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EXECUTIVE SUMMARY 

 

This project investigated the mobility challenges and safety concerns of elderly drivers in rural 

areas through a series of studies. Our findings highlight the critical need for advanced driver 

assistance to enhance mobility, safety, and access to essential resources for this vulnerable 

population. 

The project began by examining accessibility challenges faced by seniors in rural areas using data 

from the 2017 National Household Travel Survey (NHTS) and a proposed causal model. The 

analysis revealed that rural seniors have more needs to travel longer distances for healthcare and 

to assist others with transportation compared to their younger counterparts. However, their heavy 

reliance on automobiles, combined with age-related declines in perception, cognition, and motor 

execution, has reduced their mobility. Enhancing their ability to drive safely despite age-related 

challenges is crucial to ensuring rural seniors have adequate access to essential resources. 

The project further examined elderly drivers’ ability to drive safely. While they benefit from 

extensive driving experience and lower traffic congestion, age-related challenges, combined with 

generally higher speeds in rural areas, increase their vulnerability. Using a data fusion approach, 

the study assessed the impact of age and rural residency on fatal crash density and analyzed 

contributing factors, including fatality rate, injury rate, and overall crash density. The results 

confirm that vulnerability, as indicated by fatal crash density, increases with age among seniors, 

and the fatality rate for elderly drivers in rural areas is significantly higher than in urban areas. 

These findings highlight the urgent need for targeted safety interventions. Advanced driving 

assistance that helps prevent crashes and reduce fatality rates when collisions are unavoidable 

could make a significant impact. 

Since vision is the primary sensory modality for safe driving and elderly drivers experience 

declines in visual perception and cognition, the project advanced its study to explore vision-based 

assistance for both human drivers and automated driving systems at various levels of automation. 

Among the many functions of visual intelligence, situational awareness presents unique 

challenges. Driving scenes are complex and dynamic, characterized by multiple attributes, making 

scene identification a multi-label image classification problem. However, the distribution of 

driving scenes in the high-dimensional space of scene attributes is highly imbalanced, making it 

infeasible to create a sufficiently large multi-label scene dataset for directly training a desired 

classification model. To address this data challenge, the study proposed an approach to acquire 

and accumulate knowledge about scene identification by leveraging seven single-label image 

datasets. A learning framework of teacher-student networks was developed, enabling sequential 

and cyclic learning across these datasets through single-task learning. Numerical experiments 

confirmed the feasibility of this approach, demonstrating that the resulting multi-label 

classification model achieved accuracy comparable to seven dedicated single-label classification 

models. 

The project provides the data evidence to support the development of innovative visual intelligence 

technologies to assist elderly drivers in rural areas and help overcome their vision limitations. It 

also illustrates an exploration of computational methods to address data sparsity in rural areas. The 

lack of well-annotated big data in rural settings remains a challenge. Future research must focus 

on ensuring these technologies perform as effectively in rural areas as they do in urban 

environments.  
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1. INTRODUCTION 

 

This section provides the background information and context for the research project on Driving 

Assistance to Elderly Drivers in Rural Areas.  

 

1.1. Elderly Drivers in Rural Areas 

In the United States, rural residents heavily rely on automobiles for transportation. 96% of rural 

households have one or more vehicles. 94% of women aged 65 to 74 in rural areas drive, and this 

percentage is 79% for women aged 75 to 84, and 54% for women aged 85 or older (McGuckin and 

Fucci, 2018). The percentage of senior males in rural areas who drive is higher than that of females 

in the same age group. For example, 72% of males aged 85 or older in rural areas drive. According 

to a study, senior people continue driving because of lacking alternative means of transportation, 

and they start limiting their driving or stopping driving because of functional difficulties. On a 

short run, senior residents in rural areas still heavily rely on driving their personal vehicles. 

Assisting this group of drivers in rural areas is imperative to ensure their mobility and thus the 

quality of their lives. 

 

Vision provides at least 85% of information we need to make safe decisions when driving. 

However, a 60-year-old person requires 10 times as much light to drive as a 19-year-old. A 55-

year-old takes eight times longer to recover from glare than a 16-year-old. Senior drivers can take 

twice as long to distinguish the flash of brake lights as younger drivers. Besides the difficulty in 

seeing, stiff joints and weaken muscles, trouble hearing, slower reaction time and reflexes are other 

reasons that make it difficult for senior people to drive (Cicchino and McCartt, 2015; NHTSA, 

n.d.). Driver assistance technologies, especially from the aspect of visual perception and cognition, 

can help enhance the speed and accuracy of elderly drivers in response to risky traffic agents and 

dangerous scenarios. The desired technologies will enhance the safety and mobility for elderly 

drivers and other vehicle occupants in rural areas. 

 

1.2. Gaps and Project Objectives 

The long-term goal of this project is to create new driver assistant technologies for improving the 

mobility and safety of elderly drivers and their passengers in rural areas, a group of people who 

require specialized visual driving assistance in their daily driving activities. The needs for driving 

assistance among rural seniors are widely discussed, and commercialized driving assistance 

systems exist. However, research and development of modern assistive technologies dedicated to 

this unique group will benefit from a verification and deep understanding of the reduced mobility 

and safety among elderly drivers. Motivated by this desire, the project aims to accomplish the 

following objectives: 

1. Evaluate the reduced mobility of seniors in rural areas and determine its impact on their 

access to essential resources 

2. Analyze the vulnerability of elderly drivers in rural areas and determine the underlying 

causes 

3. Identify compelling challenges in developing visual assistance systems for elderly drivers 

and explore solution approaches  

We speculate that insights into the research problems can be gained from the National Household 

Travel Survey (NHTS) Dataset, the National Highway Traffic Safety Administration (NHTSA)’s 

safety databases, and driving video datasets.  
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1.3. Project Relevance to the REAT Themes and USDOT Strategic Plan 

As a REAT-funded study, this project contributes new knowledge and methods that support the 

technology development for improving the safety and mobility of vulnerable road users in rural 

areas. The project well supports USDOT priorities and RD&T strategic goals, especially on the 

dimensions of safety. The project will identify concerns with the mobility, accessibility, and safety 

of seniors in rural areas through comparisons with their counterparties in rural areas and at different 

ages. Given the knowledge gained from data analysis, the project put an emphasis on innovating 

methods to overcome challenges in developing visual perception and cognition models in 

supporting elderly drivers. The methodological development is transformative, leading to 

impactful use of datasets maintained by USDOT and public datasets contributed by the research 

community.  

 

1.4 Organization of the Report 

This report is organized to guide the readers through the project’s major activities. In the next 

section, the report presents the causal modeling and extracted data evidence for evaluating the 

mobility of seniors living in rural areas. Following that, Section 3 summarizes the data analysis 

for determining the vulnerability of elderly drivers. Upon the insights learnt from these two 

sections, Section 4 further presents a proposed method in addressing an impressing challenge in 

creating situational awareness in complex driving scenes. In the end, Section 5 summarizes major 

findings and outputs from this project. 
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2. MOBILITY OF SENIORS IN RURAL AREAS 

 

Seniors residing in rural areas often encounter limited accessibility to opportunities, resources, and 

services. This section introduces a study that assumes both aging and rural residency are causal 

factors for the restricted accessibility faced by rural seniors. The study uses data analysis and causal 

modeling to examine if mobility is a moderator of the causal relationship. Contents of this section 

has been published as a conference paper (Li et al. 2024). 

 

2.1 Background 

People have unequal accessibility to spatially distributed opportunities, resources, and services 

that they intend to reach. Seniors living in rural areas are a group of people with more restricted 

accessibility for multiple reasons. To promote accessibility for this group, it is important to identify 

the root causes for their reduced accessibility. Compared to younger adults (aged 16 to 64) in rural 

areas, rural seniors have inherently different needs to access spatially distributed destinations. For 

example, a local clinic may no longer meet their special need for medical services. Due to the 

lower population density in rural areas, the cost for rural seniors to access certain destinations is 

more expensive than their counterparts in urban areas. That is, aging and rural residency are part 

of the reasons for the reduced accessibility of rural seniors. Aging and rural residency may 

influence people’s accessibility through other causal pathways too. For example, some rural 

seniors cease driving once it becomes impractical. Their heavy reliance on automobiles and the 

increased restriction for them to choose this transportation mode also reduce rural seniors’ 

accessibility. That is, mobility is part of a causal pathway, and it is a mediator of the causal 

relationship to be studied in this paper. Ignoring this causal pathway may underestimate the impact 

of aging and rural residency to the accessibility of rural seniors. 

 

The study in Section 2 aims to determine how aging and rural residency negatively impact rural 

seniors’ accessibility via multiple causal pathways and verify if mobility is a mediator. The 2017 

National Household Travel Survey (NHTS 2017) dataset was used by this study, which is the only 

source of national data to study personal travel behavior. However, related work indicates that the 

selection of metrics for accessibility and mobility is affected by the study context and data 

availability. Therefore, discussions in this paper are driven by the following two questions. What 

metrics of accessibility and mobility can be derived from the NHTS dataset? What evidence can 

be found in this dataset to verify the assumed causal relationship? 

 

2.2 Related Work 

The literature relevant to this study includes research focused on developing indicators or measures 

for mobility and accessibility, determining their relationship with topological features, and 

examining the challenges faced by rural seniors. 

 

2.2.1 Accessibility and Mobility 

Accessibility is usually defined as the ability to reach the intended destinations (Litman 2003). 

According to Geurs and van Wee (2004), the four components contributing to accessibility 

encompass transportation, land use, individual factors, and time cost. Nonetheless, incorporating 

all these components as direct indicators of accessibility is challenging (Pyrialakou et al. 2016). 

Boisjoly and El-Geneidy (2017) reviewed various travel accessibility indicators such as the count 

of accesses to specific purposes within a defined time frame, which are influenced by factors like 
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land use, opportunity distribution, and mobility. They also introduced two location-based measures 

of accessibility, namely the gravity-based measure and the cumulative opportunity measure. These 

measures have reached a level of maturity, extensively discussed in numerous research papers (El-

Geneidy and Levinson 2006, Scott and Horner 2008, Casas 2007). 

 

Mobility is defined as the movement of people and goods (Litman 2003). This concept underscores 

the act of movement rather than a mere means to a destination. Mobility was assessed using travel 

surveys to quantify person miles, ton-miles, and travel speeds. Furthermore, traffic data were 

utilized to gauge the average speeds of both automobiles and transit vehicles (Litman 2003). 

Mobility cannot be measured by a definitive or singular metric (Pyrialakou et al. 2016). Therefore, 

multiple indicators were developed, including travel mode distribution, travel frequency, and 

vehicle ownership (Pucher and Renne 2005; Jansuwan et al. 2013). To assess transportation 

disadvantages related to mobility, Kamruzzaman and Hine (2011) developed a comprehensive 

indicator called “participant index” (PI). It combines various elements, including the number of 

destinations visited, travel distance, space, travel frequency, types of activities, and duration. The 

mobility of individuals who do not drive can be enhanced by improved public transit infrastructure, 

reduced time required to reach transit stations, and increased proximity to their intended 

destinations (Case 2011). 

 

Transportation network topological features play a significant role in determining the efficiency 

in low-volume roads, especially in rural area, from a micro perspective. Connectivity and node 

accessibility measures, which are integrated in the accessibility concept, are introduced to evaluate 

topological accessibility (Garrison 1960). Labi et al. (2019) presented three models of 

connectivity, accessibility, and mobility (CAM) relationship. The overall impact of CAM was 

considered in their proposed basic classification of measures. Sarlas et al. (2020) proposed 

betweenness-accessibility, a centrality measure allowing to quantify accessibility from a network-

based view. Thus, measures can be dedicated to spatial analysis, vulnerability analysis, and cost-

benefit analysis. 

 

2.2.2 Seniors in Rural Areas 

Martens (2015) introduced a framework for assessing accessibility offered by a transport-land use 

system and the potential mobility facilitated by the transport system. This study indicated that the 

improved accessibility is partially attributed to the enhanced mobility. Actually, mobility data were 

employed to assess accessibility (Mittal et al. 2023). However, the popularly used gravity-based 

measurements do not adequately account for the influence of mobility on accessibility. Both 

mobility and proximity play pivotal roles in enhancing accessibility, but they often exist in a trade-

off relationship (Grengs et al. 2010). In areas where the origin and the destination are close (high 

proximity), travel speeds typically tend to be slower (low mobility). Therefore, accessibility 

measures should consider the combined influence of location- and mobility-related factors. 

 

Rural seniors have varying challenges due to their demographic characteristics. For example, 

“young elderly” (aged 65-75) and the “old elderly” (aged 75+) have different travel patterns and 

expectations on accessibility (Alsnih and Hensher, 2003). When aiming to enhance the 

accessibility of seniors, it is imperative to consider their mental and physical needs. Accessibility 

varies significantly among different groups of travelers, such as individuals with mobility 

impairments attributed to aging and those reliant on public transit (Márquez et al. 2019). In the 
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United States, automobiles are the predominant travel mode in rural areas (Pucher and Renne 

2005), and seniors particularly rely on automobiles for travel (Kim 2011). Rural seniors’ mobility 

for daily travel needs is restricted when it comes to public transit and walking (Ravensbergen et 

al. 2021). Rural areas are typically less developed than urban areas from the view of accessibility 

to opportunities, resources, and services (Vitale Brovarone and Cotella 2020). 

 

2.3 The Method 

 

2.3.1 Hypotheses About the Causal Relationship 

This paper posits a causal relationship wherein the attributes of rural seniors are factors (i.e., 

independent variables) causing reduced accessibility (i.e., the dependent variable). While the 

interested relationship has multiple causal pathways, this paper examines two, as shown in Figure 

1. The first causal pathway goes directly from the group’s attributes to its accessibility. In the 

second pathway, the attributes impact accessibility via mobility, a mediator variable. Three 

hypotheses delineated in Figure 1 are underlying this causal relationship: 

 

 

 
 

Figure 1. The proposed causal model of accessibility for rural seniors 

 

2.3.2 The NHTS Dataset 

This study examined the hypothesized causal relationship in Figure 1 by extracting evidence from 

the 2017 National Household Travel Survey (NHTS 2017). This dataset contains a completed 

survey from 129,696 households and 923,572 person trips. We defined the scope of data analysis 

by concentrating on four primary travel modes (automobiles, bicycles, walking, and public transit), 

six key travel purposes (home, work, medical service, shopping, recreational activities, and 

transporting someone), and local travel with distance being within 75 miles. 

 

2.3.3 Attributes and Measures 

Attributes or measures are defined for examining the influences among variables in the causal 

model. Age and residency area are selected as the demographic attributes for characterizing 

travelers. We define adults 16~64 years old as Yadults and those aged 65 or older as senior. 

Comparing rural seniors to rural Yadults facilitates the measurement of aging-induced changes, 

while comparing them to urban seniors allows for the measurement of location-induced changes. 

This study chose travel distance and travel time to intended destinations as measures of 

accessibility. Because both are random variables, their 75th percentiles conditioned on a specific 

travel purpose are used as indicators of the ease to reach an intended destination. This study chose 

four indicators as the basis for evaluating mobility, including the distribution of trips by travel 

modes, travel frequency, travel speed, and time to access public transit stations. Notably, travel 

frequency, often expressed as the number of trips per person per day, is the principal indicator for 

measuring mobility in numerous prior studies (Pucher and Renne 2005, Szeto et al. 2017). 

Although factors like congestion and travel miles per person also hold significance for assessment 
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(Litman 2003), this study selected travel speed and time to access public transit considering the 

data coverage of NHTS. 

 

2.4 Analysis and Discussions 

 

2.4.1 The Direct Impact of Rural Residency on Accessibility 

Hypothesis H1 asserts that the increased travel distance for rural seniors to reach their intended 

destinations, in contrast to their urban counterparts, is a contributing factor to their reduced 

accessibility. To verify this hypothesis, this study compared rural seniors to urban seniors on their 

cumulative distribution functions (CDFs) of travel distance, 𝐹𝐷,𝑅𝑆𝑟(𝑥) and 𝐹𝐷,𝑈𝑆𝑟(𝑥), for each 

specific travel purpose. These two groups were also compared in terms of their travel time CDFs, 

𝐹𝑇,𝑅𝑆𝑟(𝑥) and 𝐹𝑇,𝑈𝑆𝑟(𝑥). Statistics of travel time and travel distance are further summarized in 

Table 1. 

 

Table 1. Statistics of travel distance and travel time by groups and travel purposes 

 

 
 

Within a specific travel distance, 𝐹𝐷,𝑅𝑆𝑟(𝑥) <  𝐹𝐷,𝑈𝑆𝑟(𝑥) for all the travel purposes of study. That 

is, rural seniors can access fewer intended destinations than their urban counterparts within the 

same travel distance. For example, within 15 miles rural seniors reach 52.8% of their destinations 

for medical services, whereas this percentage for urban seniors is 82.9%. Similarly, given a 

specified travel time limit, 𝐹𝑇,𝑅𝑆𝑟(𝑥) <  𝐹𝑇,𝑈𝑆𝑟(𝑥)  for the purposes of going home, accessing 

medical services, shopping, and transporting someone. That is, rural seniors experience drawbacks 

while accessing intended destinations than their counterparts in urban areas within the same travel 

time. For example, rural seniors reach 69.0% of their shopping destinations within 20 minutes, 

whereas urban seniors can reach 76.1%. Differences in their travel distance and travel time 

distributions are verified by the Kolmogorov-Smirnov (KS) test (p-value = 0). 

 

Hypothesis H1 also states that aging is a factor that alters the intended destinations of rural seniors, 

which in turn changes their accessibility. To determine the direct impact of aging on accessibility, 

rural seniors were compared to rural Yadults with respect to their travel distance and travel time. 

For work commute, home returning, and recreational activities, 𝐹𝐷,𝑅𝑆𝑟(𝑥) > 𝐹𝐷,𝑅𝑌𝑎 (𝑥) at any 

given travel distance, and 𝐹𝑇,𝑅𝑆𝑟(𝑥) > 𝐹𝑇,𝑅𝑌𝑎(𝑥) at any given travel duration. Those distinctions 

were verified by the KS test (p-value=0). For example, the observations pertaining to the purpose 

of work commute indicate that rural seniors intend to take job opportunities that are spatially and 

temporally closer to their homes than Yadults in rural areas. Rural seniors are supposed to travel 
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for a longer distance to access medical services, as compared to rural Yadults. For example, the 

75th percentile travel distance to medical services is 22.9 miles for rural seniors and 20.4 miles for 

rural Yadults, as shown in Table 1. The difference in their travel distance CDFs was further verified 

by the KS test (p-value = 0.22), suggesting that these two groups have a moderate level of 

difference in travel distance to medical services. We conjectured that rural seniors may require 

special medical services more likely at farther destinations (e.g., in urban areas with well-

developed medical services), but not for Yadults. Furthermore, in contrast with Yadults, rural 

seniors also have to travel for a longer time to access intended medical services. For example, 

Table 1 shows that 75% of rural seniors’ trips to medical services are within 45.0 minutes, but it 

is 32.0 minutes for rural Yadults. The results indicate a restraint on accessing medical services for 

seniors than Yadults in rural areas both from the travel time and travel distance aspects. 

 

For transporting someone, the discrepancy in travel distance CDFs between seniors and Yadults 

in rural areas is statistically significant (p-value of KS test is 0). Table 1 further shows the 75th 

percentile travel distance for rural seniors is 14.9 miles, whereas it is 11.3 miles for rural Yadults. 

Meanwhile, the difference in travel time between these two groups is also evident. The longer 

travel distance and travel time for rural seniors to transport someone to intended destinations is 

probably associated with the fact that rural seniors are more available than rural Yadults in 

providing transportation to others whose intended destinations are farther from their homes. 

 

In summary, rural seniors encounter restricted accessibility for accessing medical services and 

assisting others. Nevertheless, it is noteworthy that they do not face equivalent limitations in 

activities such as returning home, work commute, shopping, or recreational pursuits. This 

distinction can be attributed to the special needs and willingness of this group to access some 

services or resources. 

 

2.4.2 The Impact of Aging and Rural Residency to Mobility 

The hypothesis H2 asserts that the reduced mobility among rural seniors stems from more 

restricted choices of their preferred transportation modes. In verifying this hypothesis, the study 

first analyzed the distribution of trips by transportation modes and traveler groups, as shown in 

Table 2. The marginal distribution of trips by transportation modes shows that automobiles are the 

most preferred mode, fulfilling 89.01% of trips. The frequency distribution of trips by 

transportation modes varies among the three groups according to the chi-squared contingency test 

(p-value=0). Rural seniors heavily rely on automobiles, which are used for 93.9% of their trips 

(=10.45%/11.13%). Walking is the secondary transportation mode for rural seniors, which fulfills 

5.1% (=0.57%/11.13%) of their trips. Other modes count for an almost negligible amount. 

Although automobiles are still the primary transportation mode for urban seniors, the percentage 

of trips via automobiles is 84.3% (=38.32%/45.48%), 10.2% less compared to rural seniors. 

Besides automobiles, walking and transit are also their choices, which count for 11.3% 

(5.14%/45.48%) and 3.4% (=1.53%/45.48%) of their trips, respectively. What’s more, the 

frequency of the trips among the transportation modes is similar between rural Yadults and rural 

seniors except that the former has a slightly lower proportion (92.8%) of trips using automobiles 

and a sensibly higher proportion (0.7%) of trips by transit. The heavy reliance on automobiles 

exposes rural seniors to the risk of compromised mobility when driving becomes unsuitable for 

them and fewer people can provide transportation to them. 
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Table 2. Distribution of trips by transportation modes and groups 

 

 
 

The study further calculated the measures of mobility, including travel frequency, travel speed, 

and time to public transit, for the three groups of travelers, which are summarized in Table 3. From 

the table, one can find that rural seniors have an average of 2.98 trips per person per day, the lowest 

among the three groups. The low travel frequency of rural seniors indicates a lower level of 

willingness they possess for travel. The travel speed of rural seniors is higher than urban seniors, 

which is attributed to the fact rural seniors are usually farther from their intended destinations than 

their counterparts in urban areas (Pucher and Renne 2005), which necessitates high-speed travel. 

However, the travel speed of rural seniors is lower than rural Yadults, evident that aging negatively 

influences rural travelers’ mobility. The faster travel speed of seniors in rural areas than people in 

urban areas should not lead to the conclusion that mobility is higher in rural areas. Recognizing 

the constrained transportation choices and the restricted availability of public transit services for 

residents in rural areas is essential. This circumstance consequently amplifies the predominant 

reliance on automobiles in rural areas. Surprisingly, rural seniors require less time to reach transit 

stations, with an average of 7.29 minutes, in contrast to the other groups. It may seem contradictory 

to our initial hypothesis. However, rural seniors demonstrate a reduced preference for public transit 

(see Table 2). This shorter average time to the public transit pertains to only a small portion of 

trips. 

 

Table 3. Measures of travel mobility 

 

 
 

In summary, aging and rural residency have been factors contributing to the reduced mobility 

among rural seniors. Aging is the main reason for the decreased travel frequency, and the lower 

density of opportunities, resources, and services in rural areas leads to their reliance on 

automobiles. Although automobiles meet their need for fast-speed travel, the heavy reliance on 

this mode without alternatives will cause a mobility crisis for this group if this preferred travel 

mode becomes infeasible. 

 

2.4.3 The Impact of Mobility on Accessibility 

Hypothesis 3 assumes that a higher level of travel mobility effectively increases accessibility, 

which is well discussed in the literature. This study attempted to verify this relationship using the 

2017 NHTS dataset. Table 4 presents the 75th percentiles of travel distances, travel times, and 

travel speeds for the four travel modes associated with different travel purposes. Statistics in the 
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table indicate long-distance trips rely on automobiles and public transit and, walking and riding 

bicycles are chosen for trips within short distances. The variation of trip distance CDF across those 

travel modes is further verified by the KS test (p-value=0). 

 

Table 4. Statistics of travel distance, travel time, and travel speed by transportation modes and 

travel purposes 

 

 
 

While automobiles and transit are both options for long-distance trips, the former offers a higher 

level of mobility than the latter. The 75th percentile speed of automobiles is at least twice of the 

transit for all purposes except for transporting someone, and the 75th percentile travel time of 

automobiles is 41%∼64% less than the transit. Automobiles move travelers to farther destinations 

of work, medical services, and recreational facilities than the public transit does, which is probably 

attributed to the higher level of mobility with automobiles. Notably, the 75th percentile travel 

distance to medical services via automobiles is 13.5, but it is 7.8 for the transit. Yet, for the 

purposes of shopping and transporting someone, the transit moves people to their slightly farther 

(0.5∼0.6mi) destinations than automobiles. Table 2 shows that trips via automobiles are 89.01% 

whereas those via public transit are 1.9%. The distinctly different proportions of trips by those two 

transportation modes are probably a result of the public transit’s lower level of mobility than 

automobiles. 

 

While walking and riding bicycles are both short-distance transportation modes, the latter offers a 

higher level of mobility than the former. The 75th percentile speed of riding bicycles is 

88%∼370% faster than walking. Consequently, bicycles move travelers to destinations 

100%∼433% farther than walking. However, Table 2 shows only 0.39% of trips use bicycles, 

significantly lower than walking (7.95%). 

 

To sum up, automobiles offer the highest level of mobility among the four transportation modes, 

making it the dominating mode of transportation in the United States for all travel purposes. 

Transit, as an alternative to automobiles for long-term travel, offers a lower level of mobility and 

thus transports travelers to closer destinations for certain travel purposes like accessing medical 

services. Riding bicycles provides a higher level of mobility than walking for short-distance 

travels, bringing travelers to farther destinations at a faster speed than walking can reach. However, 

the proportion of trips by riding bicycles is significantly lower than walking, indicating certain 

constraints such as biking infrastructure prevent travelers from switching from walking to riding 

bicycles. The observations underscore the fact that the higher level of service road system and the 

mass rapid transit system can improve mobility and, in turn, accessibility. 



18 

 

 

2.4.4 The Impact of Aging and Rural Residency to Accessibility via Mobility 

The hypotheses H2 and H3 together indicate that mobility is a mediator on a causal pathway 

illustrated in Figure 1. That is, aging and rural residency of travelers raise mobility issues, which 

in turn limit rural seniors’ accessibility to certain desired opportunities, resources, and services. 

This study further verified the mediator role of mobility by examining the travel distance and travel 

time of the three traveler groups under selected combinations of travel purposes and transportation 

modes. Table 5 summarizes the 75th percentiles of travel distance and travel time. 

 

Table 5. Statistics of travel distance and travel time, by combinations of transportation modes 

and travel purposes among rural seniors (RSr), rural Yadults (RYa), and urban seniors (USr). 

 

 
 

This study found that rural seniors need to access a larger percentage of medical services that are 

at farther distances and require a longer time to reach than rural Yadults and urban seniors. Table 

5 shows that their 75th percentile travel distance to medical services using automobiles is 22.2 

miles and the 75th percentile travel time is 45 minutes. These statistics are 20.6 miles and 34 

minutes for rural Yadults and 11.9 miles and 30 minutes for urban seniors. The comparison 

indicates that automobiles, as a dominating transportation mode, offer a lower level of mobility 

for rural seniors in accessing medical services than for other groups. Rural seniors also undertake 

longer travel distance (𝐷0.75 = 22.2) and time (𝑇0.75 = 55.0) to access medical services if taking 

transit, due to its limited mobility for this group. Simultaneously, walking is also a transportation 

mode with a reduced level of mobility for rural seniors than their counterparts. The 75th percentile 

of travel distance is 0.4 miles and the 75th percentile of travel time is 15 minutes for rural seniors, 

whereas those statistics are 5.1 miles and 25 minutes for rural Yadults; and 0.7 miles and 20 

minutes for urban seniors. Improving the mobility level of automobiles and transit for rural seniors 

would provide them with more accessibility to medical services as compared to others. 

 

The final focus of understanding mobility as a mediator centers on the purpose of transporting 

others. As found from the study of H1, rural seniors have a higher percentage of trips that spend 

longer time and travel for a longer distance to reach the destinations for assisting someone than 

rural Yadults. This difference is particularly distinct in using the transit. Table 5 shows the 75th 

percentile of travel distance is 19.0 miles and the 75th percentile of travel time is 50.0 minutes for 

rural seniors, and those statistics are 4.3 miles and 15 minutes for rural Yadults. Rural Yadults 

demonstrate different behavior than seniors in choosing transportation modes for transporting 

others, indicating the mobility levels of automobiles and transit are different among these groups. 

Meanwhile, the significant distinction between rural seniors and urban seniors is from the 

utilization of automobiles. As shown in Table 5, the 75th percentile of travel distance is 14.9 miles, 

and the 75th percentile of travel time is 30.0 minutes for rural seniors, but 8.1 miles and 22.0 
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minutes for urban seniors. This varying accessibility is attributed to fewer travel mode alternatives 

to automobiles. Specifically, poor public transit facilities and low-density distribution of 

opportunities, resources, and services in rural areas lead to the heavy reliance on automobiles. 

 

In summary, mobility is a mediator through which aging can lower rural seniors’ accessibility. 

Automobiles, as the dominating transportation mode for long-distance travel, offer a lower level 

of mobility to rural seniors than rural Yadults, especially in accessing medical services and 

transporting others. Walking is the major mode for short-distance movement, but it prevents rural 

seniors from accessing destinations that are a little farther and accessible by rural Yadults or urban 

seniors. Rural seniors have limited choices of transportation modes, for both long-distance and 

short-distance travel, making it more difficult to reach intended farther destinations. 

 

2.5 Summary of the Mobility Study 

This study presented a causal model delineating both the direct and indirect effects of aging and 

rural residency on travelers’ accessibility to opportunities, resources, and services. In this model, 

mobility serves as a mediator through which the demographic attributes of rural seniors indirectly 

influence their accessibility. Descriptive statistics of the trip data in 2017 National Household 

Travel Survey support our hypotheses, confirming the presence of the proposed causal 

relationships.  

 

An immediate step following this study is to estimate the coefficients that quantify the strengths 

and directions of the causal relationships. Given such a model, the effectiveness of improving 

accessibility for rural seniors by enhancing their mobility can be estimated. Additionally, the 

causal model can be further improved by integrating additional causal relationships. Beyond aging 

and rural residency, various additional factors, such as land use, traffic congestion, opportunity 

density, and infrastructure density, impact travel mobility and accessibility. It is worth noting that 

using distance to evaluate accessibility has limitations due to the effect of distance decay, which 

represents the level of reluctance to travel long distances among regions. Future studies could 

explore modified indicators for accessibility and refine the construction of a comprehensive causal 

model to address these considerations. 
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3 THE VULNERABILITY OF ELDERLY DRIVERS IN RURAL AREAS 

 

The project continued the research by analyzing the vulnerability of elderly drivers in rural areas. 

The objective is to verify that elderly drivers in rural areas are more vulnerable than their younger 

age counterpart and the urban counterpart, thus requiring specific driver assistance. This section 

first introduces the method to measure and compare the vulnerability of drivers in different age 

groups and areas of residency. Then, it summarizes major findings from the comparative study. 

After that, gaps between elderly drivers’ needs and existing driver assistance technologies are 

discussed.   

 

3.1 The Approach to Assess Driver Vulnerability 

 

3.1.1 Factorization of Contributors to Fatal Crash Density 

This study speculates that both aging and rural residency are indicators of drivers’ vulnerability. 

Therefore, it calculates the fatal crash density using the count of drivers involved in fatal crashes 

per 100 million vehicle-miles traveled (VMT):  

 

𝐹𝑎𝑡𝑎𝑙 𝐶𝑟𝑎𝑠ℎ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁𝑜.  𝑑𝑟𝑖𝑣𝑒𝑟𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑤𝑖𝑡ℎ 𝑓𝑎𝑡𝑎𝑙 𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠

100 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑉𝑀𝑇
.                 (1) 

 

This density measurement is an indicator of driver vulnerability. 

 

Adopting the approach proposed in Zwerling et al. (2005), this study further define the following 

measurements: 

 

𝐹𝑎𝑡𝑎𝑙 𝑅𝑎𝑡𝑒 =  
 𝑁𝑜.  𝑑𝑟𝑖𝑣𝑒𝑟𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑤𝑖𝑡ℎ 𝑓𝑎𝑡𝑎𝑙 𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠

𝑁𝑜.  𝑑𝑟𝑖𝑣𝑒𝑟𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠 
                                    (2) 

 

𝐼𝑛𝑗𝑢𝑟𝑦 𝑅𝑎𝑡𝑒 =
 𝑁𝑜.  𝑑𝑟𝑖𝑣𝑒𝑟𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠 

𝑁𝑜.  𝑑𝑟𝑖𝑣𝑒𝑟𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝑐𝑟𝑎𝑠ℎ𝑒𝑠
                                              (3) 

 

𝐶𝑟𝑎𝑠ℎ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
 𝑁𝑜.  𝑑𝑟𝑖𝑣𝑒𝑟𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝑐𝑟𝑎𝑠ℎ𝑒𝑠

100 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑉𝑀𝑇
                                                                     (4) 

 

Given these defined measurements, the fatal crash density can be decomposed into a product of three 

contributing factors: 

 

𝐹𝑎𝑡𝑎𝑙 𝐶𝑟𝑎𝑠ℎ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝐴) = 𝐹𝑎𝑡𝑎𝑙 𝑅𝑎𝑡𝑒 (𝐵) × 𝐼𝑛𝑗𝑢𝑟𝑦 𝑅𝑎𝑡𝑒 (𝐶) ×  𝐶𝑟𝑎𝑠ℎ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝐷)   (5) 

 

With the decomposition above, the study can measure the differences between elderly drivers and 

their younger age and urban residency counterparts from different aspects, helping identify various 

opportunities for lowering the fatal crash density among elderly drivers in rural areas.    

 

3.1.2 Data Fusion 

To calculate the four measurements in Eqs. (1-4), a single data source is not sufficient. As Figure 

2 illustrates, the vulnerability study fuses information from three datasets below: 
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• Fatality Analysis Reporting Systems (FARS): provides information about fatal crashes, as 

well as drivers involved in these crashes  

• Crash Report Sampling System (CRSS): provides information about crashes with various 

levels of severity, as well as drivers involved in the crashes 

• National Household Travel Survey (NHTS): provides VMT 

 

 

 
Figure 2. Data sources for measuring fatal crash density and its contributing factors 

 

3.1.3 Measures by Driver Segments 

To determine if fatal crash rate and the three contributing factors differ by drivers’ ages and areas 

of residency, the study split drivers into 18 segments that each represents one of the nine age 

groups and at either rural or urban area.  

(1) 0~15 years old 

(2) 16~24 years old 

(3) 25~34 years old 

(4) 35~44 years old 

(5) 45~54 years old 

(6) 55~64 years old 

(7) 65~74 years old 

(8) 75~84 years old 

(9) 85+ years old 

 

For each driver segment, four quantities need to be measured, as Eqs. (1-5) indicate: 

• No. of drivers involved in crashes with fatal injuries 

• No. of drivers involved in crashes with injuries 

• No. of drivers involved in crashes 

• 100 million VMT for each age group in rural and urban areas, respectively 

Fatal crash density (A) and the 
contributing factors (B, C, D)

Crash 
Report 

Sampling 
System 
(CRSS)

Fatality 
Analysis 

Reporting 
Systems 
(FARS)

National 
Household 

Travel 
Survey 
(NHTS)
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Given these four measurements, the study calculates fatal crash density, fatal rate, injury rate, and 

crash density for every driver group, as defined in Eqs. (1) and (3~5).  

 

3.1.4 Biases of the Proposed Approach 

It should be noted that the proposed approach has two biases: 

• Both FARS and CRSS provide the information for calculating “No. drivers involved in 

crashes with fatal injuries”. Measures respectively using these two datasets do not perfectly 

match but have a slight discrepancy. The vulnerability study chose to use the FARS-based 

measures. 

• The variable “Urban/Rural” in NHTS is about drivers’ residency area, whereas in FARS 

and CRSS it is about the location of crash. The meaning of this variable is not exchangeable 

across the data sources, and the bias must be noted. However, trips in one’s residency area 

are the majority of all the trips. This study simply treats the location of crash as the 

residency area of drivers involved in the crash.  

 

3.2 Results and Discussion 

The vulnerability study used the data of year 2017 to obtain the measurements. Figure 3 

summarizes the result from the data analysis. Major findings are discussed below: 

 

 
 

Figure 3. Fatal crash density and the contributing factors by age groups and residency areas 

 

• The fatal crash density quickly increases with age among drivers who are 65 or older. This 

rate of increase is faster for elderly drivers in rural areas than urban areas.  
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• The difference of injury rate between drivers in rural and urban areas are almost negligible, 

except for those who are 85 or older. Specifically, the injury rate noticeably increases with 

age among drivers who are 85 or older living in rural areas.  

• Crash density for elderly drivers (55~84 years old) in rural areas is lower than those in 

urban area. But this relationship is reversed for drivers who are 85 or older.  

• Generally speaking, the fatal rate increases with age, and the rate in rural areas are 

significantly higher than in urban areas for any age group.     

 

Observations from Figure 3 suggests opportunities for assisting elderly drivers in rural areas: 

• The need for assisting elderly drivers is evident by the facts that fatal crash rate, fatal rate, 

injury rate, and crash density are increasing as drivers become older. 

• Elderly drivers in rural areas are vulnerable, manifested by the significantly higher fatal 

rate among elderly drivers in rural areas than their urban counterpart. The best opportunity 

to lower the fatal crash density among elderly driver in rural area is to lower their fatal rate. 

Lowering the injury rate for elderly drivers of 85+ and living in rural areas is also critical.  

 

3.3 Causality and Needs Analysis  

Various studies have reported the vulnerability of older drivers on rural roads. Cicchino and 

McCartt (2015) analyzed the NHTSA’s National Motor Vehicle Crash Causation Survey 

(NMVCCS) dataset and found that driver error is the critical reason for 97% of crashes involving 

elderly drivers. According to the Human Factors Analysis and Classification System (HFACS) 

originally developed at the Federal Aviation Administration (Wiegmann and Shappell, 2017), 

human errors include perceptual errors, decision errors, and skill or performance errors. The 

NMVCCS survey data shows that inadequate surveillance counts for 33% of errors among elderly 

drivers, 11% higher than mid-aged drivers. Vision provides 85%~95% of the information 

necessary for making safe decision in driving.  Steplin et al. (1999) stated that drivers who are 65 

years old and older experience a variety of limitations on their perception, decision-making and 

execution. The limitations of visual perception are evident by deteriorated visual acuity, field of 

view, night vision, depth perception, the ability to change focus, and the ability to adjust to varying 

illumination. Older drivers also experience slower visual cognition, and they have longer reaction 

time to stimuli. Their physical vulnerability is another important reason for the increased severity 

of injuries. These indicate the need for assistance in visual perception and cognition.  

 

Abrams et al. (2022) analyzed rural road fatal crashes using FARS data. The study shows that 

84.5% of crash fatalities in rural roads are at non-intersection segments, whereas 68.1% in urban 

roads. 61% of rural road fatalities happened on less challenging terrains like straight sections of 

roadway, including two-lane, narrow county roads, and multi-lane interstate highways. Roadway 

departure and head-on collisions are the most frequent fatal crash types on the rural roads, 

accounting for 46.4% and 16.5% of total fatal crashes on rural roads. Moreover, 57.6% of roadway 

departure and 62.9% of head-on collisions that caused fatal crashes are on rural roads. Fatal crashes 

involving high speeds have also become a concern for rural roads. The statistics indicate the 

drivers’ awareness of the land use, road type and terrain, and their attention to high frequent fatal 

crashes on particular locations, would help reduce the chance of crashes and lower the severity if 

a crash cannot be avoided.  

 

3.4 Driver Assistance Technologies 
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Assisting elderly drivers in visual perception and cognition on rural roads seems critical. The study 

reviewed the literature on driver assistance technologies to determine if they have met the need of 

this vulnerable group. Caird (2014) summarizes in-vehicle intelligent transportation systems (ITS) 

from the view of elderly drivers. Various advanced technologies have been developed to assist 

drivers in navigation, forward collision avoidance, lane keeping, automated parking, enhanced 

night vision, and many others. While these technologies seem beneficial to elderly drivers, little is 

developed to consider their special needs. The technology acceptance level of elderly drivers in 

rural areas, as well as their abilities to interact with assistive technologies are different than their 

younger counterpart, and it could be different than their urban counterpart too. A recent study 

reviewed advanced driver assistance systems (ADASs) that could be helpful for old drivers in 

perception, planning, and execution (AAA 2021). This report also indicates ADAS can be further 

customized to meet various needs of elderly drivers.  

 

3.5 Concluding Notes 

For elderly drivers who are no longer suitable for driving, automated driving vehicles is a potential 

solution for maintaining their mobility and safety and reaching out to desired destinations. For 

those who prefer to drive but with decrements of visual perception, cognition, and execution, 

ADAS can be customized to assist individuals per their needs. The ultimate goal is to help maintain 

their independence of life as much as possible by ensuring their safety and mobility in 

transportation.  
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4 DRIVING SCENE IDENTIFICATION FOR SITUATIONAL AWARENESS 

 

Our early study based on the FARS dataset and using data mining techniques (Li et al. 2021) 

indicated that crash risk varies by different driving scene attributes including the driving 

environment, road infrastructure, location, and others. That study stated that real-time crash risk 

assessment powered by NHTSA’s crash datasets is possible if the attributes characterizing driving 

scenes can be recognized in real time. Moreover, linking the measure of crash risk to those scene 

attributes makes the risk assessment transparent. This section summarizes the project’s exploration 

of the visual assistance method for enhancing the situational awareness. Contents of this section 

was submitted to TRB 2025 Annual Meeting for presentation.  

 

4.1 Background 

Recognition of driving scenes from videos and images is a crucial function for automated driving 

systems (ADS) to learn the interaction between human behaviors and traffic scenarios 

(Ramanishka et al. 2018). The rapid advancement of autonomous vehicle technology and ADAS 

necessitates reliable methods for driving scene identification. As these systems become 

increasingly integrated into modern vehicles, the ability to accurately perceive and interpret 

complex driving environments is critical to ensuring safety, efficiency, and overall user 

satisfaction. 

 

Traditional Convolutional Neural Networks (CNN) and novel Transformer models have 

revolutionized the field of computer vision by demonstrating exceptional performance in visual 

tasks such as image classification, object detection, and semantic segmentation for driving scene 

understanding. Driving scene identification provides the information and instructions for the 

decision-making of autonomous vehicles or ADAS when encountering complicated situations 

(Muhammad et al. 2022). For example, diverse illumination and weather conditions critically 

affect the performance of object detection, drivable area segmentation, and lane marking 

detection for driving scene understanding. Moreover, strategies for ADS such as lane changing, 

accelerating, and braking need an understanding of specific driving scenarios, such as intersections, 

road functions, weather-related road conditions, work zones, and so on. In general, effectively and 

accurately driving scene identification is crucial for ADS and ADAS. This capability helps in 

making correct decisions, thereby preventing driving accidents (Gupta et al. 2021).  

 

Driving scenes are usually complex, can be classified from multiple dimensions. Therefore, scene 

identification is a problem of multi-label driving scene classification that characterizes each input data 

instance using multiple scene attributes (Zhang and Yang 2017). There are two conventional 

approaches to the multi-label classification. One approach is to train a set of single-task models 

that each handles the recognition of one attribute. This approach is simple because training 

individual single-task models for scene classification is relatively straightforward, and handing 

the issue of data distribution imbalance along one dimension is less challenging. However, the 

computational cost increases linearly with the number of attributes. The other approach is to 

train a multitask model where each of the scene attributes is recognized by one dedicated 

downstream task and all the tasks share the deep feature extractor. Sharing the deep feature 

extractor can significantly reduce the computational cost compared to the single-task approach 

in inferences. Directly training such a multitask model requires multi-labeled training data. 

Unfortunately, in a high-dimensional attribute space, data distribution is highly unbalanced. 
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(Ding et al. 2020, Zhu et al. 2022). This deficiency of training data has raised an obstacle for 

following a conventional approach to train a multi-task model.  

 

4.2 Study Contributions 

To address the limitations mentioned above, this study is motivated to explore a novel approach 

to creating a multitask model for the multi-label driving scene classification by leveraging 

single-task learning. Contributions of this study are twofold:   

• A Driving Scene Identification dataset is created, which comprises seven subsets that each 

provides labels of one specific scene attribute 

• The Knowledge Acquisition and Accruing Network framework (KA&AN) is proposed to 

acquire and accumulate knowledge from single-task learning, addressing the data 

challenge facing the multi-task learning approach to multi-label scene classification. 

 

The remainder of the paper is organized as follows. Section 4.3 will describe recent studies relevant 

to this work. Section 4.4 will detail the components of the proposed dataset. The KA&AN 

framework will be presented in Section 4.5. Section 4.6 will further present the experimental setup 

and the final classification results. In the end, Section 4.7 will summarize the findings and suggest 

future research directions. 

 

4.3 Related Work 

Recent related work of this study is concentrating on the public driving scene datasets, driving 

scene classification from a computer vision perspective, and knowledge distillation for knowledge 

accumulation and rehearsing. 

 

4.3.1 Public Driving Scene Datasets 

BDD100K (Yu et al. 2020) is a large-scale driving video dataset provided by the Berkeley 

DeepDrive (BDD) research group. The image tagging of driving scene attributes contains 6 

weather conditions, 6 scene types, and 3 distinct time of the day. For the attribute of scene types, 

“tunnel”, “residential”, “parking lot”, “city street”, “gas station”, and “highway” are included. 

Honda HSD (Narayanan et al. 2019) contains 80 hours of diverse, high-resolution driving video 

data clips collected in the San Francisco Bay Area. Unlike BDD100K, the HSD dataset provides 

identification of intersection type, overhead structures, and railroads, enhancing the diversity of 

driving scene categories. ROADWork Data (Admin et al. 2024) is a large-scale public dataset 

focused on the identification of workzones in 18 U.S. cities. Additionally, it includes fine-grained 

instance segmentation and semantic segmentation. Other open-source autonomous driving 

datasets, including Cityspaces Dataset (Cordts et al. 2016), KITTI Dataset (Geiger et al. 2013), 

and nuScense Dataset (Caesar et al. 2019), are annotated for objective detection, semantic 

segmentation, and instance segmentation tasks. Through the comparison of these datasets, it is 

evident that the driving scene identification lacks diversity of image-level annotations in those 

public datasets. 

 

4.3.2 Driving Scene Classification from Computer Vision Perspective 

Most driving scene identification tasks use CNN-based methods. Due to the lack of 

comprehensively-annotated public driving scene datasets, these tasks typically learn from single-

label datasets and limited multi-label ones.  
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Wu et al. (2021) proposed a deep multi-classifier fusion method base on CNN to recognize 20 

classes on an in-house, single-label dataset. Prykhodchenko and Skruch (2022) utilized deep CNN 

for classifying street-level driving scenes, including urban, rural, and highway. As for multi-task 

classification, Ni et al. (2022) designed a scene classification deep learning model for identifying 

the scene using five classes: crosswalk, gas station, parking lot, highway, and street. The 

classification performance is improved due to several designs of the network. It extracts local 

features using a fast region-based convolutional neural network (RCNN) with a residual attention 

block. The network also learns global features using an inception module. Then, both features are 

fused for scene classification. The study also considers diversity, such as different weather 

conditions, when collecting data for each class.  

 

A classifier for multi-label road scene classification on the BDD dataset was presented by Duong 

et al. (2020). Three attributes for scene classification are considered: location, weather, and 

daytime. The approach in that study enhances the main multi-label classifier with single-label 

classifiers using a fusing and stacking strategy. Chen et al. (2019) proposed a multi-label neural 

network for road scene recognition, which incorporates both single- and multi-label classification 

tasks into a multi-level cost function for training a classifier with imbalanced categories. 

Additionally, they utilized a deep data integration strategy to improve classification ability. Saffari 

et al. (2023) identified driving scenes on the HSD dataset using a novel Sparse Adversarial Domain 

Adaptation (SADA) model to transfer knowledge from the clear weather condition to others such 

as cloudy, rainy, and snowy conditions.  

 

Current studies have not thoroughly addressed the multi-label driving scene classification problem, 

mainly due to the lack of open-source large datasets with a comprehensive annotation of road scene 

attributes and the difficulty in finding effective ways to train networks that can learn from 

unbalanced data distribution in a high dimensional space of driving scene attributes.  

 

4.3.3 Knowledge Distillation 

Knowledge distillation (KD) typically uses a teacher-student model to effectively transfer 

knowledge from a deep and large model (teacher) to a smaller model (student). Essentially, it is 

the process of knowledge accumulation and transfer. 

 

The mainstream knowledge distillation methods include response-based KD, feature-based KD, 

and relation-based KD (Gou et al. 2021). Ma et al. (2023) introduced an innovative knowledge 

accruing and reusing framework using feature-based knowledge distillation in the medical imaging 

area. The constructed foundation model addresses the heterogeneous expert annotations in various 

datasets. To mitigate the forgetting and accrue knowledge, Van de Ven et al. (2020) proposed a 

brain-inspired method of replay in artificial neural network. Meanwhile, the regulation of hidden 

layers using feature-based knowledge distillation considers the depth of the teacher model, 

achieving a higher performance compared to methods that focus solely on the last output layer 

(Romero et al. 2014). 

 

4.4 The Dataset 

Public driving scene datasets often lack diversity and sufficient representation of corner cases from 

the perspectives of multi-variate scene identification. To address this, the project develops a new 

dataset called Driving Scene Identification (DSI) dataset, featuring 7 driving scene attributes and 
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24 labels. The dataset combines images from public sources like BDD100k (Yu et al. 2020), HSD 

(Narayanan et al. 2019), and ROADWork Data (Admin et al. 2024), along with YouTube footage. 

Statistics of the dataset are summarized in Table 1 

 

Table 6. Data distribution 

 

 
 

The identification of “weather” conditions is critical for ADAS and ADS. Extremely adverse 

weather conditions risk driving safety and the performance of visual tasks; therefore, the 

identification of weather conditions is indispensable. Our dataset includes 4,698 weather images 

collected from the BDD100k dataset, encompassing clear, overcast, foggy, rainy, and snowy 

conditions. Due to the scarcity of foggy scenes, synthetic images were generated to address the 

issue of unbalanced data in the weather category.  

 

The dataset for classifying “time of day” utilizes the weather dataset because they are both 
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attributes of driving environment. However, the dataset for classifying “time of day” is a subset 

that contains 2,978 images from the weather dataset. “Time of day” has three classes – daytime, 

night and dawn/dusk - less than the number of classes for “weather”. Therefore, the size of the 

dataset for classifying “time of day” is reduced to maintain a relatively balanced sample size per 

class. The classification for “time of day” involves the extraction of abstract features related to 

the brightness of images. Images captured during night and dawn/dusk exhibit increased noise and 

lower contrast, resulting in color distortion. Accurately identifying the time of day potentially 

contribute to reducing biases in image data analysis. 

 

The dataset for classifying “weather-related road condition” contains 3,693 images, collected from a 

combination of YouTube and BDD100k. Results from this task help adapt the vehicle control and risk 

perception threshold to adverse road conditions, such as web and snowy surface. 

 

Identification of road function supports route planning and adaptive driving behaviors under 

different speed limits and complexities of driving scenarios. Notably, there is no systematically 

annotated public dataset available for the US road functional system. Using the query term “road 

function” to collect videos from YouTube, frames were sampled by skipping 5 frames to generate 

the road function dataset. This dataset consists of 5,740 images across 4 classes: arterial, 

collector, local, and interstate. The local road class includes driving scenes from both urban and 

rural roads.  

 

Intersections are locations with more conflict points than non-intersection road segments. In urban 

areas, intersections have various traffic participants and are often equipped with traffic signals or 

signs. Identifying the intersection type provides the prior knowledge to anticipate potential conflict 

points and make informed decisions such as yielding, stopping, or merging in complex 

environments. In rural areas, more fatal crashes occurred at non-intersection road segments. The 

dataset for identifying intersection types is composed of 2,680 images, categorized into four 

classes: non-intersection, 3-way, 4-way, and roundabout. Roundabout images are sampled from 

YouTube videos, and others are sampled from HSD and BDD100k datasets. For example, images 

of 3-way and 4-way intersections were searched using the query “Entering” from the HSD dataset 

because this stage provides a better view of intersections than the stage of “approaching” or 

“leaving” intersections.  

 

Sundharam et al. (2023) developed a dual CNN network to detect workzone scenarios and segment 

elements that evidence the existence of workzones. Obstacles, such as construction equipment, 

temporary barriers, and road workers, in the workzone may cause driving safety issues to passing 

vehicles. Indeed, workzones may require lane closures and detours. By identifying workzones on 

the road, autonomous vehicles can drive cautiously, such as adjusting the driving lane to avoid 

crashes there. The training and validation datasets for identifying workzones is mainly sampled 

from the BDD100k and the HSD dataset datasets, which include 2,382 images. The test dataset 

consisting of 353 images is sampled from the ROADWork dataset. Images without a workzone were 

randomly selected from other datasets. 

 

The DSI dataset encompasses a subset of 7,766 images for identifying open roads, tunnels and 

overhead bridges. This subset is sampled from the HSD dataset using query terms like “over-head 
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bridge” and “tunnel”. Images sampled were mainly taken from the view of approaching or entering 

those structures. 

 

4.5 The Approach 

Utilizing the DSI dataset, a learning framework is designed to acquire and accrue the knowledge 

of identifying multi-variate driving scenes from single-task learning. The learning framework has 

three components, including the Knowledge Collecting Network, Knowledge Memory Network, 

and an adaptation module.  

 

4.5.1 Transformer-based Feature Extractor 

Swin transformer is a hierarchical transformer. It allows for extracting and capturing both global 

features and local features, meeting the needs for extracting features for driving scene 

classification tasks, which are at various scales. Meanwhile, the linear computational complexity 

in relation to image size brings the flexibility and efficiency, compared with previous proposed 

transformer model ViT and DeiT (Dosovitskiy et al 2010, Touvron et al. 2021).  

 

4.5.2 Knowledge Acquisition  

The core of the Knowledge Collecting Network is centered on the cyclic training of various image 

classification tasks on the seven subsets of single-labeled images. Sequentially training each 

individual image classification task aims in acquire the ability to extract features for all tasks on a 

shared Swin-B backbone. The extracted overall features can be relearned from to support 

individual classifiers in completing their respective tasks. Unlike single-task classification, this 

phase acquires knowledge through cyclic training within an epoch, ensuring synchronized learning 

among the heterogeneous tasks. Yet, incremental learning will cause the catastrophic forgetting 

and memory conflict during training. Therefore, the Knowledge Memory Network is proposed to 

address this issue. 

 

4.5.3 Knowledge Accumulation 

The Knowledge Memory Network is proposed to accrue and retain learnt knowledge through 

knowledge distillation. The two-way transfer between KA&AN facilitates continual learning 

across various tasks and mitigates forgetting due to the jump from one specific task to another. At 

last, the knowledge will be updated and accrued in the Knowledge Memory Network from 

regulating each single task in cyclic training. 

 

4.5.4 The Loss Function 

The two-way knowledge transfer is a crucial component of the knowledge memory network 

designed to mitigate forgetting when transitioning from learning one specific task to another. 

Drawing inspiration from knowledge distillation and teacher-student networks, an inconsistency 

loss function is introduced to address task variability. This loss is calculated using the Mean 

Squared Error between the projectors of the teacher (i.e., the Knowledge Memory Network) and 

student (i.e., the Knowledge Collecting Network) networks. These projectors, derived as linear 

embeddings from intermediate hidden layers across four stages, have demonstrated better 

performance compared to using only the final layer (Romero et al. 2014). Subsequently, 

knowledge accumulation occurs at the end of each training epoch for all tasks. The knowledge 

memory network is refined using epoch-wise exponential moving average (EMA) (Tarvainen and 

Valpola 2017), facilitating a gradual transition from the initial learning phase to a memorizing 
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phase. Therefore, the total loss in our framework is the sum of classification loss and the 

inconsistency loss. 

 

4.5.5 Adaptation for Knowledge Accruing Network 

After aggregating information from each individual classification task, a foundation model with 

generalization is adapted for other tasks in the transportation area. The shared Swin-B backbone 

possesses the capability to identify not only on each specific single task, but also on the 

unannotated labels apart from their own task. By finetuning each classifier corresponding to single 

tasks while keeping the backbone frozen, the challenges posed by heterogeneous label annotations 

in multi-task learning are addressed. 

 

4.6 Experiments and Results Discussion  

To achieve the goal of knowledge acquisition and accruing from multiple single-label 

classification tasks, an important effort is to evaluate and select the most suitable backbone that 

delivers the highest performance. Compared with traditional CNN framework, Transformer may 

achieve higher efficiency and performance doing image classification, objective detection and 

semantic segmentation tasks in deep learning area. By comparing recent transformer-based state-

of-the-art (SOTA) models, Swin-B has been identified as the backbone to be applied within the 

KA&AN framework. The performance of the KA&AN framework is then verified through 

ablation studies. Finally, the weights of the trained backbone are loaded, which are further 

finetuned on driving scene multi-task classification. 

 

4.6.1 Choice for Backbone 

Transformer-based backbones can be superior to traditional CNN-based ones, demonstrating 

robustness and efficiency in classification tasks. Seven driving scene tasks in the dataset are trained 

and tested on SOTA transformer-based models, including the Swin Transformer and ViT, with 

varying model sizes and computational complexities. The accuracy (acc) is used as the 

performance metric, while FLOPs and the number of parameters serve as indicators of model 

complexity. Table 7 summarizes the comparison results. 

 

Table 7. The comparison of backbones 
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In comparing the same model with different weights, the backbones with more parameters and 

FLOPs perform better than their lighter counterparts. Swin-B outperforms others in five single-

tasks for driving scene classification, including time-of-day, weather, road function, weather-

related road condition, and workzone, with accuracy improvements of 0.36, 0.01, 0.40, 0.18, and 

0.49 over ViT-L, respectively. Although ViT-L’s accuracy for identifying intersection type and 

above-road place are 0.958 and 0.984, respectively, better than Swin-B, the Swin-B is lightweight 

and more computational efficient. In summary, the Swin-B model is the most suitable choice 

among the tested backbones, demonstrating an overall high performance and moderate model 

complexity.  

 

4.6.2 The Foundation Model 

Then, the study integrated the Swin-B backbone in the multi-task model and trained it in the 

cyclically approach as proposed in Section 4.5.2 and 4.5.3. After the training is completed, the 

Swin-B backbone becomes a foundation model for driving scene identification. Our hypothesis is 

that the foundation model is comparable to the seven single-task classification models. By further 

finetuning the classifiers, the final multi-task classification model will perform better than the 

foundation model. To examine our conjectures, the study compared the classification performance 

across single-task models, the foundation model, and the final multi-task model, with results 

summarized in Table 8.  

 

Table 8. Comparison of models 

 

 
 

Table 8 shows that the foundation model is comparable to its mono-task counterparts (with a 

decrease of accuracy for 1% or less), except in identification of workzone (with a drop of accuracy 

for 5.5%). After refining the classifiers, the multi-task model’s classification accuracy on 

identifying weather-related road conditions, intersections, and above-road space increments by 

0.5%, 1.1% and 0.9% respectively. Compared with mono-task models, the classification 

performance of time-of-day, weather, and road function dropped slightly, within 0.6%. However, 

undeniably, there was a relatively severe drop (4.9%) in the accuracy for identifying workzone 

attribute. The occurrence of a workzone is typically indicated by workzone-related elements such 

as signs and cones on the road. Traditionally, under the view of computer vision area, it is detected 

through object detection and segmentation tasks at the pixel level (Sundharam et al. 2023, Shen et 

al. 2021). Therefore, it is understandable that the performance drop on the workzone task occurs 

when the overall deep features mix information for multiple tasks at the image level. 
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To test the performance of the finetuned foundation model for multi-label classification tasks in 

the real world, this study also randomly annotated small samples with 7 driving scene attributes 

from the testing dataset. Figure 4 shows a sample of images with the seven attribute values 

identified by the multi-task classification model. For example, in Figure 4(a), the model identifies 

that the time of day is daytime with a prediction score of 1.00, the weather is clear with a score of 

0.63, and so on. Among the nine examples, four driving scenes are classified accurately with 

respect to all of the seven attributes. Regarding each of the remaining five examples, the multi-

task model successfully identifies the scene with six attributes but had a mistake in one attribute. 

For example, the multi-task model classifies the road function of the driving scene in Figure 5(e) 

as a collector, but the true label is an interstate. In Figure 4(i), the four-way intersection is 

incorrectly classified as a 3-way intersection. Classifying the intersection type from a farther 

distance is probably a major reason for the mistake.   

 

Overall, the foundation model, after finetuned, has attained a reasonably good ability to identifying 

driving scenes along the seven attributes, which can replace seven individual models that each is 

dedicated to one classification task.  

 

 
 

Figure 4. Examples of scene identification results 

 

 

 

4.7 Summary 
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This study developed a driving scene dataset named DSI, which includes well-covered 7 attributes 

and 24 labels. Utilizing this dataset, the KA&AN deep learning framework is introduced to 

overcome the difficulty in training a multi-task classification model directly due to unbalanced 

data distribution on the high-dimension of attribute space for driving scenes. The attained 

foundation model, after an appropriate finetuning of the classifiers, demonstrates a classification 

accuracy comparable to what seven individual models can achieve. This exploration verifies our 

thoughts on addressing data challenges for developing vision assistance to elderly drivers in rural 

areas where annotated data are not widely available.  

 

The current KA&AN learning framework serves as both a starting point and a foundation for 

exploring new research directions. For instance, its adaptability to semantic segmentation and 

instance segmentation needs to be evaluated. Furthermore, exploring the framework's ability to 

incorporate additional tasks is essential, as new attributes for classifying driving scenes may 

emerge in the future. 
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5 CONCLUSIONS 

 

In this project, we explored research questions related to elderly drivers in rural areas through a 

series of three studies. In the first study, we found that senior residents in rural areas experience 

decreased accessibility to resources compared to both their younger counterparts and those in 

urban areas. This issue is particularly notable when accessing healthcare and assisting others with 

transportation needs. Additionally, seniors in rural areas face reduced mobility, as they heavily 

rely on automobiles while becoming less capable of driving. Mobility serves as a key moderator 

of their access to resources, highlighting the critical need for mobility improvements. 

 

There are ongoing debates about the safety of elderly drivers in rural areas. While they have more 

years of driving experience and face less traffic congestion, aging can lead to declines in 

perception, cognition, and motor execution. The second study assessed the vulnerability of elderly 

drivers in rural areas and found that fatal crash density increases with age. Moreover, the fatality 

rate among elderly drivers in rural areas is significantly higher than in urban areas. The decline in 

their driving abilities, combined with higher speeds on rural roads, makes them a particularly 

vulnerable group. Enhancing the safety of elderly drivers in rural areas is critically needed, both 

by reducing the likelihood of crashes and minimizing fatalities when crashes are unavoidable. 

 

As automobiles remain the primary mode of transportation for seniors in rural areas - likely for at 

least the next decade - advanced driver assistance for elderly drivers in these regions has become 

crucial for enhancing both mobility and safety. Among the various opportunities for supporting 

drivers, the third study of this project focused on improving context-awareness, benefiting both 

human drivers and autonomous driving vehicles at various levels of automation. Specifically, the 

study developed a visual intelligent solution that utilizes dashboard cameras as a low-cost, widely 

deployable sensor, along with a computer vision-based deep learning model to identify driving 

scenes with seven key attributes. The proposed multi-task classification model effectively 

addresses the challenge of acquiring annotated and balanced training data. By providing context-

awareness, both automated driving systems and advanced driver assistance systems can adjust 

driving behavior based on specific environments and locations. Human drivers can also receive 

recommendations to drive cautiously in high-risk scenarios, which can be inferred from the driving 

scene attributes identified by the proposed model. 

 

The study confirms the demand for safety-enhanced driving assistance among seniors in rural 

areas. Autonomous driving vehicles with various levels of automation are potential solutions. 

However, due to the limited availability of annotated data from rural areas, these intelligent 

vehicles may not perform as well in rural regions as they do in urban areas, where most of the 

training data for intelligent systems is typically collected. To ensure that driving experiences for 

seniors in rural areas are as safe and comfortable as those for drivers in urban settings, it is crucial 

to gather more annotated data - either through real-world collection or computer-generated 

algorithms. This will help advance solutions for assisting elderly drivers in rural areas.    
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