integradas, como autenticação, armazenamento de arquivos, funcionalidades

em tempo real e APIs RESTful e GraphQL geradas automaticamente, tudo em um único

ambiente intuitivo e acessível (PIEROTTO, 2025).

Entre os principais diferenciais do Supabase, destacam-se a facilidade de configuração

e a transparência proporcionada por sua arquitetura open-source. Enquanto plataformas como

o Firebase exigem maior integração com soluções proprietárias, o Supabase permite que os

desenvolvedores tenham controle total sobre os dados e a infraestrutura. Além disso, o

suporte nativo ao PostgreSQL, com funcionalidades como Row Level Security (RLS), garante

um alto nível de segurança e flexibilidade no gerenciamento de permissões, o que é essencial

para aplicações que precisam de escalabilidade e controle rigoroso sobre o acesso aos dados

(SUPABASE, 2022).

No contexto deste trabalho, o Supabase foi escolhido como solução de backend para

armazenamento e gerenciamento de dados relacionados à administração de medicamentos,

usuários e registros de monitoramento. Sua integração com bibliotecas JavaScript e o suporte

nativo ao React possibilitaram uma comunicação fluida entre a interface desenvolvida e o

banco de dados, otimizando o processo de desenvolvimento e garantindo a agilidade

necessária para a implementação de uma aplicação moderna e interativa.

A plataforma também oferece um painel de controle completo, que permite a

visualização dos dados, a execução de queries SQL diretamente pelo navegador e a criação de

triggers para eventos personalizados. Esses recursos foram fundamentais para garantir a

integridade dos dados e facilitar a manutenção da aplicação ao longo do tempo. A

possibilidade de realizar ajustes finos nos dados, sem a necessidade de complicadas

configurações de infraestrutura, é um dos motivos pelos quais o Supabase se consolidou como

uma das soluções de backend mais adotadas por desenvolvedores de projetos open-source

(WILSON, 2023).

Dessa forma, a adoção do Supabase no presente projeto não se justifica apenas por

questões técnicas, mas também pelo alinhamento com boas práticas de desenvolvimento e sua

21

capacidade de atender às demandas específicas do sistema proposto, garantindo a

flexibilidade, segurança e escalabilidade necessárias para o sucesso da aplicação.

3.9.1 Jwt token

O JWT (JSON Web Token) é um padrão aberto especificado pela RFC 7519, um

documento técnico da IETF (Internet Engineering Task Force) que define normas para a

criação e uso desse tipo de token, utilizado para definir um formato compacto e seguro para a

transmissão de informações entre duas partes como um objeto JSON. O JWT tem como

característica principal a assinatura digital das informações, o que assegura a integridade e

autenticidade dos dados transmitidos. Isso significa que, uma vez que os dados são assinados,

é possível verificar se o conteúdo não foi alterado durante a transmissão, garantindo a

confiança entre as partes envolvidas na comunicação (JONES et al., 2015).

A estrutura do JWT é composta por três partes principais: o header, que especifica o

algoritmo de assinatura utilizado; o payload, que carrega os dados propriamente ditos (como o

ID do usuário e a data de expiração do token); e a assinatura, gerada com uma chave secreta

que valida a integridade do token. Essa abordagem oferece uma autenticação sem estado

(stateless authentication), o que significa que o servidor não precisa armazenar sessões do

usuário, uma vez que todas as informações necessárias para verificar a identidade estão

contidas no próprio token.

No contexto do Supabase, o JWT é utilizado como o mecanismo principal de

autenticação. Quando um usuário realiza o login, o Supabase emite um token JWT, que é

enviado a cada requisição subsequente feita pela aplicação. Isso permite que o sistema

identifique o usuário sem a necessidade de revalidar suas credenciais constantemente, o que

torna o processo mais eficiente e escalável (SUPABASE, 2022). Esse uso do JWT no

Supabase se alinha com a tendência de adotar sistemas de autenticação modernos baseados

em tokens, que são mais eficientes do que o uso de sessões tradicionais, especialmente em

ambientes distribuídos e com escalabilidade exigente.

Além disso, o uso de JWT oferece benefícios significativos em termos de segurança e

controle de acesso, já que ele pode ser configurado para expirar após um determinado

período, minimizando o risco de uso indevido de tokens antigos ou comprometidos. Esse

mecanismo é particularmente importante em aplicações que envolvem o gerenciamento de

22

dados sensíveis, como é o caso de sistemas de monitoramento de medicamentos, onde a

proteção da privacidade dos usuários é crucial.

3.9.2 Row level security (RLS)

O Row Level Security (RLS) é um recurso avançado de controle de acesso a dados no

PostgreSQL, que permite ao desenvolvedor definir políticas de segurança específicas de

leitura e escrita com base em cada linha da tabela. Adotado pelo Supabase, o RLS oferece

uma abordagem detalhada e flexível para restringir o acesso aos dados, garantindo que os

usuários só possam visualizar ou modificar informações relacionadas a eles, de acordo com

regras definidas no próprio banco de dados (POSTGRESQL GLOBAL DEVELOPMENT

GROUP, 2025).

Esse controle é fundamental em ambientes onde múltiplos usuários interagem com a

mesma base de dados, mas precisam de segurança granular em relação ao acesso às

informações. Com o RLS, o desenvolvedor pode criar políticas que restrinjam o acesso às

linhas da tabela com base em valores específicos armazenados na linha, como o user_id. Por

exemplo, em uma aplicação, é possível configurar para que um usuário só tenha acesso às

informações associadas ao seu próprio ID, baseado nas credenciais fornecidas pelo JWT

(JSON Web Token) emitido pelo Supabase (SUPABASE, 2022).

Quando o RLS é ativado em uma tabela, nenhuma linha é acessível por padrão, o que

garante que, sem a criação de políticas explícitas, o acesso aos dados seja totalmente restrito.

As políticas de acesso precisam ser cuidadosamente criadas pelo desenvolvedor para definir

regras claras sobre quem pode acessar ou modificar os dados. Essa abordagem stateless

proporciona uma segurança adicional, pois as políticas de controle de acesso ficam

encapsuladas diretamente no banco de dados, reduzindo a complexidade e a dependência de

lógica adicional no frontend ou back-end da aplicação.

O uso de RLS é particularmente valioso em aplicações que lidam com dados sensíveis

e requerem controle rigoroso sobre o acesso, como sistemas multiusuário e multitenancy. No

contexto do sistema proposto neste trabalho, o RLS é essencial para garantir que apenas

usuários autorizados, como cuidadores ou instituições, tenham acesso às informações dos

pacientes sob sua responsabilidade. Por exemplo, ao aplicar RLS sobre a tabela de

administração de medicamentos, cada usuário poderá acessar apenas os dados dos pacientes

associados ao seu identificador, evitando a exposição indevida de informações confidenciais.

23

Combinado com o uso do JWT para autenticação, o RLS no Supabase oferece uma

solução poderosa e segura para o controle de acesso refinado, permitindo que os dados sejam

protegidos de forma eficiente e sem a necessidade de lógica extra no frontend, o que torna a

aplicação mais segura e de fácil manutenção.

Figura 1 — RLS para tabela perfis

Fonte: Elaborado pelo autor, 2025.

Figura 2 — RLS para tabela pacientes

Fonte: Elaborado pelo autor, 2025.

Figura 3 — RLS para medicamentos

Fonte: Elaborado pelo autor, 2025.

24

3.9.3 Supabase auth e o gerenciamento de autenticação

O Supabase Auth é o serviço de autenticação nativo da plataforma Supabase, projetado

para fornecer controle de acesso seguro e flexível em aplicações web. Baseado em protocolos

modernos como JWT (JSON Web Tokens), ele permite implementar login por e-mail e senha,

links mágicos, autenticação via provedores externos (OAuth) e OTP (One-Time Password)

com validação por telefone,uma das vantagens do Supabase Auth é sua integração direta com

o banco PostgreSQL, permitindo o uso de Row Level Security (RLS) para aplicar regras de

acesso diretamente no nível do banco de dados. Isso significa que é possível restringir ou

conceder acesso a determinados registros de acordo com o usuário autenticado, reforçando a

segurança da aplicação.

Mesmo em seu plano gratuito, o Supabase fornece recursos como cadastro, login,

gerenciamento de sessões, verificação de e-mail, redefinição de senha e controle de

permissões, oferecendo uma estrutura completa para autenticação sem necessidade de

serviços externos adicionais. Sua simplicidade de integração com aplicações em React e

outras bibliotecas modernas também o torna uma escolha atrativa para aplicações escaláveis e

seguras.

3.10 Prisma ORM

O Prisma ORM é uma ferramenta moderna de mapeamento objeto-relacional (ORM),

desenvolvida para aplicações que utilizam as linguagens JavaScript e TypeScript. Ele adota

uma abordagem baseada no padrão Data Mapper, em que o modelo de dados é centralizado

em um arquivo de configuração declarativo chamado schema.prisma. Este esquema atua

como a fonte única de verdade para a estrutura do banco de dados e para a geração automática

de código tipado, eliminando inconsistências entre o modelo lógico e o banco de dados.

A arquitetura do Prisma é composta por três componentes principais: o Prisma Client,

responsável por executar operações no banco de dados com segurança de tipos e

autocompletar; o Prisma Migrate, utilizado para controlar a evolução do esquema com

versionamento das migrações; e o Prisma Studio, uma interface gráfica que permite a

visualização e edição dos dados de forma intuitiva (PRISMA, 2025a).

Um dos principais diferenciais do Prisma em relação a outros ORMs tradicionais é sua

capacidade de garantir type safety, ou seja, segurança de tipos em tempo de desenvolvimento.

25

Ao gerar automaticamente um cliente com tipagem estática com base no esquema declarado,

o Prisma reduz a possibilidade de erros em tempo de execução, aumentando a confiabilidade

da aplicação. Outro aspecto relevante é sua portabilidade: o Prisma é compatível com diversos

bancos de dados relacionais, como PostgreSQL, MySQL, SQLite e SQL Server, além de

fornecer suporte ao MongoDB. Essa flexibilidade facilita sua adoção em diferentes cenários e

projetos, sem a necessidade de grandes reestruturações no código (PRISMA, 2025b).

Com o lançamento da versão 6, o Prisma apresentou melhorias significativas no

desempenho de consultas complexas, como JOINs e buscas aninhadas, que passaram a ser

otimizadas no próprio banco de dados, e não mais apenas em nível de aplicação. Essa

atualização aumentou a eficiência do ORM, especialmente em ambientes com grande volume

de dados (BURK, 2024).

Em resumo, o Prisma ORM apresenta-se como uma solução robusta, segura e

produtiva para o desenvolvimento de aplicações modernas que exigem acesso estruturado e

seguro a bancos de dados, sendo especialmente relevante em projetos que valorizam a

consistência dos dados, a agilidade no desenvolvimento e a escalabilidade da aplicação.

3.11 Axios e Express

O Express é um framework minimalista e flexível para o desenvolvimento de

aplicações web e APIs no ambiente Node.js. Ele facilita a criação de servidores HTTP e o

roteamento de requisições de maneira eficiente e escalável, permitindo a criação de endpoints

que respondem a métodos HTTP padrão, como GET, POST, PUT e DELETE. Além disso, o

Express adota um modelo baseado em middleware, o que oferece flexibilidade para

implementar autenticação, validação, manipulação de erros e controle de acesso, sem

comprometer a simplicidade do código. O framework é amplamente utilizado para a

construção de APIs RESTful e aplicações escaláveis (HETT, 2020).

Por outro lado, o Axios é uma biblioteca JavaScript utilizada para realizar requisições

HTTP de forma assíncrona, baseada no padrão Promise. Isso permite que o frontend interaja

com APIs internas ou externas sem bloquear o fluxo da aplicação, o que melhora a

experiência do usuário. Além da simplicidade na realização de requisições, o Axios permite o

uso de interceptadores para tratamento de erros, autenticação e modificação de requisições ou

respostas, o que facilita a integração com APIs RESTful e o controle centralizado das

comunicações com servidores (AXIOS, 2023).

26

Combinados, Express e Axios oferecem uma solução robusta para o desenvolvimento

de sistemas modernos, unindo a eficiência na criação de servidores e rotas com a flexibilidade

na comunicação entre cliente e servidor.

3.12 Insomnia

O Insomnia é um cliente open‑source e multiplataforma, projetado para o

desenvolvimento, teste e documentação de APIs nos protocolos REST, GraphQL, gRPC,

WebSocket e Server‑Sent Events (SSE). Sua estrutura permite que desenvolvedores trabalhem

com diversas interfaces de forma integrada, entre suas principais funcionalidades está o

suporte a design de API com OpenAPI, oferecendo editor visual com pré‑visualização,

validação em tempo real das especificações e capacidade de importação/exportação de

documentos OpenAPI diretamente para coleções de requisições (KONG, 2025).

O Insomnia também possui um motor de automação de testes (“collection runner”)

que executa múltiplas requisições, permitindo o uso de scripts anteriores ou posteriores à

resposta. Essa funcionalidade é essencial para configurar pipelines de CI/CD robustos,

garantindo testes contínuos e padronizados nas APIs, adicionalmente, a ferramenta favorece o

trabalho colaborativo por meio de sincronização via Git (Git Sync) e armazenamento em

nuvem com criptografia ponta a ponta, assegurando segurança dos dados e rastreabilidade de

alterações entre equipes, por fim, o Insomnia integra uma linha de comando (CLI Inso) que

permite validação automática de specs, linting via OpenAPI, execução de testes e integração

com CI/CD, favorecendo workflows automatizados e mantendo qualidade durante todo o

ciclo de vida da API (INSOMNIA, 2025).

Essa combinação (suporte completo a múltiplos protocolos, design centrado no

OpenAPI, testes automatizados, colaboração segura e automação via CLI) posiciona o

Insomnia como uma plataforma completa e coerente para desenvolvimento de APIs,

promovendo produtividade, consistência técnica e governança integrada.

3.13 Monitoramento de métricas com prometheus

Prometheus é uma plataforma open‑source de monitoramento e armazenamento de

métricas em séries temporais, criada originalmente pela SoundCloud em 2012. Ele coleta

dados por meio de scraping ativo de endpoints HTTP expostos pelos serviços, grava

localmente e permite consultas por meio da linguagem PromQL (CORALOGIX, 2024;

27

PROMETHEUS.IO, 2025). A arquitetura do Prometheus foca em confiabilidade, operando

autonomamente e dispensando armazenamento distribuído, sendo eficiente mesmo em

ambientes instáveis (SOUNDCLOUD, 2012).

A força do Prometheus reside em seu modelo dimensional de dados: cada métrica

pode ter múltiplos rótulos (labels), como rota, status e instância, permitindo consultas

refinadas por exemplo, taxa de requisições por segundo ou tempo médio de resposta e base

para alertas automatizados (CORALOGIX, 2024). Sua linguagem PromQL possibilita filtros,

agregações e transformações sofisticadas sobre séries temporais (PROMETHEUS.IO, 2025).

3.14 Visualização e monitoramento com grafana

O grafana é uma plataforma open‑source líder em visualização de dados e

monitoramento, utilizada para criar dashboards interativos que integram e exibem métricas,

logs e traces de diferentes fontes (GRAFANA LABS, 2025). Seu design permite que equipes

criem painéis personalizados com uma variedade de painéis (gráficos, heatmaps, tabelas),

tornando os dados acessíveis e compreensíveis para todos, não apenas para operações técnicas

(HELP NET SECURITY, 2024).

Uma das forças do Grafana é sua flexibilidade de integração: ele se conecta com mais

de 100 fontes de dados, incluindo Prometheus, Loki, Elasticsearch e bancos SQL/NoSQL,

sem necessidade de centralizar ou migrar dados (ZESTY, 2024; GRAFANA LABS, 2025).

Além disso, oferece sistema de alertas embutido, com notificações via Slack, PagerDuty,

e-mail, entre outros, fundamental para resposta proativa a eventos críticos.

No contexto do seu sistema na área da saúde, o Grafana pode ser utilizado para gerar

dashboards que exibam:

●​ Taxa de aplicação de medicamentos por período;

●​ Latência e erros da API em tempo real;

●​ Alertas configuráveis para picos de falhas ou tempos de resposta elevados.

Essa visibilidade integrada promove transparência operacional, facilidade de auditoria

e suporte à manutenção preventiva, fatores essenciais para garantir confiabilidade e segurança

em instituições que trabalham com dados sensíveis.

28

3.15 Linguagem de programação

A linguagem de programação é uma ferramenta essencial para a construção de

software, permitindo que os desenvolvedores se comuniquem com a máquina para realizar

tarefas específicas. Essas linguagens podem ser divididas em linguagens de baixo nível

(próximas do hardware) e linguagens de alto nível (mais próximas da linguagem humana),

com as últimas sendo mais acessíveis e abstraídas das complexidades do hardware.

Linguagens de baixo nível são aquelas que exigem comandos mais próximos da

linguagem da máquina, como Assembly. Por exemplo, para somar dois números em

Assembly, o programador precisa especificar manualmente os registradores e a sequência de

instruções. Essas linguagens permitem um controle detalhado sobre os recursos do hardware,

porém são mais difíceis de escrever e compreender.

Linguagens de alto nível, como Python, Java e JavaScript, utilizam uma sintaxe mais

próxima da linguagem humana, o que facilita o entendimento e o desenvolvimento de

aplicações complexas. Por exemplo, em Python, uma soma pode ser realizada simplesmente

com a instrução, sem a necessidade de controlar diretamente os registradores da máquina.

As linguagens de alto nível são mais fáceis de entender e escrever, permitindo ao

desenvolvedor focar na lógica do problema, sem precisar de um conhecimento profundo sobre

o funcionamento interno do hardware.

3.15.1 Framework

Um framework é um conjunto de bibliotecas e ferramentas que facilita o

desenvolvimento de software, oferecendo uma estrutura pronta para criar aplicações. Ele

inclui funcionalidades como gerenciamento de banco de dados, autenticação, roteamento de

URLs e outras soluções essenciais que agilizam o processo de desenvolvimento, promovem a

padronização do código e facilitam a manutenção, inclusive em projetos de grande escala

(SENCHA, 2024).

A principal vantagem de utilizar um framework é a eliminação da necessidade de

implementar funcionalidades básicas manualmente, o que reduz o tempo de desenvolvimento

e melhora a escalabilidade das aplicações (EBA, 2023). Frameworks podem ser voltados para

o frontend (como React e Angular), para o backend (como Django e Express) ou oferecer uma

29

abordagem full-stack, como o Next.js, que integra o desenvolvimento da interface com o do

servidor.

3.15.2 Javascript

O JavaScript é uma linguagem de programação de alto nível, dinâmica e interpretada,

amplamente utilizada no desenvolvimento de aplicações web. Criada originalmente por

Brendan Eich em 1995, enquanto trabalhava na Netscape Communications, o JavaScript foi

projetado para permitir a interação dinâmica com páginas web, adicionando funcionalidades

que o HTML e o CSS não conseguiam fornecer (FLANAGAN, 2020).

Quando se diz que o JavaScript é dinâmico, significa que seu tipo de dados pode ser

alterado em tempo de execução, ou seja, uma variável pode mudar de tipo conforme o

programa é executado. Isso oferece flexibilidade ao programador, pois não é necessário

definir rigidamente os tipos de dados, além disso, o JavaScript é uma linguagem interpretada,

o que significa que seu código não precisa ser compilado antes de ser executado. O navegador

lê e executa o código diretamente, linha por linha, permitindo atualizações rápidas e imediatas

no comportamento da aplicação sem etapas intermediárias de compilação.

Segundo Flanagan (2020), uma das grandes forças do JavaScript é sua capacidade de

ser executado diretamente no navegador, proporcionando interatividade e melhorando a

experiência do usuário.

Algumas das principais vantagens do JavaScript incluem sua versatilidade, ampla

adoção na indústria, suporte nativo nos navegadores e uma vasta gama de frameworks e

bibliotecas que aceleram o desenvolvimento de aplicações complexas.

No quadro 1, são apresentadas as principais características do JavaScript que o tornam

amplamente utilizado no desenvolvimento web.

30

Quadro 1 — Características do JavaScript

Execução no Lado do Cliente Permite a criação de aplicações altamente
interativas diretamente nos navegadores.

Multiplataforma Funciona em praticamente qualquer dispositivo
com um navegador moderno.

Extenso Ecossistema Disponibiliza uma grande variedade de
frameworks e bibliotecas que ampliam suas
capacidades.

Fonte: Elaborado pelo autor, 2025.

3.15.3 React

O React é uma biblioteca JavaScript desenvolvida pelo Facebook para a criação de

interfaces de usuário dinâmicas. Baseado em componentes reutilizáveis, ele facilita a

manutenção e escalabilidade das aplicações. Um dos principais diferenciais do React é o uso

do Virtual DOM, que melhora o desempenho ao atualizar apenas os elementos necessários da

interface, em vez de recarregar toda a página. Além disso, sua abordagem declarativa e

modular permite o desenvolvimento eficiente de interfaces complexas, com fácil integração a

ferramentas como React Router, para navegação, e Redux, para gerenciamento de estado.

Essas características tornam o React uma das tecnologias mais populares entre

desenvolvedores de aplicações web modernas (REACT, 2025).

3.16 GitHub

O GitHub é uma plataforma de hospedagem de código-fonte baseada na web,

amplamente utilizada no desenvolvimento de software colaborativo. Sua estrutura se

fundamenta no sistema de controle de versão Git, criado por Linus Torvalds em 2005,

permitindo o gerenciamento eficiente de alterações no código e a colaboração entre diversos

desenvolvedores (Torvalds e Hamano, 2005).

O Git, sistema que serve de base para o GitHub, possui arquitetura distribuída, em que

cada desenvolvedor mantém uma cópia completa do repositório. Isso possibilita o trabalho

offline e sincronizações posteriores, favorecendo um desenvolvimento descentralizado e

seguro. Operações como commits, branches e merges fazem parte da rotina de versionamento,

oferecendo rastreabilidade e histórico detalhado (Chacon e Straub, 2014).

No contexto acadêmico, o uso do GitHub tem se mostrado eficaz na organização de

projetos, especialmente em cursos de ciência de dados e estatística, por promover a

31

reprodutibilidade e boas práticas de versionamento (Beckman et al., 2020). A plataforma

também integra ferramentas de automação, como o GitHub Actions, que executa

automaticamente testes, builds e outras tarefas sempre que há alterações no repositório

(Kinsman et al., 2021).

Além disso, o GitHub suporta arquivos CITATION.cff, que orientam a citação

adequada de repositórios em trabalhos científicos, gerando automaticamente formatos como

APA ou BibTeX, promovendo reconhecimento formal aos autores de código aberto (GitHub,

2021).

Funcionalidades colaborativas como pull requests, forks, issues e tags facilitam

revisão e integração de alterações, fomentando um ambiente coletivo, transparente e

controlado (Vasilescu et al., 2015). Esse modelo é essencial para o desenvolvimento do

sistema de monitoramento farmacoterapêutico proposto, pois oferece controle de versões,

histórico de alterações, colaboração entre integrantes e organização durante codificação e

testes, o GitHub se apresenta como ferramenta estratégica na construção de soluções

tecnológicas voltadas à saúde, garantindo rastreabilidade, colaboração eficiente e adesão a

boas práticas de engenharia de software.

3.17 Vercel

O Vercel é uma plataforma de deploy e hospedagem voltada para aplicações web e

sites estáticos, com foco em agilidade, escalabilidade e simplicidade. Criada pela equipe por

trás do Next.js, a plataforma foi projetada para simplificar a implementação de aplicações

frontend. Com integração direta a GitHub, GitLab e Bitbucket, a Vercel facilita o processo de

deploy contínuo, permitindo que modificações feitas no código sejam automaticamente

publicadas em produção sem a necessidade de intervenções manuais.

O Vercel destaca-se especialmente pela sua integração com o Next.js, um framework

para React que permite o desenvolvimento de aplicações dinâmicas e sites estáticos. A

plataforma otimiza o uso de renderização estática (Static Site Generation - SSG) e

renderização server-side (SSR), técnicas que contribuem para a melhora no SEO (Search

Engine Optimization) e no desempenho geral da aplicação, garantindo que o conteúdo seja

rapidamente acessado pelo usuário (VERCEL, 2025).

Além disso, a escalabilidade da Vercel é baseada na tecnologia de edge computing,

onde a aplicação é distribuída através de Content Delivery Networks (CDNs), permitindo que

32

o conteúdo seja servido de servidores localizados próximos ao usuário, o que reduz a latência

e melhora a performance da aplicação em um nível global.

A plataforma também oferece funções serverless, que permitem a execução de código

backend sem a necessidade de gerenciamento de servidores físicos ou virtuais. Esse modelo

reduz custos operacionais e melhora a escalabilidade, pois o código é executado sob demanda,

garantindo eficiência sem sobrecarga de infraestrutura.

Em resumo, a Vercel é uma solução completa e moderna para o deploy de aplicações

web, oferecendo vantagens significativas em termos de performance, escala e agilidade no

desenvolvimento. Sua integração com o Next.js e a otimização de renderização dinâmica

tornam a plataforma uma escolha popular entre desenvolvedores que buscam criar

experiências web rápidas e eficientes.

3.18 Docker

O Docker representa uma evolução no paradigma de implantação de software por

meio da utilização de contêineres, unidades leves e isoladas do sistema operacional que

encapsulam aplicações e suas dependências. Esse modelo proporciona portabilidade entre

ambientes de desenvolvimento, teste e produção, minimizando o clássico problema do

“funciona na minha máquina” (DOCKER, 2025).

A estrutura do Docker baseia-se em imagens, que são versões imutáveis construídas

através de scripts chamados Dockerfile. Cada imagem pode ser instanciada como um

contêiner, permitindo configuração padronizada, rastreabilidade e reprodutibilidade do

ambiente de execução (DATA CAMP, 2024). Tal abordagem facilita a automação de pipelines

de CI/CD, pois garante que ambientes de build, teste e deploy utilizem exatamente as mesmas

configurações.

Além disso, o Docker se integra plenamente a fluxos DevOps e plataformas de entrega

contínua, já que permite que cada estágio do pipeline seja executado em contêineres idênticos.

Isso aumenta a confiabilidade e diminui falhas por inconsistência de ambiente (DOCKER,

2025). Federationar serviços, bancos de dados e aplicações em múltiplos contêineres se

tornou viável por meio do Docker Compose, ferramenta que simplifica a definição e o

gerenciamento desses conjuntos com um único arquivo YAML, ainda que em produção,

orquestradores como Kubernetes se façam necessários para garantir resiliência e

escalabilidade.

33

Em suma, o Docker traz uma combinação de portabilidade, reprodutibilidade,

automação e isolamento eficiente, que fundamenta práticas modernas de desenvolvimento e

operação de software em escala.

3.19 Webhooks

Webhooks se destacam como uma solução eficaz para o modelo orientado a eventos.

Ao invés de depender de técnicas ineficientes como polling em que um cliente precisa

verificar periodicamente se há atualizações, os Webhooks possibilitam que um servidor envie

automaticamente notificações para um endpoint previamente configurado quando

determinado evento ocorre.

Segundo Biehl (2017), Webhooks funcionam como uma extensão natural das APIs

REST, permitindo que aplicações se tornem reativas, isto é, capazes de responder em tempo

real a eventos externos. Essa abordagem contribui para uma redução no consumo de recursos

e maior escalabilidade dos sistemas, além de simplificar a lógica de integração entre serviços.

3.20 Aplicativos existentes para gerenciamento de medicamentos

O Medisafe é uma solução móvel que permite ao próprio paciente ou cuidador

configurar lembretes de medicamentos, registrar o uso, receber alertas em tempo real e

compartilhar informações com familiares. A interface é amigável e oferece recursos como

gráficos de adesão ao tratamento. No entanto, seu foco é individual e não contempla o

gerenciamento coletivo de pacientes ou controle de estoque.

O Pillboxie, disponível para dispositivos iOS, possui uma abordagem visual interativa,

permitindo ao usuário organizar seus medicamentos em horários por meio de ilustrações

intuitivas. Apesar de sua facilidade de uso, o aplicativo é voltado exclusivamente ao

acompanhamento pessoal e não dispõe de funcionalidades como autenticação multiusuário,

histórico consolidado ou integração com estoques.

34

4 METODOLOGIA

A aplicação destina-se a ambientes como instituições de longa permanência, casas de

apoio e instituições de saúde, visando otimizar o controle de medicamentos, melhorar a

segurança dos pacientes e reduzir riscos relacionados ao uso inadequado de medicamentos.

Além disso, foi realizado um levantamento bibliográfico abrangente, com a consulta a

artigos científicos e materiais técnicos, com o intuito de fundamentar teoricamente o tema e

embasar as necessidades identificadas. Este levantamento visou identificar soluções

existentes, tecnologias aplicáveis e definir os requisitos necessários para a implementação da

proposta, garantindo que a solução desenvolvida atenda às demandas específicas do

público-alvo e contribua para a melhoria dos processos de gestão de medicamentos.

4.1 Métodos de Desenvolvimento

O desenvolvimento do projeto adotou uma abordagem incremental e iterativa,

permitindo a construção progressiva da aplicação, com entregas parciais e melhorias

contínuas a partir da análise de requisitos e dos testes realizados. Essa escolha metodológica

favoreceu a flexibilidade no processo de desenvolvimento, possibilitando ajustes conforme

novas necessidades foram identificadas ao longo do percurso.

Inicialmente, foi realizado o levantamento dos requisitos funcionais e não funcionais,

seguido da escolha das tecnologias mais adequadas para a proposta. A partir disso, foi

desenvolvido um protótipo funcional, o qual serviu como base para validar os fluxos

principais do sistema e nortear a implementação das funcionalidades. A aplicação atualmente

em desenvolvimento contempla um sistema completo de cadastro, edição, exclusão e

visualização de dados tanto para pacientes quanto para medicamentos, garantindo o controle

estruturado dessas informações.

Além disso, o sistema incorpora um controle de estoque de medicamentos, permitindo

o gerenciamento das quantidades disponíveis e promovendo maior segurança no

acompanhamento do tratamento dos pacientes. A tela inicial da aplicação foi desenhada para

oferecer uma visão em tempo real do status da medicação de cada paciente, destacando

aqueles que estão disponíveis para serem medicados, os que já foram medicados e os que

apresentam atraso em suas administrações. Essa funcionalidade reflete o foco principal do

35

projeto, que é oferecer alertas inteligentes sobre os horários de medicação, promovendo

organização, agilidade e precisão nos cuidados, especialmente em ambientes como casas de

apoio, instituições de longa permanência e unidades de saúde.

Como se trata de um protótipo em desenvolvimento, o sistema vem sendo submetido a

testes de validação funcional e de usabilidade, com o objetivo de refinar tanto a experiência

do usuário quanto a eficiência dos processos internos. Essa abordagem tem possibilitado uma

evolução consistente do projeto, mantendo alinhamento com os objetivos definidos e

garantindo a viabilidade de aplicação em contextos reais de gestão medicamentosa.

4.2 Levantamento de Requisitos

O levantamento de requisitos foi essencial para identificar as necessidades do sistema

proposto, voltado à gestão de medicamentos em ambientes institucionais. A partir da análise

de práticas comuns em instituições de saúde e casas de apoio, foram definidos os principais

requisitos funcionais, como cadastro e gerenciamento de pacientes e medicamentos, controle

de estoque, alertas de horário de medicação, classificação do status dos pacientes e registro

histórico das medicações administradas.

Foram também estabelecidos requisitos não funcionais relacionados à usabilidade da

interface, desempenho do sistema, segurança e integridade dos dados, além da necessidade de

acessibilidade para usuários com baixa familiaridade tecnológica. Esse mapeamento orientou

o desenvolvimento técnico e garantiu que a aplicação atendesse às demandas reais do

público-alvo. Abaixo listamos os requisitos no quadro 2:

Quadro 2 — Requisitos funcionais e não funcionais

Funcional Cadastrar, editar, visualizar e excluir pacientes

Funcional Cadastrar, editar, visualizar e excluir medicamentos

Funcional Gerenciar o estoque de medicamentos, com controle de entrada e saída

Funcional Emitir alertas sobre horários de medicação dos pacientes

Funcional Classificar pacientes em: disponíveis para medicação, atrasados e já
medicados

Funcional Registrar histórico de medicamentos administrados a cada paciente

Funcional Exibir tela inicial (home) com resumo do status de medicação

36

Funcional Associar medicamentos aos respectivos pacientes

Não funcional Interface amigável e de fácil usabilidade

Não funcional Tempo de resposta rápido para ações comuns do sistema

Não funcional Segurança no armazenamento dos dados dos pacientes

Não funcional Capacidade de expansão para inclusão de novas funcionalidades

Não funcional Integridade e consistência dos dados durante operações simultâneas

Não funcional Acessibilidade para usuários com baixa familiaridade com tecnologia

Fonte: Elaborado pelo autor, 2025.

4.3 Processo de Desenvolvimento

A estruturação do projeto priorizou a organização em etapas lógicas, possibilitando o

avanço contínuo e controlado das fases de codificação, testes e validações. Ao longo desse

processo, foram incorporadas tecnologias modernas, que favoreceram a integração entre

front-end, back-end e banco de dados, ao mesmo tempo em que garantiram segurança,

escalabilidade e facilidade de manutenção.

A aplicação foi construída utilizando JavaScript com o framework React na interface

do usuário, garantindo navegação fluida no ambiente web. No back-end, o Express foi

utilizado para criação das rotas e gerenciamento das requisições, com Axios como

intermediador das chamadas HTTP. O Prisma ORM foi adotado para facilitar a manipulação

do banco de dados, promovendo eficiência na camada de persistência. Já o Supabase foi

utilizado como solução completa de backend, oferecendo banco de dados relacional,

autenticação via JWT (JSON Web Token) e controle de acesso com Row Level Security

(RLS).

A aplicação foi conteinerizada com Docker, facilitando a padronização e a

escalabilidade do ambiente. O repositório de código foi mantido no GitHub, com integração

direta ao Vercel para deploy contínuo, o que permitiu que cada nova atualização fosse

automaticamente publicada. Para validar as rotas da API e garantir o bom funcionamento da

comunicação entre as camadas, foram utilizados testes com o Insomnia.

Essa combinação de tecnologias e práticas permitiu o desenvolvimento de uma

aplicação moderna, funcional e alinhada aos requisitos levantados. O detalhamento de cada

etapa do processo será apresentado nos subtópicos a seguir.

37

4.3.1 Modelagem e gerenciamento do banco de dados

A estrutura do banco de dados foi projetada para representar de maneira clara e

funcional as relações entre pacientes, medicamentos, histórico de administração e controle de

estoque. A modelagem foi desenvolvida em formato relacional, utilizando o Prisma ORM

para facilitar o mapeamento entre as tabelas e o código da aplicação. O banco de dados em si

foi implementado no Supabase, que oferece um ambiente compatível com PostgreSQL,

integrado ao restante da infraestrutura do sistema.

No centro da estrutura encontra-se a entidade pacientes, que armazena dados como

nome, data de nascimento, idade, quarto e uma foto identificadora. Cada paciente está

associado a um usuário do sistema por meio da chave user_id, permitindo a vinculação entre

registros clínicos e contas autenticadas.

A tabela medicamentos contém as informações essenciais dos fármacos cadastrados,

como nome, descrição, dosagem (em mg) e possíveis ingredientes alergênicos. Associada a

ela está a tabela estoque_medicamento, responsável por armazenar a quantidade disponível de

cada medicamento, viabilizando o controle de estoque diretamente dentro da aplicação.

A relação entre pacientes e medicamentos é representada pela tabela

paciente_medicamentos, que permite configurar o horário de administração, o intervalo entre

doses, a data de início do tratamento, o número de dias e o uso contínuo. Essa tabela também

registra se o paciente já foi medicado e se há dose pendente, dados importantes para o

funcionamento dos alertas automatizados do sistema.

Para garantir rastreabilidade, a tabela historico_dose registra cada administração

realizada, vinculando paciente, medicamento, data e hora da dose, quantidade utilizada e

possíveis observações inseridas pelo responsável.

Por fim, a tabela perfis define o nível de permissão (role) atribuído a cada usuário,

também vinculada ao sistema de autenticação, permitindo controlar o acesso às

funcionalidades da aplicação conforme o perfil de uso.

Essa estrutura foi pensada para garantir integridade dos dados, facilitar consultas e

oferecer suporte à lógica de funcionamento da aplicação em tempo real.

38

Figura 4 — Diagrama Entidade-Relacionamento (ERD)

Fonte: Elaborado pelo autor, 2025.

39

Figura 5 — Fluxo de dados

Fonte: Elaborado pelo autor, 2025.

4.3.2 Segurança e controle de acesso: jwt e row level security

A segurança do sistema foi estruturada para garantir que os dados sensíveis

principalmente relacionados a pacientes e medicamentos sejam acessados apenas por usuários

devidamente autenticados e autorizados. Para isso, foram adotados dois recursos principais

disponibilizados pela plataforma Supabase: o uso de tokens JWT (JSON Web Token) para

40

autenticação e a implementação de políticas de segurança a nível de linha, conhecidas como

Row Level Security (RLS).

O Supabase oferece um sistema de autenticação integrado com suporte a login e

registro de usuários, e a partir dessa base é gerado um token JWT a cada sessão autenticada.

Esse token é transmitido em cada requisição à API, contendo as credenciais e permissões

associadas ao usuário. No contexto da aplicação, o JWT é utilizado para validar o acesso ao

sistema e garantir que apenas usuários autenticados possam consumir as rotas e consultar os

dados vinculados às suas permissões.

Complementando esse processo, foi configurado o uso do Row Level Security (RLS),

uma funcionalidade do PostgreSQL que permite restringir o acesso a linhas específicas das

tabelas com base em regras definidas. No sistema, isso significa que cada usuário somente

pode acessar os pacientes, medicamentos e históricos associados à sua própria conta,

impedindo o acesso indevido a registros de terceiros. Essas regras foram aplicadas com base

no campo user_id presente nas tabelas pacientes, perfis e nos relacionamentos derivados.

Essa combinação entre autenticação via JWT e políticas de RLS proporciona uma

camada robusta de segurança, eliminando a necessidade de implementar controles manuais na

aplicação e reduzindo significativamente os riscos de vazamento ou exposição de dados.

Além disso, a segurança baseada no banco de dados contribui para que a lógica de autorização

permaneça consistente e centralizada, independentemente da linguagem ou framework

utilizado no back-end.

Com essa arquitetura, o sistema se torna apto a operar de forma segura em ambientes

que lidam com informações sensíveis, como instituições de saúde, casas de apoio e unidades

de longa permanência, assegurando conformidade com princípios de privacidade e proteção

de dados.

4.3.3 Implementação da Autenticação com Supabase

No desenvolvimento do sistema proposto, foi utilizada a funcionalidade de

autenticação integrada do Supabase (Supabase Auth) para controlar o acesso dos usuários às

funcionalidades da aplicação. Essa escolha se deu por sua facilidade de integração com o

front-end em React e pelo fato de o plano gratuito atender plenamente às necessidades do

projeto.

41

A autenticação foi configurada com suporte a e-mail e senha, incluindo recursos como

confirmação por e-mail e redefinição de senha automatizada. Cada usuário autenticado passou

a ter uma sessão única identificada por um token JWT, permitindo que o sistema aplicasse

regras de segurança e controle de acesso com base no identificador do usuário.

As permissões foram ajustadas no Supabase utilizando o recurso de Row Level

Security (RLS), permitindo que os dados de pacientes e medicamentos fossem acessados

somente pelo usuário responsável, garantindo privacidade e controle. Esse mecanismo

dispensou a necessidade de implementar lógica complexa de autorização no backend,

concentrando a segurança diretamente na camada de dados.

Figura 6 — Autenticação de e-mail

Fonte: Elaborado pelo autor, 2025.

Figura 7 — Status de verificação da conta do usuário

Fonte: Elaborado pelo autor, 2025.

42

4.3.4 Registro de logs

Durante o desenvolvimento do sistema, foi implementado um robusto mecanismo de

registro de logs com o objetivo de monitorar, rastrear e documentar de forma sistemática

todas as ações relevantes realizadas pelos usuários dentro da aplicação. Essa funcionalidade

foi concebida como parte fundamental da arquitetura do sistema, visando garantir maior

controle, transparência e segurança nas operações executadas.

Toda vez que um usuário autenticado interage com o sistema por meio de ações

consideradas críticas como a aplicação de uma dose de medicamento, a edição de registros, o

cadastro de um novo paciente ou qualquer modificação que impacte diretamente os dados

clínicos, um registro detalhado é gerado e armazenado de forma automatizada.

Esses registros contêm informações fundamentais para auditoria, como o identificador

único da ação, o identificador do usuário que a executou, a descrição da operação (por

exemplo, “aplicar_dose”, “editar_paciente” ou “criar_medicamento”), bem como dados

complementares associados à ação, incluindo o nome do usuário envolvido, o ID do paciente,

o medicamento relacionado e quaisquer parâmetros relevantes. Além disso, cada evento é

acompanhado da data e hora exatas em que ocorreu, o que permite um rastreio cronológico

completo das atividades.

Todas essas informações são persistidas no banco de dados por meio de uma estrutura

organizada e acessível, permitindo sua consulta posterior de maneira estruturada e eficiente.

Essa abordagem viabiliza não apenas a visualização simples dos registros, mas também

análises mais complexas sobre o uso do sistema, o comportamento dos usuários e a detecção

de padrões de acesso.

A adoção desse mecanismo de logging representa uma importante medida de

segurança e governança da informação, sendo essencial para a rastreabilidade de ações

críticas, a identificação de possíveis falhas ou comportamentos suspeitos, a realização de

auditorias internas e o atendimento a eventuais exigências regulatórias ou legais relacionadas

à conformidade com normas de proteção de dados e responsabilidade digital.

O acesso aos dados de log é restrito e realizado por meio de uma rota protegida da

API, a qual exige autenticação e permissões específicas. Dessa forma, apenas usuários

autorizados como administradores ou auditores do sistema possuem a capacidade de consultar

os registros, garantindo a confidencialidade e o uso adequado das informações registradas.

43

Figura 8 — Registro de logs

Fonte: Elaborado pelo autor, 2025.

4.3.5 Utilização do prisma orm e flexibilização da modelagem

Para facilitar a interação entre o código da aplicação e o banco de dados relacional

utilizado no Supabase, foi adotado o Prisma ORM (Object-Relational Mapping). O Prisma

permite mapear as tabelas do banco para objetos manipuláveis na aplicação, otimizando a

leitura, escrita e manutenção dos dados de forma mais intuitiva e segura.

Além de oferecer uma interface de consulta declarativa e fortemente tipada, o Prisma

possibilitou maior agilidade no desenvolvimento e organização da lógica de dados. Por meio

de sua estrutura de modelos, foi possível estabelecer os relacionamentos entre entidades

44

(como pacientes, medicamentos e doses aplicadas) com clareza e controle, ao mesmo tempo

em que se adotou uma estrutura de navegação mais próxima da fluidez oferecida por bancos

NoSQL.

Embora o banco de dados utilizado seja relacional (PostgreSQL), a aplicação do

Prisma permitiu aproximar a modelagem da experiência NoSQL em dois aspectos principais:

primeiro, na forma como os dados são acessados com relacionamentos encadeados e

projeções personalizadas (por exemplo, ao buscar um paciente já incluindo seus

medicamentos e doses); segundo, na possibilidade de estruturar inserções e atualizações com

objetos aninhados, eliminando a necessidade de múltiplas queries separadas.

Além disso, o Prisma facilitou a criação de migrates controladas, oferecendo

versionamento da estrutura do banco, além de validação de dados, controle de integridade e

consistência entre os ambientes de desenvolvimento, testes e produção.

Essa abordagem híbrida utilizando um banco relacional com ferramentas que oferecem

flexibilidade típica dos bancos NoSQL proporcionou ao sistema a robustez de uma

modelagem relacional bem estruturada, aliada à agilidade de uma aplicação moderna, com

manipulação de dados eficiente e segura.

4.3.6 Estrutura e lógica da aplicação (back-end)

A camada de back-end da aplicação foi desenvolvida utilizando o framework Express,

que opera sobre a plataforma Node.js. Essa escolha se deu pela simplicidade, flexibilidade e

ampla adoção da tecnologia no desenvolvimento de APIs RESTful. O Express permitiu

estruturar rotas de forma modular, organizando as funcionalidades do sistema com clareza e

separação de responsabilidades.

Foram criadas rotas específicas para cada entidade central do sistema, como pacientes,

medicamentos, estoques, associações entre pacientes e medicamentos, além do registro

histórico de doses administradas. Cada rota foi acompanhada de controladores responsáveis

por aplicar a lógica de negócio, como validações de campos obrigatórios, verificação de

vínculos entre entidades, atualização de status de medicação e controle de fluxo de horários.

45

Figura 9 — Requisições HTTP entre o Front-end e Back-end

Fonte: Elaborado pelo autor, 2025.

No lado do servidor, essas requisições são interceptadas e validadas. A lógica de

autorização leva em conta o token enviado, garantindo que o usuário tenha permissão para

acessar ou modificar os dados solicitados. A aplicação ainda verifica, em determinadas rotas,

o role do usuário definido na tabela de perfis para permitir ou restringir funcionalidades

específicas conforme seu nível de acesso (por exemplo, cuidador, administrador ou visitante).

Além disso, a arquitetura modular adotada no Express permitiu a separação de

middlewares de autenticação, funções utilitárias, validações e tratadores de erro. Essa

organização contribuiu para a manutenção do código, facilitando a leitura, os testes e futuras

expansões da aplicação.

Com essa estrutura, o back-end da aplicação passou a oferecer uma API robusta,

segura e adaptada às regras de negócio do sistema, servindo como elo entre a interface do

usuário, o banco de dados e os mecanismos de autenticação e controle de acesso.

46

4.3.7 Desenvolvimento da interface do usuário (front-end)

A interface da aplicação foi desenvolvida utilizando a biblioteca JavaScript React,

amplamente adotada no desenvolvimento de aplicações web modernas pela sua modularidade,

desempenho e facilidade de manutenção. A estrutura do front-end foi organizada com base

em componentes reutilizáveis, permitindo escalabilidade e padronização visual entre as

diferentes telas da aplicação.

Um dos elementos centrais da interface é a tela inicial (home), que foi projetada para

exibir de forma clara e objetiva a situação dos pacientes em relação à administração de

medicamentos. A interface divide os pacientes em três categorias: “Pacientes disponíveis”,

“Pacientes atrasados” e “Pacientes já medicados”. Cada seção é atualizada dinamicamente de

acordo com o estado de medicação dos pacientes, com base nos horários registrados e nos

status definidos no banco de dados.

Dentro de cada categoria, os pacientes são apresentados em cartões contendo

informações relevantes como nome, idade, quarto, horário da dose, intervalo entre doses, data

de nascimento, uso crônico e o status da última medicação. Também é exibida a foto do

paciente, tornando a identificação visual mais rápida, especialmente útil em ambientes

institucionais.

O layout foi desenvolvido com foco em clareza, garantindo boa apresentação em

diferentes dispositivos. As cores utilizadas indicam o estado de medicação, ajudando o

cuidador a identificar rapidamente quais pacientes necessitam de atenção. Toda a navegação

foi pensada para ser intuitiva, com ações diretas e informações agrupadas de maneira lógica.

Durante o desenvolvimento do front-end, foram adotadas boas práticas como a

componentização de elementos recorrentes (cartões, botões, labels), organização em pastas

por funcionalidade, controle de estado com React Hooks (como useState e useEffect), além da

comunicação com a API por meio do Axios. Essa abordagem garante consistência visual,

reutilização de código e maior facilidade para manutenção e evolução da aplicação.

4.3.8 Ambiente de desenvolvimento e conteinerização

Com o objetivo de garantir padronização, portabilidade e agilidade no processo de

desenvolvimento, foi adotado o uso do Docker como ferramenta de conteinerização do

ambiente da aplicação. O Docker permite a criação de ambientes isolados e reproduzíveis,

47

evitando problemas relacionados a incompatibilidades entre sistemas operacionais, versões de

dependências e configurações específicas de cada máquina desenvolvedora. A aplicação foi

estruturada com base em quatro contêineres principais: o serviço de frontend, responsável

pela interface desenvolvida em React e exposto na porta 3000; o backend, implementado em

Node.js com Express e exposto na porta 3001, encarregado pela lógica de negócio e

integração com o Supabase; o serviço de grafana, utilizado para monitoramento e visualização

de dados, acessível pela porta 3002; e o prometheus, responsável pela coleta de métricas,

operando na porta 9090.

Esses serviços foram configurados utilizando arquivos Docker e docker-compose, o

que possibilitou inicializar todo o ambiente com um único comando, promovendo rapidez no

processo de desenvolvimento e testes. As imagens dos contêineres foram baseadas em

distribuições leves, com suporte a hot-reload, volumes persistentes e mapeamento de portas.

A organização por contêineres específicos permitiu o isolamento funcional de cada parte do

sistema, tornando o ambiente replicável e consistente para toda a equipe.

Durante o desenvolvimento, o Docker também facilitou a automação de tarefas como

migração de banco de dados, seed de dados iniciais e uso de variáveis de ambiente para

diferentes contextos (desenvolvimento, testes e produção). Essa abordagem ainda oferece uma

base sólida para implantações futuras em serviços de nuvem compatíveis com Docker,

garantindo portabilidade e escalabilidade. Em suma, a utilização do Docker trouxe

previsibilidade, controle de dependências e facilidade de manutenção ao projeto, sendo um

elemento central na estruturação da aplicação. A divisão dos serviços pode ser visualizada na

Figura 10:

48

Figura 10 — Container docker

Fonte: Elaborado pelo autor, 2025.

4.3.9 Versionamento de código e deploy contínuo

O versionamento de código da aplicação foi realizado por meio da plataforma GitHub,

que atua como repositório remoto e ferramenta de controle de versão distribuída. A utilização

do GitHub possibilitou o registro histórico de alterações, a organização das etapas de

desenvolvimento por meio de branches e a colaboração entre desenvolvedores de forma

segura e controlada. O projeto foi estruturado em uma branch principal (main), responsável

por representar a versão estável da aplicação, e branches auxiliares destinadas a

implementações específicas, correções ou testes. Esse modelo de versionamento contribuiu

para o rastreamento de mudanças, facilitou revisões de código (pull requests) e minimizou

conflitos entre funcionalidades desenvolvidas em paralelo.

Para publicação da aplicação em ambiente online, foi implementado um processo de

deploy contínuo (CD – Deploy Contínuo) por meio da plataforma Vercel, a qual se conecta

diretamente ao repositório do GitHub. A cada nova atualização enviada para a branch

principal, a Vercel dispara automaticamente a etapa de build do front-end, resolve as

dependências do projeto e realiza a publicação da nova versão da aplicação, sem necessidade

de procedimentos manuais. Esse fluxo automatizado garante que todas as alterações

aprovadas e integradas ao repositório principal sejam imediatamente disponibilizadas em

ambiente de produção. Mais detalhes sobre o repositório e código-fonte estão disponíveis no

Anexo A.

49

Além da publicação automática, a integração entre GitHub e Vercel permite a geração

de links de pré-visualização para testes em pull requests, o que contribui para validações

antecipadas e reduz a incidência de erros na produção. A adoção desse fluxo baseado em

integração contínua trouxe como benefícios a agilidade nas entregas, a simplificação do

processo de deploy, o aumento da confiabilidade do sistema e a possibilidade de rollback

rápido em caso de falhas. Trata-se de uma prática moderna de desenvolvimento que reforça a

eficiência operacional e a manutenção contínua da aplicação em ambientes sempre

atualizados. Podemos ver isso na Figura 11 abaixo:

Figura 11 — Deploy contínuo no vercel e sistema CI

Fonte: Elaborado pelo autor, 2025.

4.3.10 Testes e validação da aplicação

A validação funcional da aplicação foi uma etapa essencial para garantir que cada

funcionalidade implementada atendesse corretamente aos requisitos definidos. Os testes

foram conduzidos de forma manual e exploratória, com foco principal na verificação do

comportamento das rotas da API, consistência dos dados trafegados e integridade das ações

executadas pelo sistema.

Para simulação de requisições HTTP e testes das rotas do back-end, foi utilizada a

ferramenta Insomnia, amplamente adotada no desenvolvimento de APIs REST. Com ela, foi

possível estruturar requisições completas (GET, POST, PUT, DELETE), configurar

parâmetros, headers e autenticação via token JWT, além de acompanhar de forma clara as

respostas do servidor. Isso permitiu validar o funcionamento das operações em diferentes

cenários, como criação, atualização, busca e exclusão de registros de pacientes,

medicamentos, estoque e histórico de doses.

Os testes com o Insomnia também foram fundamentais para verificar o

comportamento das regras de autorização e acesso. Foram realizados cenários com usuários

50

autenticados e não autenticados, além de tentativas de acesso a dados de outros usuários, a fim

de comprovar o funcionamento correto das políticas de segurança e RLS (Row Level

Security).

Além da camada de rotas, cada módulo funcional da aplicação foi testado diretamente

na interface, após sua integração com o front-end. Isso incluiu a criação e edição de pacientes

e medicamentos, movimentação de estoque, atualização de status de medicação, visualização

em tempo real na tela inicial e registro correto no histórico. Durante esses testes, foram

observados o fluxo de dados entre front-end e back-end, o retorno das mensagens de sucesso

ou erro, e o impacto das ações no banco de dados.

O processo de validação foi iterativo, com ajustes pontuais realizados conforme

eventuais inconsistências eram identificadas(Figura 12). Essa abordagem garantiu que o

sistema entregue estivesse em conformidade com os objetivos propostos, funcionando de

maneira estável, coerente e segura.

Figura 12 — Teste de rota no insomnia

Fonte: Elaborado pelo autor, 2025.

4.3.11 Envio de notificações via telegram

Durante o desenvolvimento do sistema, foi incorporado uma funcionalidade de envio

de notificações em tempo real via Telegram, com o objetivo de alertar o responsável sobre

situações críticas que exigem atenção imediata. Essa funcionalidade foi empregada tanto para

51

informar sobre níveis baixos de estoque de medicamentos quanto para avisar quando um

paciente estava em atraso com seus compromissos agendados no sistema. A integração com a

API do Telegram foi realizada em etapas práticas e bem definidas, permitindo um processo

eficiente e confiável de comunicação entre o sistema e os usuários.

A primeira etapa consistiu na criação de um bot personalizado por meio do serviço

oficial do Telegram, acessado através do contato com o @BotFather. Através do comando

/newbot, foi possível definir um nome e um identificador único (@username) para o bot.

Finalizada essa configuração inicial, o sistema retornou um token exclusivo, essencial para a

autenticação e envio de mensagens.

Em seguida, foi necessário identificar o chat ID do destinatário das notificações. Para

isso, o usuário enviou uma mensagem ao bot, e, por meio da URL

https://api.telegram.org/bot<TOKEN>/getUpdates, foi possível extrair o chat ID

correspondente, tanto para conversas individuais quanto para grupos. Essa etapa garantiu que

as mensagens fossem corretamente direcionadas ao canal desejado.

Com essas informações, desenvolveu-se uma função personalizada no backend da

aplicação, utilizando Node.js e a biblioteca Axios, responsável por realizar as chamadas

HTTP à API do Telegram. A função foi centralizada em um arquivo utilitário (telegram.js),

onde o bot token e o chat ID foram referenciados a partir de variáveis de ambiente, garantindo

segurança e flexibilidade na configuração.

O mecanismo de notificação foi acoplado a pontos estratégicos do sistema,

especialmente em verificações automáticas. Sempre que a quantidade de um determinado

medicamento cai abaixo do valor mínimo permitido, uma mensagem de alerta é enviada

automaticamente ao Telegram(Figura 13), informando o nome do item e a quantidade

disponível. Da mesma forma, quando um paciente ultrapassa o horário previsto para o

atendimento, o sistema dispara um alerta informando o atraso, permitindo uma resposta rápida

da equipe responsável. Todas as mensagens são formatadas de maneira clara e objetiva.

Por fim, o uso da biblioteca dotenv permitiu o carregamento das variáveis de ambiente

necessárias para a autenticação do bot, tornando a aplicação mais segura e organizada. Essa

abordagem assegura uma integração eficaz entre o sistema de gestão e o canal de

comunicação, contribuindo diretamente para a agilidade na tomada de decisões.

52

Figura 13 — Webhooks via telegram

Fonte: Elaborado pelo autor, 2025.

4.4 Fluxo de navegação da aplicação

O Fluxograma da Aplicação Geral foi elaborado com a finalidade de demonstrar o

fluxo de navegação e as ações realizadas pelo usuário dentro da aplicação(Figura 14). Este

diagrama descreve, de maneira sequencial, o comportamento do sistema desde o acesso inicial

até as funcionalidades principais, como o gerenciamento de pacientes, controle de estoque e

visualização de histórico. Esse tipo de representação é fundamental para a definição da

interface do usuário (UI) e da experiência do usuário (UX), além de auxiliar no planejamento

das telas e nas transições entre funcionalidades ao longo do sistema.

53

Figura 14 — Fluxograma da Aplicação Geral

Fonte: Elaborado pelo autor, 2025.

4.4.1 Descrição do Fluxo

O fluxo de navegação da aplicação inicia-se quando o usuário acessa o sistema via

navegador. A primeira verificação consiste em identificar se o usuário já está logado. Caso

negativo, é exibida a tela de login, que também oferece a opção de criação de nova conta. Se o

usuário ainda não possui cadastro, ele poderá clicar em “Cadastre-se”, sendo direcionado para

o formulário de criação de conta. Após o preenchimento e envio dos dados, a conta é criada e

o sistema o redireciona para a próxima etapa. Por outro lado, se o usuário já possui uma conta,

54

ele pode acessar diretamente o formulário de login, preenchê-lo e, ao autenticar-se

corretamente, será redirecionado à tela principal (home) do sistema.

Ao acessar a tela home, o usuário visualiza as categorias de pacientes classificadas de

acordo com o estado da medicação: pacientes disponíveis para medicação, pacientes atrasados

e pacientes já medicados. A partir desta tela, é possível iniciar ações diretamente relacionadas

à administração dos medicamentos por meio da opção “Medicar paciente”.

No topo da tela (header), há opções de navegação que direcionam o usuário para

diferentes áreas do sistema. Se o usuário clicar em “Histórico”, será direcionado a uma página

onde poderá pesquisar pelas doses administradas e visualizar o histórico completo de

medicamentos já aplicados a cada paciente.

Caso o usuário clique na opção “Estoque”, o sistema exibe uma lista dos

medicamentos disponíveis, permitindo a adição de novos itens ou atualização das quantidades

em estoque.

Ao selecionar a opção “Paciente”, o sistema apresenta a listagem dos pacientes

cadastrados. O usuário pode optar por adicionar um novo paciente ou editar os dados de um

existente. Nestes casos, será exibido um formulário para preenchimento ou atualização das

informações do paciente, como nome, idade, quarto e foto.

Durante o processo de adição de um novo medicamento para determinado paciente, o

sistema permite configurar os horários e a frequência de administração, incluindo uma

verificação sobre se o uso do medicamento será contínuo (uso crônico). Após o

preenchimento dos dados, é possível salvar a prescrição, que será incorporada ao controle de

doses futuras.

Por fim, o usuário tem a opção de encerrar a sessão clicando em “Sair” no menu do

cabeçalho, o que encerra a navegação e finaliza o fluxo do sistema.

55

5 RESULTADOS E DISCUSSÕES

 5.1 Avaliação da Solução Desenvolvida em Relação ao Mercado

Com base na análise de aplicativos existentes apresentada na seção 3.20, observa-se

que as soluções atualmente disponíveis para o gerenciamento de medicamentos

concentram-se majoritariamente no uso individual. Essas ferramentas oferecem

funcionalidades como lembretes de medicação, registro de uso e gráficos de adesão ao

tratamento, mas não contemplam necessidades específicas de contextos institucionais, como

casas de apoio e instituições de longa permanência. Entre as limitações identificadas,

destaca-se a ausência de controle coletivo de pacientes, gerenciamento de estoque e suporte a

múltiplos usuários com diferentes níveis de acesso.

A aplicação desenvolvida neste trabalho foi concebida para atender essas demandas

não supridas pelas soluções analisadas. O sistema propõe uma abordagem voltada à realidade

de instituições que administram medicamentos para vários pacientes, permitindo o

cadastramento de cuidadores e usuários vinculados, com autenticação individual por meio de

token JWT. A plataforma oferece registro consolidado das doses administradas, histórico de

medicação por paciente, e controle de estoque com alertas automáticos sobre a validade e a

quantidade dos medicamentos. Além disso, a interface foi projetada com foco na usabilidade,

visando facilitar a operação por profissionais da saúde, mesmo aqueles com pouca

familiaridade com tecnologia.

Ao suprir essas lacunas, a solução apresentada neste trabalho diferencia-se das

ferramentas já disponíveis, ampliando o alcance das funcionalidades e contribuindo para a

segurança na administração dos medicamentos em ambientes institucionais. Essa proposta

atende às exigências práticas do setor e busca garantir maior controle, rastreabilidade e

eficiência no cuidado com os pacientes.

5.2 Comparação entre Soluções Existentes e a Aplicação Desenvolvida

Com base nas soluções analisadas na seção 3.20, observa-se que aplicativos como

Medisafe e Pillboxie atendem prioritariamente ao público individual, oferecendo

funcionalidades voltadas à autogestão da medicação. No entanto, tais soluções apresentam

limitações relevantes para ambientes institucionais, como a ausência de controle de múltiplos

pacientes, registro consolidado de doses, controle de estoque e autenticação multiusuário.

56

A aplicação desenvolvida neste trabalho foi projetada para suprir essas lacunas, com

foco em instituições de saúde, clínicas e casas de apoio. Entre os principais diferenciais,

destacam-se a autenticação segura com múltiplos perfis de usuários (por meio de JWT e

RLS), controle centralizado de estoque, categorização automática de pacientes com base no

status da medicação (disponíveis, atrasados, já medicados), e registro histórico de cada dose

administrada. A estrutura web acessível e a integração com banco de dados relacional também

garantem escalabilidade e confiabilidade na gestão dos dados.

Dessa forma, a aplicação proposta diferencia-se por atender demandas específicas do

cuidado coletivo, com maior rastreabilidade, controle e segurança, aspectos fundamentais para

ambientes institucionais, podemos comparar isso abaixo no quadro 3:

Quadro 3- Comparativo entre soluções existentes e o sistema proposto

Critério Medisafe Pillboxie Este trabalho(sistema
proposto)

Público-alvo Usuário individual Usuário individual Instituições com multiplos
pacientes

Plataforma Android / iOS iOS Web

Controle de múltiplos pacientes Não Não Sim

Registro de doses administradas Parcial Não Sim

Controle de estoque Não Não Sim

Relatórios em tempo
real(webhooks)

Não Não Sim

Instalação local necessária Sim (mobile) Sim (iOS) Não (acesso via navegador)

Autenticação e controle de acesso Sim(básico) Não Sim(JWT + RLS)

Fonte: Elaborado pelo autor, 2025.

5.3 Tempo de respostas das apis

Com o objetivo de avaliar o desempenho do sistema desenvolvido, foram realizados

testes de tempo de resposta em diversas funcionalidades essenciais para o funcionamento da

aplicação. As medições foram feitas em ambiente local, utilizando a infraestrutura

57

conteinerizada por meio do Docker, com banco de dados operando no Supabase. As

requisições foram executadas de forma sequencial e controlada, considerando-se o tempo

decorrido entre o envio da solicitação e o recebimento da resposta por parte da API.

Foram consideradas para análise as operações de login de usuários, cadastro e

exclusão de pacientes, consulta de dados de medicamentos, leitura dos registros de auditoria e

coleta de métricas do sistema. A autenticação foi medida pelo tempo necessário para validar

as credenciais e retornar o token de acesso. Já o cadastro de paciente envolveu a análise do

tempo total entre o preenchimento do formulário e o armazenamento definitivo dos dados no

banco. O tempo de exclusão considerou a identificação do registro e sua remoção. Para as

consultas de medicamentos, foi analisado o tempo necessário para carregar os dados de

medicamentos vinculados a um paciente. As operações de auditoria avaliaram a velocidade

com que os logs de ações são acessados e exibidos, enquanto a coleta de métricas analisou a

resposta das rotas que fornecem dados internos do sistema.

Os resultados médios obtidos para cada uma dessas ações estão organizados no

Quadro 4, e evidenciam a capacidade do sistema de fornecer respostas rápidas e eficientes,

mesmo em situações que envolvem múltiplas operações em banco de dados ou consultas

encadeadas. Essa análise serve como base para validar a responsividade da aplicação,

reforçando seu potencial de uso em ambientes reais com demandas por agilidade e

confiabilidade.

Quadro 4 — Tempo de respostas da api

Rota da api Tamanho da resposta Tempo da resposta

Login/registro 3.3kb entre 500ms e 2s

Criar paciente 200b entre 700ms e 1.50s

Deletar paciente 11b entre 2.20s e 3s

Registro de logs variável entre 300ms e 2s

Métricas entre 5kb e 7kb 700ms

Estoque 600b entre 100ms a 800ms

Fonte: Elaborado pelo autor, 2025.

58

5.4 Avaliação geral

A partir da análise dos dados coletados e do desempenho observado até o momento, é

possível afirmar que a aplicação desenvolvida já cumpre com diversos dos objetivos

inicialmente propostos. A integração entre frontend, backend e banco de dados foi estruturada

de forma coesa, proporcionando uma base funcional que permite testes e uso real. Embora o

projeto ainda esteja em fase de desenvolvimento e apresenta pontos que podem e devem ser

aprimorados, os testes iniciais indicam que o sistema é capaz de operar de forma estável e

eficiente.

A interface, mesmo em sua versão preliminar, mostrou-se acessível e funcional,

permitindo que usuários com diferentes níveis de familiaridade tecnológica interajam com as

funcionalidades essenciais do sistema. A robustez apresentada na manipulação de dados e no

controle das operações básicas demonstra que há uma boa fundação para futuras melhorias.

Assim, mesmo com espaço considerável para evolução, o sistema já se apresenta como

uma solução viável, que pode ser utilizada em contextos reais e aprimorada continuamente,

conforme novas demandas e feedbacks forem sendo identificados.

5.5 Considerações finais

Durante o processo de implementação, foram enfrentados desafios relacionados

principalmente à sincronização dos horários de medicação, à manipulação de fusos horários

entre cliente e servidor, e à configuração inicial de ferramentas como Supabase, Prisma e

Docker. No entanto, a estrutura modular do sistema permitiu a rápida identificação e correção

desses pontos, com ganhos progressivos em performance e organização do código. A

utilização de ferramentas modernas como o Supabase facilitou a autenticação de usuários e o

armazenamento seguro de dados sensíveis, enquanto o Docker possibilitou a replicação do

ambiente de desenvolvimento com consistência. A experiência de implementação também

evidenciou a importância de práticas como logs de auditoria, deploy contínuo e

monitoramento em tempo real, que foram fundamentais para garantir a confiabilidade e a

rastreabilidade do sistema.

59

6 CONCLUSÕES

Como parte do encerramento deste trabalho, é possível afirmar que os objetivos

propostos foram, em sua maioria, devidamente alcançados. O objetivo geral desenvolver um

sistema web funcional voltado ao monitoramento e gerenciamento seguro de medicamentos

em ambientes de cuidado, como casas de apoio e instituições de saúde foi atendido por meio

da construção de uma aplicação completa, com backend, frontend e banco de dados

integrados de forma coerente e funcional.

No que se refere aos objetivos específicos, observou-se o cumprimento de cada uma

das metas estabelecidas. Foi desenvolvido um sistema de cadastro de medicamentos

utilizando banco de dados relacional PostgreSQL, com o auxílio do Prisma ORM, o que

facilitou a comunicação entre a aplicação e a base de dados. A interface visual construída

permite o gerenciamento claro dos horários de medicação, facilitando o controle por parte dos

usuários. Além disso, a funcionalidade de registrar medicamentos como “medicados”

mostrou-se eficaz para garantir rastreabilidade e segurança no processo. Também foi incluído

um controle de estoque básico, que alerta sobre a baixa quantidade de medicamentos,

contribuindo para a prevenção de falhas no fornecimento.

Embora o sistema ainda esteja em desenvolvimento e apresente oportunidades de

melhoria e expansão, os resultados obtidos até aqui demonstram o potencial da aplicação para

ser utilizada em contextos reais. A conclusão é de que os objetivos do trabalho foram

atingidos de forma satisfatória, ao mesmo tempo em que o projeto permanece aberto para

novas funcionalidades e refinamentos futuros, como a melhoria da interface, a inclusão de

relatórios mais avançados e a adaptação para dispositivos móveis.

60

7 SUGESTÕES PARA TRABALHOS FUTUROS

O sistema ainda possui potencial para aprimoramentos e funcionalidades adicionais

que podem ser exploradas em trabalhos futuros. Entre as principais possibilidades de evolução

estão:

●​ Aplicativo mobile: Desenvolver uma versão nativa para dispositivos móveis, com

foco em praticidade e portabilidade no uso diário por cuidadores;

●​ Internacionalização (i18n): Adicionar suporte a múltiplos idiomas, o que amplia a

acessibilidade do sistema a usuários de diferentes regiões;

●​ Integração com dispositivos IoT: Explorar a possibilidade de conectar o sistema a

dispositivos inteligentes, como dispensadores automáticos de medicamentos.

​

61

REFERÊNCIAS

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA (ANVISA). Boletim de
Farmacovigilância nº 8: Erros de Medicação. Brasília: ANVISA, 2019. Disponível em:
https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/monitoramento/farmacovigil
ancia/boletins-de-farmacovigilancia/boletim-de-farmacovigilancia-no-08.pdf. Acesso em: 22
jun. 2025.

ALMEIDA, G. Q.; SANTOS, G. B. N.; NOBLAT, A. C. B.; NOBLAT, L. A. C. B. Erros de
medicação em um centro de farmacovigilância de um Hospital Universitário. Journal of
Analysis and Pharmacovigilance, Salvador, v. 1, n. s2, p. 37–45, 2023. DOI:
10.22563/2525-7323.2022.v1.s2.p.37. Disponível em:
https://ojs.jaff.org.br/ojs/index.php/jaff/article/view/545. Acesso em: 22 jun. 2025.

AXIOS. Axios: promise-based HTTP client for the browser and Node.js. 2023. Disponível
em: https://axios-http.com/. Acesso em: 19 jun. 2025.

BANKS, Alex; PORCELLO, Eve. Learning React: functional web development with React
and Redux. 2. ed. Boston: O’Reilly Media, 2017. Disponível em:
https://www.oreilly.com/library/view/learning-react/9781491954614/. Acesso em: 02 jun.
2025.

BECKMAN, M. D.; DOGUCU, M.; BRAY, A. Implementing version control with Git and
GitHub as a learning objective in statistics and data science courses. arXiv preprint
arXiv:2001.01988, 2020. Disponível em: https://arxiv.org/abs/2001.01988. Acesso em: 19
jun. 2025.

BIEHL, Matthias. Webhooks – Events for RESTful APIs. API‑University Press, 2017.
Disponível em: https://books.google.com.br/books?id=5j64DwAAQBAJ. Acesso em: 20 jun.
2025.

BRASIL. Agência Nacional de Vigilância Sanitária. Erros de medicação. Boletim de
Farmacovigilância, n. 8, ano 2019. Brasília: Anvisa, 2019. Disponível em:
https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/monitoramento/farmacovigil
ancia/boletins-de-farmacovigilancia/boletim-de-farmacovigilancia-no-08.pdf. Acesso em: 01
jun. 2025.

BURK, Nikolas. Prisma 6: Better performance, more flexibility & type‑safe SQL. Prisma
Blog, 28 nov. 2024. Disponível em:
https://www.prisma.io/blog/prisma-6-better-performance-more-flexibility-and-type-safe-sql.
Acesso em: 19 jun. 2025.

CHACON, Scott; STRAUB, Ben. Pro Git. 2. ed. Berkeley: Apress, 2014. Disponível em:
https://git-scm.com/book/en/v2. Acesso em: 19 jun. 2025.

CORALOGIX. Monitoring with Prometheus: Use Cases, Metrics, and Alternatives. 2024.
Disponível em: https://coralogix.com/guides/prometheus-monitoring/. Acesso em: 20 jun.
2025.

62

DATA CAMP. Docker Compose Guide: Simplify Multi‑Container Development. DataCamp,
26 mai. 2025. Disponível em: https://www.datacamp.com/tutorial/docker-compose-guide.
Acesso em: 19 jun. 2025.

EBA. Framework SEO: Como eles afetam o desenvolvimento de sites e o SEO. Disponível
em: https://ebaconline.com.br/blog/framework-seo. Acesso em: 19 jun. 2025.

DOCKER. What is Docker? Docker Docs, 2025. Disponível em:
https://docs.docker.com/get-started/docker-overview/. Acesso em: 19 jun. 2025.

FLANAGAN, David. JavaScript: the definitive guide. 7. ed. Sebastopol: O’Reilly Media,
2020.
https://www.oreilly.com/library/view/javascript-the-definitive/9781491952016 Acesso em: 10
mai. 2025.

GE, Lixia; HENG, Bee Hoon; YAP, Chun Wei. Understanding reasons and determinants of
medication non-adherence in community-dwelling adults: a cross-sectional study comparing
young and older age groups. BMC Health Services Research, [S. l.], v. 23, n. 1, p. 905, 2023.
DOI: 10.1186/s12913-023-09904-8. Disponível em:
https://doi.org/10.1186/s12913-023-09904-8. Acesso em: 15 abr. 2025.

GITHUB. About CITATION files. GitHub Docs, 28 jul. 2021. Disponível em:
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/custo
mizing-your-repository/about-citation-files. Acesso em: 19 jun. 2025.

GITHUB. About version control and Git. GitHub Docs, 2025. Disponível em:
https://docs.github.com/en/get-started/using-git/about-git. Acesso em: 19 jun. 2025.

GITHUB. Kong/insomnia: The open‑source, cross‑platform API client for GraphQL, REST,
WebSockets, SSE and gRPC. GitHub, 2025. Disponível em:
https://github.com/Kong/insomnia. Acesso em: 19 jun. 2025.

GOMES, D. G. dos S. et al. Adesão de pacientes idosos polimedicados: como eles se
comportam frente à tomada de medicamentos? Revista Brasileira de Geriatria e Gerontologia,
[S. l.], v. 27, e230211, 2024. Disponível em:
https://www.scielo.br/j/rbgg/a/BDD4cghZgvwvwgGf9xY8QDc/. Acesso em: 11 jun. 2025.

GRAFANA LABS. Grafana: the open and composable observability platform. Grafana Labs,
2025. Disponível em: https://grafana.com/. Acesso em: 20 jun. 2025.

GUPTA, A.; LEE, J.; WILLIAMS, J. Database Systems for Advanced Applications:
DASFAA 2014 International Workshops. Lecture Notes in Computer Science, v. 8421‑8422.
Berlin; Heidelberg: Springer, 2014. Disponível em:
https://link.springer.com/book/10.1007/978-3-319-05810-8. Acesso em: 14 mai. 2025.

GUTTIER, M. C. R. et al. Dificuldades no uso de medicamentos por idosos acompanhados
em uma coorte do Sul do Brasil. Revista Brasileira de Epidemiologia, [S. l.], v. 26, e230020,

63

2023. DOI: 10.1590/1980-549720230020. Disponível em:
https://doi.org/10.1590/1980-549720230020. Acesso em: 10 mai. 2025.

HELP NET SECURITY. Grafana: open‑source data visualization platform. 20 maio 2024.
Disponível em:
https://www.helpnetsecurity.com/2024/05/20/grafana-open-source-data-visualization-platform
/. Acesso em: 20 jun. 2025.

EXPRESS. Express.js: Node.js web application framework. 2020. Disponível em:
https://expressjs.com/. Acesso em: 19 jun. 2025.

INSOMNIA. Introduction to Insomnia. Insomnia Docs, 2025. Disponível em:
https://docs.insomnia.rest/insomnia/get-started. Acesso em: 19 jun. 2025.

JONES, Michael B.; BRADLEY, John; SAKIMURA, Nat. JSON Web Token (JWT).
RFC 7519, IETF, mai. 2015. Disponível em: https://datatracker.ietf.org/doc/html/rfc7519.
Acesso em: 19 jun. 2025.

KINSMAN, Timothy; WESSEL, Mairieli; GEROSA, Marco A.; TREUDE, Christoph. How
do software developers use GitHub Actions to automate their workflows? In: *Proceedings of
the 18th IEEE/ACM International Conference on Mining Software Repositories*
(MSR 2021), virtual, 17–19 maio 2021. p. 420–431. IEEE/ACM, 2021. DOI:
10.1109/MSR52588.2021.00054. Disponível em:
https://doi.org/10.1109/MSR52588.2021.00054. Acesso em: 19 jun. 2025.

KONG. Announcing Insomnia 11 GA with vault integrations, multi‑tab support, and a new
Git sync experience. Blog Kong, 18 mar. 2025. Disponível em:
https://konghq.com/blog/product-releases/insomnia-11. Acesso em: 19 jun. 2025.

KONG. OpenAPI Design Tool – Kong Inc. Insomnia API Design. Kong Inc., 2025.
Disponível em: https://konghq.com/products/kong-insomnia/api-design. Acesso em: 19 jun.
2025.

GAUTERIO, D. P. et al. Uso de medicamentos por pessoas idosas na comunidade: proposta
de ação de enfermagem. Revista Brasileira de Enfermagem, [S. l.], v. 66, n. 5, p. 702–708,
2013. Disponível em: https://www.scielo.br/j/reben/a/TzScRWHYQQbHTtgyc5tCgvj/.
Acesso em: 13 mai. 2025.

MEDISAFE. Medisafe Medication Management. Disponível em: https://www.medisafe.com.
Acesso em: 27 abr. 2025.

MOHAMMED, Tihitena; MAHMUD, Sindew; GINTAMO, Binyam; MEKURIA, Zelalem
Negash; GIZAW, Zemichael. Medication administration errors and associated factors among
nurses in Addis Ababa federal hospitals, Ethiopia: a hospital‑based cross‑sectional study. BMJ
Open, [S. l.], v. 12, n. 12, p. e066531, 2022. DOI: 10.1136/bmjopen‑2022‑066531. Disponível
em: https://doi.org/10.1136/bmjopen‑2022‑066531. Acesso em: 28 mai. 2025.

64

MOMJIAN, Bruce. PostgreSQL: Introduction and Concepts. Boston: Addison-Wesley, 2001.
Disponível em: https://momjian.us/main/writings/pgsql/other/bookfigs.pdf. Acesso em: 22
jun. 2025.

ONTORIA, Christian Toral. Desarrollo de una aplicación móvil para la alerta de caducidad de
medicamentos. 2023. Trabajo de Fin de Grado (Graduação em Engenharia Informática) –
Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid,
Boadilla del Monte, 2023. Disponível em: https://oa.upm.es/75030/. Acesso em: 19 jun. 2025.

PIEROTTO, Quim. Supabase: a alternativa open‑source ao Firebase. Cientistas Digitais,
2025. Disponível em:
https://cientistasdigitais.com/desenvolvimento-web-e-apps/supabase-a-alternativa-open-sourc
e-ao-firebase/. Acesso em: 19 jun. 2025.

PILLBOXIE. Pillboxie App. Disponível em: https://pillboxie.com. Acesso em: 07 mar. 2025.

POSTGRESQL GLOBAL DEVELOPMENT GROUP. PostgreSQL: Row-Level Security.
Disponível em: https://www.postgresql.org/docs/current/ddl-rowsecurity.html. Acesso em: 19
jun. 2025.

PRISMA. Is Prisma ORM an ORM? Prisma Documentation, 2025. Disponível em:
https://www.prisma.io/docs/orm/overview/prisma-in-your-stack/is-prisma-an-orm. Acesso
em: 19 jun. 2025.

PRISMA. Should you use Prisma ORM? Prisma Documentation, 2025. Disponível em:
https://www.prisma.io/docs/orm/overview/introduction/should-you-use-prisma. Acesso em:
19 jun. 2025.

PROMETHEUS.IO. Visualizing metrics using Grafana. Tutorial oficial, 2025. Disponível em:
https://prometheus.io/docs/tutorials/visualizing_metrics_using_grafana/. Acesso em: 20 jun.
2025.

SENCHA. Web Application Framework – A Comprehensive Guide. Sencha, 16 jul. 2024.
Disponível em:
https://www.sencha.com/blog/a-comprehensive-guide-to-web-application-frameworks/.
Acesso em: 19 jun. 2025.

SOUNDCLOUD. Prometheus: Monitoring at SoundCloud. Blog SoundCloud, 26 jan. 2015.
Disponível em:
https://developers.soundcloud.com/blog/prometheus-monitoring-at-soundcloud. Acesso em:
20 jun. 2025.

STONEBRAKER, Michael; ROWE, Lawrence A. The design of POSTGRES. In:
Proceedings of the 1986 ACM SIGMOD International Conference on Management of Data,
New York, ACM, 1986. p. 340–355. Disponível em: https://doi.org/10.1145/16894.16888.
Acesso em: 07 mar. 2025.

65

STUTTARD, Dafydd; PINTO, Marcus. The Web Application Hacker’s Handbook: finding
and exploiting security flaws. 2. ed. Hoboken: Wiley, 2011. Disponível em:
https://archive.org/details/dafydd-stuttard-marcus-pinto-the-web-application-hackers-handboo
k-finding-and-ex. Acesso em: 01 abr. 2025.

SUPABASE. Supabase Documentation. 2025. Disponível em: https://supabase.com/docs.
Acesso em: 01 jun. 2025.

TORVALDS, Linus; HAMANO, Junio. Git: sistema de controle de versão distribuído. 2005.
Disponível em: https://en.wikipedia.org/wiki/Git. Acesso em: 19 jun. 2025.

VASILESCU, B.; YU, Y.; WANG, H.; DEVANBU, P.; FILKOV, V. Continuous integration in
a social coding world: empirical evidence from GitHub. In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015), p. 805–816, 2015.
DOI: 10.1145/2786805.2786850. Disponível em: https://doi.org/10.1145/2786805.2786850.
Acesso em: 19 jun. 2025.

VERCEL. Getting started with Vercel. Vercel Docs, 23 maio 2025. Disponível em:
https://vercel.com/docs/getting-started-with-vercel. Acesso em: 19 jun. 2025.

SUPABASE. The open-source Firebase alternative. Supabase, [S. d.]. Disponível em:
https://supabase.com. Acesso em: 19 jun. 2025.

ZESTY. What is Grafana? Monitoring and Visualization Platform Explained. 2024.
Disponível em: https://zesty.co/finops-glossary/grafana/. Acesso em: 20 jun. 2025.

66

ANEXO A — Link do Repositório no GitHub

O repositório com o código-fonte do sistema desenvolvido neste trabalho está disponível em:
https://github.com/Joaobneto1/Sistema_Medicamentos. Acesso em: 22 jun. 2025.

