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EXECUTIVE SUMMARY

Rural areas experience a higher fatality rate per distance traveled compared to urban areas.
Despite only 19% of the American population residing in rural areas, these regions encompass
over 70% of the roadways and exhibit a higher fatality rate than urban areas. Major types of crashes
in rural crashes constitute sideswipe, rear-end, and pedestrian-related crashes that are attributed to
driver errors. Advanced Driver Assistance Systems (ADAS) such as crash imminent braking
(CIB), forward collision warning (FCW), pedestrian automated emergency braking system
(PAEB), Blind Spot Warnings (BSW), Lane Departure Warnings (LDW), and Lane Keeping
Assistance (LKA) can help mitigate these types of crashes. Although these technologies are
becoming more widely available, their adoption in rural areas remains notably low. This limited
penetration has resulted in a scarcity of research examining the potential of ADAS to enhance road
safety in rural settings.

This research project contributes to existing studies by evaluating the impact of ADAS on
reducing crash severity, focusing on Rural Ohio as a case study. Using a comparative approach,
this project analyzes the differential impact of ADAS-equipped vehicles versus those without such
technologies. The study utilized Latent Dirichlet Allocation (LDA) Topic Modelling and Bayesian
Networks in the analysis of crash data collected from 49 rural counties in Ohio between 2017 and
2023. The analysis revealed several compelling insights into the factors driving elevated fatality
rates in rural regions. Also, it highlights the potential role of ADAS in mitigating road safety
challenges specific to these areas. Key findings from the study are briefly discussed below.

Crash statistics indicate a high likelihood for drivers aged between 25 and 64 to be involved
in rear-end or sideswipe crashes. The analysis further indicates that vehicles equipped with ADAS
are less likely to be involved in fatal or severe injury crashes, particularly under adverse weather
conditions and during speeding events. The findings highlight the positive impact of traffic control
systems in reducing rear-end collisions, especially on highway access roads. However, it also notes
that the presence of drugs or alcohol significantly increases the risk of severe rear-end and
sideswipe crashes, regardless of the vehicle’s technology. Additionally, the analysis revealed that
vehicles classified as Level 0 automation are more prone to sideswipe and rear-end crashes
compared to those equipped with higher levels of automation. Furthermore, pedestrians also face
an elevated likelihood of experiencing fatal or serious injuries when involved in vehicle-related
crashes, primarily due to their unprotected and exposed position in the traffic environment.
Although the findings from this project demonstrate that vehicles equipped with ADAS are
generally less likely to be involved in crashes, their effectiveness in protecting pedestrians,
particularly for vehicles equipped with PAEB, can be compromised. Key limiting factors include
driver intoxication, distracted driving, and the system’s reduced ability to detect pedestrians at
long range, especially under adverse weather conditions.

Conclusively, this study highlights the potential of ADAS technologies to improve road
safety in rural areas by reducing crash incidence and severity. Key findings show that mid-aged
drivers are more prone to rear-end and sideswipe collisions, and that vehicles with higher levels of
automation are less likely to be involved in severe crashes. While traffic control systems help
mitigate rear-end crashes, factors like intoxication and distraction still pose significant risks.
Pedestrians remain highly vulnerable, and although PAEB systems offer safety benefits, their
effectiveness is limited by drivers’ behavior, environmental conditions, and detection challenges.
Overall, the research emphasizes the need for integrating these technologically improved systems
and traditional strategies to enhance rural traffic safety.
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1 INTRODUCTION

Vehicle automation presents a transformative shift in the transportation landscape, with
significant implications for road safety, particularly in rural areas. This report delves into these
aspects by analyzing the role of automation technologies such as Advanced Driver Assistance
Systems (ADAS) in reducing crash risks and protecting vulnerable road users. The introduction
section provides an overview of road safety in rural areas and the role of ADAS in crash
prevention. This section will also discuss challenges associated with adapting to ADAS vehicles
in rural areas. Furthermore, discussing the main and specific objectives of the research project, and
focusing on the relevance of this research work to the Rural Safe Efficient Advanced
Transportation (R-SEAT) center, considering the themes and the United States Department of
Transportation (USDOT) Strategic Plan. Finally, providing the structure of this technical report.

1.1 Road Safety in Rural Areas

Road safety in rural areas of the United States presents unique challenges distinct from
urban settings. While rural roads account for a smaller portion of the nation's traffic volume, they
disproportionately contribute to traffic fatalities. According to data from the National Highway
Traffic Safety Administration (NHTSA) 2024 fact sheet on rural/urban fatalities, show that rural
areas have constantly had a higher fatality rate per every 100 million vehicle miles traveled (VMT)
compared to urban areas, as shown in Figure 1. These statistics indicate the presence of traffic
safety disparities that require targeted interventions and policies that consider the specific
characteristics of rural roadways and communities.
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Figure 1: Fatality Rates per 100 Million VMT in Traffic Crashes by Land Use (Source: FARS 2013-
2021 Final File, 2022 ARF; VMT — FHWA)

Rural roads exhibit distinct characteristics compared to urban roads. For example, features
such as narrow lanes, the absence of shoulders, and poorly maintained surfaces are more prevalent
in rural areas. Additionally, many rural roads consist of two-lane highways with limited access
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points and minimal signage, creating a unique travel experience. However, these geometric
differences alone do not fully explain the factors contributing to higher fatality rates, nor do they
address how vulnerable road users interact with rural roads, or the traditional strategies
implemented to enhance road safety in these areas.

1.1.1 Factors Associated with an Increase in Fatality Rate

Several factors contribute to the higher fatality rates observed in rural areas. One notable
factor is the higher speed limits on rural roads, combined with drivers’ tendency to speed due to
the perception of open and empty roadways, which significantly increases the likelihood of fatal
crashes. According to statistics from NHTSA (2024), a substantial proportion of rural crashes
involve alcohol impairment. Over the past decade, the fatality rate per 100 million vehicle miles
traveled (VMT) in rural areas consistently surpassed that of urban areas, as illustrated in Figure 2.
Additionally, the long distances between destinations and the limited availability of public
transportation in rural regions contribute to drunk driving and elevating the risk of fatigue-related
crashes.
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Figure 2: Alcohol-Impaired-Driving Fatality Rate per 100 million VMT in Traffic Crashes, by
Rural/Urban Classification, 20132022 (Source: FARS 2013-2021 Final File, 2022 ARF; VMT —
FHWA)

According to existing literature, additional contributors to fatal crash risk include seat belt
usage, which tends to be significantly lower in rural areas than in urban environments (Mohamed
et al., 2017; Uddin & Huynh, 2020; Zou et al., 2023). From the literature, the following are
identified. Rural roads are more prone to animal-vehicle collisions, especially in areas near forests
and farmland. Uniquely, the presence of a high number of special attention and vulnerable road
users in rural areas faces increased crash risks. For instance, older drivers are more vulnerable to
severe injuries in crashes and may struggle with navigating poorly designed rural roads. Limited
pedestrian infrastructure, such as sidewalks and crosswalks, increases the risk of crashes involving
non-motorized road users. The presence of slow-moving farm equipment on roads creates
additional hazards. These factors, combined with the unique characteristics of rural roadways,
underscore the need for targeted interventions to improve road safety in these areas.

0.52

0.37

2022



1.1.2 Strategies for Improving Road Safety

Over the years, various traditional strategies have been implemented to enhance road safety
in rural areas, combining engineering, enforcement, education, and emergency response
improvements. These strategies include widening shoulders, adding rumble strips to mitigate run-
off-road incidents, improving road signage and lighting for better visibility, and installing barriers
and median separations on high-speed routes. Additionally, increasing police presence to monitor
speeding and impaired driving, promoting seat belt usage, and educating drivers about the dangers
of speeding and drunk driving through local campaigns have been key initiatives. Strengthening
coordination between rural communities and emergency services, expanding telemedicine
capabilities to assist first responders in remote areas, and implementing automated enforcement
technologies such as speed cameras have also contributed to road safety efforts. Furthermore,
utilizing technologically advanced vehicles equipped with advanced driver assistance systems
(ADAS) holds significant potential in reducing crashes. Improving road safety in rural areas of the
USA remains a critical public health and infrastructure challenge. By addressing the unique
characteristics of rural roadways and adopting a comprehensive approach, the high rate of traffic
fatalities and injuries in these areas can be significantly reduced. However, some strategies, such
as the adoption of ADAS-equipped vehicles, remain underestimated despite their potential to
substantially decrease the number of crashes in rural settings.

1.2 Role of ADAS in Rural Crash Prevention

In the United States, over 90 percent of vehicle crashes can be attributed to driver error
(NHTSA, 2015), with rural areas consistently experiencing a higher rate of vehicle fatalities per
distance traveled versus urban areas (Clark & Cushing, 2004). To mitigate crashes, newer vehicles
are increasingly equipped with technological features such as warnings for forward collision, lane
departure, and blind spot, automatic emergency braking, lane-keeping assistance, and adaptive
cruise control, with these and similar technologies being collectively known as advanced driver
assistance systems (ADAS). However, in rural areas, vehicles are likely to be less technologically
advanced, thus having fewer or less advanced ADAS (Lowell et al., 2020). The systems will often
face suboptimal roadway surface and pavement marking conditions, hence causing challenges or
total failure of ADAS technology equipped in a vehicle especially in adverse weather conditions
(Mahlberg et al., 2021; Pike et al., 2018; Rahman et al., 2023; Roh et al., 2020). Additionally, the
demographics of rural areas, which feature large populations of older and elderly adults, influence
driving behavior and the perception and use of ADAS. Given the unique conditions of the rural
environment, it provides an interesting context for understanding the full interaction between
ADAS equipment and engagement, the environmental and exposure conditions, and
demographics, particularly age.

The purpose of ADAS is to reduce the severity of crashes involving driver error by alerting
the driver to dangerous maneuvers and taking control of the vehicle when necessary. Research
studies on the effectiveness of ADAS have consulted driving simulators, showing safety benefits
during mandatory lane-changing maneuvers (Ali et al., 2020) and reductions in the occurrence of
lane departure, speeding, and events of excessive acceleration and braking (Birrell & Young, 2011;
Gouribhatla & Pulugurtha, 2022). However, the ADAS technologies have faced setbacks in rural
areas where the adoption of these technologies has become a major challenge due to various
reasons that are explored in this project.

1.3 Challenges in Adoption of ADAS in Rural Areas



The adaptation and implementation of ADAS vehicles in rural areas of the United States
present unique challenges. These challenges are shaped by the distinct characteristics of rural
regions, including infrastructure, demographics, and driver behavior. Some of these challenges are
explained below.

e ADAS technologies often rely on high-quality infrastructure, such as well-maintained
roads, visible lane markings, and clear signage, for optimal functionality. Rural areas
frequently lack these features due to inadequate funding for road maintenance.
Additionally, many ADAS vehicles depend on GPS and cellular networks for real-time
updates and navigation. Rural areas, which often have limited connectivity, pose
significant challenges for these systems. Poor communication networks can disrupt the
functioning of features such as traffic sign recognition and navigation-based adaptive
systems.

e Rural areas are home to older populations who may be less familiar with and more resistant
to adopting new technologies. The perception that ADAS is unnecessary or overly complex
further hinders adaptation among rural populations. Moreover, the primary users in rural
areas often include farmers, truck drivers, and other professionals who rely on large
vehicles for their livelihood. Adapting ADAS features to these specific vehicle types and
user needs presents an additional technological and educational challenge.

e Rural residents generally have lower median incomes compared to urban populations,
limiting their ability to purchase newer vehicles equipped with ADAS features. This
financial divide contributes to slower adoption rates, leaving rural drivers with older
vehicles that lack these safety enhancements.

e Rural areas often have unique driving conditions, including unpaved roads, sharp curves,
and limited visibility. These conditions challenge the effectiveness of ADAS features,
many of which are optimized for urban environments. Systems such as automatic
emergency braking may struggle to detect obstacles like wildlife on rural roads.

e Another critical challenge is the lack of awareness and understanding of ADAS
technologies among rural populations. Many drivers are unaware of the potential safety
benefits or how to use ADAS features effectively.

e The maintenance and repair of ADAS vehicles require specialized equipment and trained
technicians, which are often unavailable in rural areas. As a result, even minor issues with
ADAS systems can lead to extended downtime for vehicles or drivers opting not to repair
these systems.

1.4 Objective of the Research Project

The primary objective of this study is to evaluate the influence of Advanced Driver
Assistance Systems (ADAS) on road safety outcomes in rural areas, with stratification by age
group. The specific objectives of the research were to assess the influence of ADAS in crash
prevention within rural areas and to assess the influence of ADAS in protecting Vulnerable Road
Users in rural areas.

1.5 Relevance of the Research Project to the R-SEAT Center

This project is consistent with the US DOT priorities and goals on highway safety. The
findings from this research will shed light on the effective ADAS technologies that significantly
reduce crashes and injuries of different road users and age groups in rural areas. This project will
contribute to a safe system, particularly in safe vehicle components. Anticipated output from this
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project will offer comprehensive insights into the most effective ADAS technologies that ensure
safety based on age groups and other socio-economic factors in rural areas. Analyses will focus on
the major types of crashes prominent in the rural areas. The research team will also provide
recommendations based on the study findings, which will benefit policymakers, engineers, and
stakeholders in making decisions that can ultimately enhance road safety for a wvulnerable
demographic while bolstering transportation technology’s trajectory. Furthermore, the proposed
project is expected to assist with meeting some of the major goals outlined in the USDOT 2022-
2026 strategic plan, including improving the safety of transportation systems and their users and
establishing new policies and procedures (mainly focusing on emergency evacuation planning) to
satisfy the critical needs of communities.

1.6 Structure of the Technical Report

This report is organized to guide the readers through the major activities associated with
examining the impacts of vehicle automation levels on road safety in rural areas. More specifically,
the main sections of the present report were organized as follows. Section 1 sets the project
background on road safety in rural areas, stating the measures that have traditionally been used to
improve road safety in rural areas and the problem statement by showing the roles and challenges
of implementing technological advancement in the rural transportation system. Section 2 reviews
the previous efforts related to the theme of this project. The reviews provide insight into different
safety practices, types of crashes, and different approaches and efforts, showing how technological
advancement in vehicles (specifically assessing ADAS) has been used to prevent crashes. In
section 3, the steps followed to acquire and prepare the data are described. Furthermore, this
section shows the study area and the types of data used for this project. Section 4 covers the
methodology and the materials used to perform the analysis. Section 5 shows the results and the
discussion that tends to provide insight into the response to the two specific objectives of the
project. Section 6 provides the main concluding remarks and summarizes the main outcomes of
this project.



2 LITERATURE REVIEW

Rural areas, despite having a smaller population, account for a substantial portion of
roadways and crash fatalities. Although only 19% of the population lives in rural areas, they
account for more than 70% of the 4 million miles of roadways in the United States. According to
the National Highway Traffic Safety Administration (NHTSA) (NHTSA, 2023), the fatality rate
in rural areas is 1.5 times higher than in urban areas. In Ohio, the fatality rate per 100 million
vehicle miles traveled (VMT) is 1.53 in rural areas compared to 1.04 in urban areas. Different
kinds of traditional safety measures have been implemented to improve safety on rural roads with
relatively minimal significant changes. However, technological improvements in vehicles, such as
equipping the vehicle with ADAS, have helped to improve road safety, especially in urban areas.
Various traditional safety measures have been implemented to enhance safety on rural roads with
minimal significant changes. However, advancements in vehicle technology, such as equipping
vehicles with Advanced Driver Assistance Systems (ADAS), have significantly improved road
safety, particularly in urban areas. Evaluating the impact of these technologies in rural areas is
challenging due to their lower penetration rates. Nevertheless, the limited available data on vehicle
automation levels in rural regions presents an opportunity to assess how these technologies are
contributing to safety improvements. To gain a deeper understanding of vehicle automation in
rural areas, it is essential to first examine existing literature on the most common types of crashes
and collision patterns in these regions. Additionally, reviewing previous studies on the
effectiveness of various vehicle technologies in preventing these crashes is crucial.

2.1 Prominent types of crashes in rural areas

Rural areas feature unique crash characteristics, with a higher likelihood of a fatal crash
involving a light or heavy truck, intoxication, occupant ejection, or a non-collision crash (such as
a mechanical failure) than a fatal crash in an urban context (Muelleman & Mueller, 1996). Single-
vehicle crashes, including rollovers and roadway departures, as well as head-on collisions, rear-
end collisions, and sideswipe collisions, are common rural crash types, caused by factors including
roadway curvature and grade, speeding, darkness, land and shoulder width, and roadside hazards,
such as utility poles and ditches (H. Y. Chen et al., 2009; Lord et al., 2011). There is a marked
influence of driver demographics on base driving behavior, with a large influence being exercised
by driver age. Older drivers are less capable of handling distractions, possess poorer memory, and
struggle in complex driving situations (Mather, 2007). However, rear-end and sideswipe collisions
were found to be more prominent types of crashes contributing significantly to an increase in
fatality rate in rural areas. The use of ADAS has been observed to continuously decrease and
prevent these types of crashes, as elaborated below.

2.2 Prevention of crashes using ADAS

Real-world crash data has shown results indicating crash mitigation, but also unsafe
changes in driving behavior induced by ADAS. An analysis of over three hundred thousand Toyota
and Lexus vehicle crashes between 2015 and 2019 showed vehicles equipped with automatic
emergency braking to be 43% less likely to be the striking vehicle in front-to-rear collisions, as
well as finding vehicles equipped with lane-keeping assistance to be 9% less likely to experience
a roadway departure event (Spicer et al., 2021). However, this study did not determine whether
the relevant ADAS system was triggered or active during the crash and did not consider
demographic factors. A study comparing rear-end crash incidence between ADAS and automated
driving system (ADS) equipped vehicles found that ADAS-involved crashes were more likely to



occur on highways and rural roads, with a plausible explanation being driver over-reliance on
ADAS until the moment before collision, leading to unexpected hard braking and a higher
likelihood of rear-end collision (Huang et al., 2024). ADAS has also been shown to increase the
time that drivers spend glancing away from the road (Bargman & Victor, 2020).

Perception and use of ADAS are also variably correlated with age and other demographic
factors. A Korean experimental study utilizing an aftermarket ADAS system found that males were
more accepting of front collision warnings and received more lane departure warnings, while
females experienced a significant increase in both warning types and a large decrease in headway
when compared to the control group operating a non-ADAS vehicle (Son et al., 2015). Older
drivers were more accepting lane departure warnings and had a generally more positive attitude
towards ADAS. A German survey of elderly drivers’ attitudes toward ADAS found barriers to
perceived usefulness, functional limitation, system cost, and lack of system trust (Triibswetter &
Bengler, 2013). However, the case can be different when evaluating a specific type of crash, such
as a rearend or sideswipe collision. Rear-end collisions constitute approximately one-third of all
traffic accidents in the United States, with over 2.5 million incidents occurring annually. These
crashes are a leading cause of injuries and fatalities worldwide (Mohamed et al., 2017). The
introduction of Advanced Driver Assistance Systems (ADAS) has significantly improved road
safety and reduced accident rates. ADAS features such as forward collision warning (FCW), rear-
end collision warning, crash imminent braking (CIB), and pilot assistance aid drivers in
minimizing preventable rear-end collisions (Hang et al., 2022; Perumal et al., 2021).

Crash Imminent Braking (CIB) is designed to automatically engage a vehicle’s brakes to
prevent or lessen the severity of a collision. By utilizing radar sensors and video cameras
(Ackermann et al., 2014), CIB enhances safety when interacting with pedestrians (Abdel-Aty et
al., 2022; Broggi et al., 2009; Cicchino, 2022; Coelingh et al., 2010; Keller et al., 2011) and helps
mitigate rear-end collisions involving other vehicles (Cicchino, 2019; Elsasser et al., 2019; Guo et
al., 2022; Hang et al., 2022; Pipkorn & Bianchi Piccinini, 2020) as well as two-wheelers
(Giovannini et al., 2013; Huertas-Leyva et al., 2023; Lucci et al., 2021; Sui et al., 2021). Research
by Tan et al., (2021) suggests that CIB, particularly when integrated with active steering, exhibits
greater crash avoidance capabilities compared to other warning systems. In low-severity collisions,
vehicles equipped with CIB have been shown to reduce occupant injuries, providing protection
not only for passengers but also for pedestrians, especially at intersections where rear-end crashes
frequently occur (Abdel-Aty et al., 2022; Broggi et al., 2009; Cicchino, 2022). Another system
recognized as a leading solution for reducing rear-end collisions is Forward Collision Warning
(FCW). This technology helps drivers maintain shorter headway and improves their reaction time
when the lead vehicle accelerates or when there is a significant speed difference between the lead
and the following vehicle. However, FCW frequently generates a high number of alerts, some of
which have low or no relevance, potentially impacting driver responsiveness and satisfaction
(Seaman et al., 2022). While FCW enhances safety for all drivers, aggressive drivers particularly
benefit from adaptive FCW systems, as they find them less frustrating and stressful (Jamson et al.,
2008).

FCW has been shown to significantly reduce rear-end crash rates and related injuries, with
the combination of FCW and Crash Imminent Braking (CIB) proving to be the most effective.
Estimates suggest that if all vehicles in the U.S. had been equipped with these technologies in
2014, nearly one million rear-end crashes and over 400,000 associated injuries could have been
prevented (Cicchino, 2017). However, ADAS systems alone do not ensure occupant safety, as the
severity of injuries remains high in the absence of protective features such as airbags and seatbelts



(F. Chen et al., 2019). Research highlights the crucial role of ADAS technologies, including FCW
and CIB, in crash reduction, particularly in urban areas. However, rear-end collisions are also a
major cause of fatalities in rural regions of the U.S., emphasizing the need for further assessment
of how these technologies contribute to crash prevention in rural environments.

Sideswipe collisions are among the most common types of crashes, second only to rear-
end collisions (Ning et al., 2022). Several factors contribute to these accidents, including driver
behavior, speed, and road design. Of these, driver behavior is the most significant, accounting for
approximately 88% of all vehicle collisions (Ning et al., 2022). According to crash data from the
Ohio Department of Public Safety (ODPS) covering rural crashes from 2017 to 2023, sideswipe
collisions make up around 10% of all accidents. This high occurrence is largely attributed to
hazardous road conditions such as poorly designed roads, blind spots, narrow lanes, inadequate
signage, insufficient lighting, and roadside obstacles, all of which heighten the risk of severe
crashes in rural areas (ODPS, 2020). The integration of advanced driver assistance systems
(ADAS) in modern vehicles has helped mitigate crash severity by alerting drivers to dangerous
maneuvers and, in some cases, taking corrective action. However, older vehicles, which are more
prevalent in rural areas, often lack updated ADAS technology, making them more susceptible to
crashes (Lowell et al., 2020). Additionally, rural road conditions—such as faded pavement
markings and uneven surfaces—can hinder ADAS functionality, leading to system failures,
particularly in adverse weather conditions (Mahlberg et al., 2021; Pike et al., 2018; Roh et al.,
2020)

Key ADAS technologies, including lane departure warnings (LDW), lane-keeping
assistance (LKA), and blind spot warnings (BSW), play a crucial role in preventing sideswipe
collisions. LDW systems use cameras and optical recognition to detect when a vehicle drifts
toward the lane edge or center line, alerting the driver through sound or vibration. A study of
single-vehicle, sideswipe, and head-on crashes across 25 U.S. states found that vehicles equipped
with LDW were 11% less likely to be involved in sideswipe collisions and 21% less likely to be
involved in crashes resulting in injuries (Cicchino, 2018). Simulation studies further highlight
LDW’s effectiveness in reducing crash likelihood (Kusano & Gabler, 2012; Sternlund et al., 2017).

However, concerns remain regarding ADAS reliability, particularly in rural settings. A
study conducted in Italy revealed two significant flaws in LDW systems on passenger vehicles:
they issued alerts closer to the edge line when drifting right than when drifting left and, more
critically, failed to detect road edges in the absence of signs or pavement markings (Re et al., 2021)
These issues are especially concerning in rural areas, where narrow lanes and steep drop-offs make
accurate and reliable LDW systems essential for driver safety. Like LDW, LKA relies on cameras
to monitor lane positioning and provides steering input to prevent a vehicle from crossing the lane
edge or center line. Research indicates that combining LDW and LKA can reduce certain crash
types, including sideswipe, head-on, and single-vehicle accidents, by 12% (Leslie et al., 2021).
Additionally, vehicles equipped with LKA are 9% less likely to experience roadway departures
(Spicer et al., 2021). However, LKA’s effectiveness is diminished by factors such as poor
pavement markings, adverse weather conditions (e.g., heavy rain, snow, darkness, or glare), and
inadequate lighting, all of which can lead to system errors (Jumaa et al., 2019). Simulation studies
suggest that clearer lane markings and wider shoulders enhance the performance of LKA and
LDW, reducing the likelihood of roadway departures and serious driver injuries. This implies that
these systems may be less reliable in suboptimal driving conditions.

Blind Spot Warning (BSW) systems help drivers detect vehicles in their blind spots,
particularly in adjacent lanes to the side and rear. Research on BSW has primarily focused on its



application in large commercial vehicles, such as buses and trucks, and its potential to prevent
crashes involving vulnerable road users (Jansen & Varotto, 2022; Pyykonen et al., 2015; Schaudt
et al., 2014). In General Motors passenger vehicles, the side blind zone alert has been found to
reduce lane-change crashes by 9% (Leslie et al., 2021). This suggests that BSW, similar to LKA
and LDW, plays a crucial role in preventing collisions (Tan et al., 2021). Assessing the impact of
these ADAS technologies in reducing severe crashes is particularly important in rural areas, where
fewer drivers may have access to these safety features. However, many other studies show how
the implementation of the ADAS technologies has helped to improve safety, as shown in Table 1.
Different findings and objectives have shown how ADAS can significantly assist in lowering the

risk of crashes

Table 1: Summary of literature review on ADAS technologies

Author
Mason et al., (2023)

Mcdonald et al.,

(2017)

Objective/Focus
Examine the
understanding of
advanced vehicle
technologies among

drivers and other road

user populations.

Provide insight on
how learning about
ADAS technologies
from an owner’s
manual or through a
ride-along
demonstration drive
impacts a driver’s
knowledge and
understanding of the
technology.

Data
An online survey
was conducted to
collect data from a
representative
sample of more than
2500 respondents.

Study procedures
included a Pre-Visit
Survey, a site visit
(including an Intake
Survey), completion
of a randomly
assigned learning
protocol (either
reading an owner’s
manual,
participating in a
ride-along
demonstration drive,
or a combination of

Findings

¢ Findings suggest that

road users with a strong
understanding of ADAS
are younger.

Young road users
preferred relying on
videos and the internet
to find educational
material.

Results also underscore
the importance of
targeted education
about vehicle
technology.

Regardless of the
learning protocol,
participants gained
knowledge about the
ADAS technologies.
Learning protocol had
an overall effect on
participants’ knowledge
of the ADAS
technologies.



Author

Nees et al., (2020)

Bato & Boyle,(2011)

Utriainen et al.,
(2020)
Sternlund et al.,

(2017)

Objective/Focus

e Explore mental
models of ADAS
(ACC, LKA, and level
2 systems).

e Evaluate the
perceived use and
safety of Adaptive
Cruise Control
(ACO).

e Focus on LKA
systems and their
potential safety effects
by analyzing real-
world crash data and
LKA'’s possibilities to
prevent fatal
passenger car crashes.

o Estimate the safety
benefits of in-vehicle
LDW/LKA systems in
reducing head-on and
single-vehicle
passenger car crashes.

Data
the two), and a Post-
Visit Survey.
The study used
qualitative, semi-
structured
interviews to
explore mental
models of ADAS.

A survey was
distributed to drivers
to gather specific
opinions from
drivers about the
ACC.

The study utilized
364 fatal head-on
and single-vehicle
crashes.

Data provided by
the Finnish Crash
Data Institute in
Finland.

The study was based
on police-reported
crashes.

Crashes were
extracted from the
Swedish Traffic

10

Findings

There are shortcomings
in the driver’s
understanding of the
hardware, software, and
limitations of these
systems.

Mental models will
affect behavior while
using automation.

The less-dense
roadways of lowa
might lead this group of
drivers to feel that ACC
is effective in detecting
vehicles and allowing
drivers to avoid
crashes.

Based on the analysis,
LKA could potentially
have prevented 27% of
364 fatal crashes and
28% of 415 fatalities.
In these crashes, which
LKA was assessed to
potentially prevent, lane
markings were fully
visible, and weather
and driver’s input were
favorable for the
operation of LKA.

The analysis showed a
positive effect of the
LDW/LKA systems in
reducing lane departure
crashes.



Author Objective/Focus Data Findings

Crash Data ® 53% reduction in head-
Acquisition database on and single-vehicle
(STRADA). crashes.

Masello et al., (2022) e Quantify the expected e Utilized road safety e Deployment of the 6

impact of ADAS on reports from the UK most common ADAS

crash reduction across Department of would reduce crash

a combination of road Transportation. frequency in the UK by

types, lighting, and 23.8%.

weather conditions. e AEB is the most

impactful technology.

Cicchino, (2017) e Examine the e Police-reported e FCW alone, low-speed

effectiveness of FCW crashes from various AEB, and FCW with

in preventing rear-end agencies in the US. AEB reduced rear-end

crashes. striking crash

involvement rates by
27%, 43%, and 50%,

respectively.

Fildes et al., (2015) e Evaluate the e Used the national ¢ Findings show a 38
effectiveness of low- (police-reported) percent overall
speed autonomous crash database for reduction in rear-end
emergency braking rear-end crashes crashes for vehicles
(AEB) technology. from 2009. fitted with AEB

compared to a
comparison sample of
similar vehicles.

2.3 Influence of ADAS on Vulnerable Road Users' Safety

Pedestrians are among the most vulnerable road user groups, and their crashes have become
increasingly prevalent in recent years. In the United States, traffic crashes claimed the lives of
over 7,500 pedestrians in 2022, marking an 11 percent increase in pedestrian injuries in
comparison to the previous year (NHTSA, 2024). The nationwide disparity is evident as rural
communities accounted for 15% of pedestrian fatalities in 2022 (ITHS, 2022), even though 8% of
walking trips occurred in rural communities that same year (Jones et al., 2024). In 2022, Ohio
recorded a 1.61 fatality rate per 100 million VMT in rural areas compared to urban areas, 0.94
(NHTSA, 2024). These statistics underscore the efforts needed to improve pedestrian safety in
rural areas to lower the number of pedestrian fatalities.

Traditional safety measures such as traffic lights, stop signs, and pedestrian crossings have
long played a crucial role in ensuring road safety. However, despite their benefits, these measures
have proven insufficient to fully address the escalating risks to pedestrians (Bella et al., 2017).
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Without disregarding the advantages of these traditional safety measures, advances in vehicle
technology offer promising solutions that enhance pedestrian safety. A widely adopted example
of vehicle technology is the ADAS (Sangve et al., 2024). Within the ADAS, a key system
specifically aimed at preventing pedestrian crashes is the Pedestrian Automatic Emergency
Braking (PAEB) system, which has become increasingly prevalent in modern vehicles. The PAEB
utilizes a combination of camera and radar sensors to detect pedestrians along the predicted vehicle
path (Haus et al., 2019). This technology aims to minimize the impact of a collision with a
pedestrian by preventing fatalities or injuries. The PAEB system assists by either avoiding the
crash altogether or reducing the vehicle’s speed before the impact (Haus et al., 2019; Kullgren et
al., 2023; Nasution & Dirgantara, 2023). Lowering the vehicle's velocity decreases the crash's
severity, significantly reducing the likelihood of serious injury to the pedestrian. However, the
potential of PAEB in rural areas remains underexplored. Lower income levels and underdeveloped
transportation infrastructure contribute to technological inequities, such as lower penetration rates
of ADAS-equipped vehicles (Dianin et al., 2021; Fatima et al., 2024).

Despite the promising benefits of PAEB, existing studies have identified critical limitations
in its effectiveness. Previous research has shown that PAEB has two major limitations: the range
of pedestrian detection and the varying appearance of the pedestrian (Bella et al., 2017; Nasution
& Dirgantara, 2023; Tang et al., 2015). These limitations are particularly significant in rural
settings, where crashes often occur under challenging conditions such as poor lighting, higher
speeds, and fewer pedestrian infrastructure. Efforts like improving machine learning models to
cater to the varying appearance of pedestrians are important improvements (Tang et al., 2015). The
significance of these improvements can be underlined by addressing the gap in knowledge
regarding PAEB's effectiveness in rural pedestrian crashes, focusing on the real-world
performance of PAEB-equipped vehicles compared to non-equipped vehicles in reducing
pedestrian injury severity.

The increased interest in PAEB-equipped vehicles underscores the importance of assessing
the efficiency in reducing pedestrian fatalities. This is particularly crucial in rural settings where
fatality rates remain disproportionately high. A growing body of literature depicts the
methodologies used to assess the effectiveness of ADAS technologies. Logistic regression has
been widely used in estimating the probability of crash occurrence given a dataset of independent
variables/factors. It has been employed to identify significant variables directly related to crash
risks associated with various medical disorders (Ridella et al., 2015), as well as crash severity and
factors influencing lane-change crashes, including driver characteristics, road features, and
environmental conditions (Shawky, 2020). Torkashvand et al., (2022) used binomial logistic
regression mixed with high-order ordinary differential equations to examine the risk probability of
time to collision threshold for rear-end collisions on two-lane roads. On a similar note, Reagan &
McCartt, (2016) assessed the extent to which total mileage, vehicle model, and dealership had
significance on whether a vehicle would be observed with lane-departure warning turned on. Chi-
square tests and t-tests were employed to compare the observed results with the expected results
of the studies through the means of two groups of data sets. A relationship between the presence
of advanced driver assistance equipment and crash outcomes such as injury severity could be
established (Schoner et al., 2023). The difference between two subsets of cars with and without
automated emergency braking was established to evaluate the crash mitigation effect of low-speed
automated emergency braking systems (Isaksson-Hellman & Lindman, 2016). Despite extensive
research on determining the effectiveness of ADAS technologies, a specific gap exists in the
performance of PAEB systems, particularly in rural areas.
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3 DATA PREPARATION AND PREPROCESSING
3.1 Study Area

The research project focused on the state of Ohio, where 49 rural counties were considered
for the research. The criteria used to identify the rural counties were based on the population. The
details of these rural counties were obtained from the Census Bureau repository. Figure 3 shows
the distribution of the rural counties across Ohio. The research team identified these counties
because the data utilized in this project were centered around these counties.
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Figure 3: Rural counties in Ohio

3.2 Types of Data

The research team analyzed crash data in Ohio from 2017 to 2023, obtained from the Ohio
Department of Public Safety (ODPS). The data is divided into three key repositories: crash
statistics, unit statistics, and person statistics, each representing a dataset with unique details about
the crashes. Crash statistics provided information such as crash severity, weather, posted speed
limit, and impact location. Unit statistics included details about the vehicles involved, such as
vehicle identification number (VIN) and vehicle model and make. Person statistics contained
information about the vehicle’s occupants, such as age, gender, and person type. These three
datasets are connected through unique identifiers (document numbers) to merge the data. The
research team used the VIN to obtain automation information about the vehicle from the NHTSA
website through web scraping. ADAS technology data obtained from the website indicated only
what type of technologies a particular vehicle is equipped with, based on the parsed VIN.
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Figure 4: Distribution of the crash dataset

3.3 Data Preprocessing

The research project focused on three major types of crashes that were highlighted in the
literature review to significantly affect rural areas. These types of crashes include rear-end
collisions, sideswipe collisions, and pedestrian crashes. Crash data that involved this type of
scenario were collected and preprocessed, and the following elaboration explains how the crash
data were preprocessed and also shows the data summary.

In this research project, crashes were analyzed by categorizing the crash data based on the
type of collision for evaluation. The datasets, which included information on the vehicle’s ADAS
technology, were merged, and the necessary variables for analysis were selected. The primary
focus of the study was to determine the impact of ADAS-equipped vehicles on reducing crash
severity, specifically assessing CIB and FCW technologies in rear-end crashes, LKA, LDW, and
BSW in sideswipe crashes, and PAEB in pedestrian crashes. Additionally, the ADAS operating
mode and automation level were considered when selecting data for the study, which are reflected
in the unit statistics. Each vehicle involved in the crash was identified alongside its automation
status and the ADAS technologies equipped. However, in these rural area crashes, there was a high
proportion of conventional vehicles (those not equipped with ADAS), leading to a data imbalance.
To address this, the crashes were mapped using the ArcGIS Pro application, and based on the
literature review, a 50-feet buffer was established around the crash location of each ADAS-
equipped vehicle (Chengula et al., 2024; Kutela et al., 2020; Md Shakir Mahmud et al., 2024). All
conventional vehicles within the buffer zone were extracted, and each ADAS-equipped vehicle
was associated with one to five surrounding conventional vehicles. We were able to obtain a well-
balanced amount of datasets that were used for the analysis.

The data description in Table 2 contains both the rear-end crash data. It should be noted
that the data presented is essential unit-level data, where the crash data is described for every
vehicle involved in the crash. According to the data description in Table 2, crashes that led to
property damage only (PDO) were more frequent in Ohio rural areas than possible injury, minor
injury, serious injury, and fatal (KABC) crashes. About 65.41% of all rear-end crashes had a PDO
outcome, while all the severe outcomes of a crash were combined to form 34.59% of the crash
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dataset for the analysis. Drivers aged between 25 — 64 years old were in most of the crashes, where
63.01% of all drivers were involved in rear-end crashes.

Table 2: Data Description Summary for Rear-end Crashes

Rear End Crashes (n=11238)
Count Percent

Variable Category

Age Group
Under 25 2874 25.57%
age group 25-64 7081 63.01%
65+ 1283 11.42%

Unit Type

- 0
unit Type Non-passenger cars 6383 56.80%

Passenger cars 4855 43.20%

ADAS Operating

0,
ADAS_operating No 11085 98.64%

Yes 153 1.36%

Posted Speed Limit
<35 mph 1789 15.92%
posted _speed 35 - 45 mph 3043 27.08%
> 45 mph 6406 57.00%

Thrulanes
Not two thrulanes 2524 22.46%

thrulanes Two thrulanes 8714 77.54%

Impact Location

On roadway 10886 96.87%
Off roadway 352 3.13%

impact_location

Road Condition
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Rear E h =112
Variable Category ear End Crashes (n 38)

Count Percent
.. Dry 9136 81.30%
road_condition Wet/Snow/Icy 2102 18.70%
Light Condition
.. Daylight 9276 82.54%
Ight_condition DaZk 8 1962 17-46"/2
Speed Related
No 10275 91.43%
speed_related Yes 963 8.57%
Under Influence
No 10922 97.19%
UnderInfluence Yes 316 2.81%
Vehicle Technology
. No ADAS system 6462 57.50%
VehicleTechnology |+ ADAS system 4776 42.50%

Most drivers involved in the rear-end crashes were male drivers (56.30%) compared to
female drivers (43.70%). The data show that 56.8% of vehicles involved in rear-end crashes were
not passenger cars. Along the same line, only 2.29% of the vehicles involved in rear-end crashes
had automation levels greater than one, whereas 1.36% of all the vehicles in rear-end crashes had
the ADAS in operation. The data indicate that 86.29% of the vehicles found in error were not
ADAS-equipped vehicles. Furthermore, the data shows 57.50% of vehicles in rear-end crashes
were not equipped with ADAS, and 42.50% of vehicles were equipped with ADAS for the
vehicles.

Data suggest that most rear-end (57.00%) crashes occur on the road with a posted speed
limit greater than 45 mph. 64.10% of all vehicles involved in rear-end crashes were using road
sections without traffic control. The data indicates that most rear-end crashes (77.54%) occur on
roads with two through lanes. About 62.70% of rear-end crashes occur in areas that are not
intersection-related, and this is shown by the impact areas mainly on the roadway, where more
than 95% of rear-end crashes occur. Finally, some of the exposure conditions incorporated in the
study as variables show that most of the rear-end crashes occurred during clear weather, implying
during the daytime when there are dry road conditions. Also, most drivers involved in these crashes
were not speeding or under the influence of drugs or alcohol.

Table 3 describes sideswipe crash data, focusing on unit-level details for each vehicle
involved in crashes. Notably, crashes resulting in property damage only (PDO) were predominant
in Ohio’s rural areas, accounting for 83.82% of all sideswipe crashes. Additionally, drivers aged
between 25 and 64 were involved in most of these incidents, with 65.75% of all sideswipe crash
participants falling within this age group.

Table 3: Data Description Summary for Sideswipe Crashes

Sideswipe Crashes

Variable Category (n=1971)
Count Percent
Crash Severity
) PDO 1652 83.82%
crash_severity KABC 319 16.18%
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Sideswipe Crashes
Variable Category (n=1971)

Count Percent

Gender
Female 810 41.10%
Male 1161 58.90%

gender

ADAS In Error
No 1635 82.95%

ADASinerror Yes 336 17.05%

Automation Level
Level 0 1878 95.28%
Level 1+ 93 4.72%

automation_level

Traffic Control
No 1612 81.79%

traffic_control Yes 359 18.21%

Intersection Related
No 1577 80.01%

intersectionrelated Yes 394 19.99%

Weather
Clear 1219 61.85%

weather Adverse condition 752 38.15%

Light Condition
Ight_condition Daylight 1606 81.48%
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Sideswipe Crashes

Variable Category (n=1971)
Count Percent
Dark 365 18.52%
Speed Related
No 1609 81.63%
speed_related Yes 362 18.37%
Under Influence
No 1902 96.50%
UnderInfluence Yes 69 3.50%
Vehicle Technology
. No ADAS system 1075 54.54%
VehicleTechnology 1+ ADAS system 896 45.46%

Most drivers involved in sideswipe crashes were male (58.90%) compared to female
drivers (41.10%). Additionally, 59.06% of the vehicles involved in these crashes were not
passenger cars. Only 4.72% of the vehicles had higher automation levels than one, and just 3.3%
had ADAS operating during the crash. The data indicate that 82.95% of the vehicles found at fault
in sideswipe crashes were not equipped with ADAS, suggesting that ADAS-equipped vehicles
were less likely to be at fault. After data processing, the study showed that 54.54% of the vehicles
were not equipped with ADAS, while 45.46% were equipped with ADAS.

Furthermore, the data suggest that most sideswipe crashes (63.17%) occur on roads with a
posted speed limit greater than 45 mph, and most of these crashes happen in areas without traffic
control. Specifically, 81.79% of drivers involved in sideswipe crashes were on road sections
lacking traffic control. The data also indicate that 73.06% of sideswipe crashes occur on roads with
two through lanes. Additionally, 80.01% of these crashes happen in non-intersection areas, with
over 95% of sideswipe crashes occurring on the roadway. The study also incorporated exposure
conditions as variables, revealing that most sideswipe crashes occurred during clear weather,
typically in the daytime with dry road conditions. Furthermore, most drivers involved in these
crashes were neither speeding nor under the influence of drugs or alcohol.

Table 4 presents a summary of the crash data, focusing on injury-level details sustained by
pedestrians. Pedestrians were significantly more likely to suffer incapacitating injuries in crashes
occurring in rural areas, accounting for 447 incidents, which represents 41.97% of all pedestrian
crashes. Additionally, pedestrians aged between 25 and 64 were involved in most of these
incidents, with 51.45% of all incapacitating injuries sustained by this age group, 53.44% of all
non-incapacitating injuries falling within this age group, and 51.11% of all no injury crashes
involved an individual within this age group.

Table 4: Description of Pedestrian Crashes

Incapacitating Injury ~ Non-Incapacitating Injury No Injury
Variables (N=447) (N=393) (N=225)
Count percent Count percent Count percent
Age
25-64 230 51.45% 210 53.44% 115 51.11%
65+ 116 25.95% 56 14.25% 23 10.22%
Under 25 101 22.60% 127 32.32% 87 38.67%
Gender
Female 144 32.21% 145 36.90% 87 38.67%

18



Incapacitating Injury = Non-Incapacitating Injury No Injury

Variables (N=447) (N=393) (N=225)
Count percent Count percent Count percent

Male 303 67.79% 248 63.10% 138 61.33%

Unit Type

Non-Passenger Vehicle 239 53.47% 183 46.56% 97 43.11%

Passenger Vehicle 208 46.53% 210 53.44% 128 56.89%

Posted Speed Limit

35-45 mph 61 13.65% 75 19.08% 28 12.44%

< 35 mph 125 27.96% 195 49.62% 149 66.22%

> 45 mph 261 58.39% 123 31.30% 48 21.33%

Traffic Control

Controlled 46 10.29% 135 34.35% 91 40.44%

No Control 401 89.71% 258 65.65% 134 59.56%

Weather

Clear 316 70.69% 262 66.67% 146 64.89%

Not Clear 131 29.31% 131 33.33% 79 35.11%

Road Condition

Dry 382 85.46% 313 79.64% 176 78.22%

Not Dry 65 14.54% 80 20.36% 49 21.78%

Lighting Conditions

Dark 231 51.68% 164 41.73% 84 37.33%

Daylight 216 48.32% 229 58.27% 141 62.67%

Under Influence

False 373 83.45% 363 92.37% 215 95.56%

True 74 16.55% 30 7.63% 10 4.44%

Speed Related

False 378 84.56% 363 92.37% 220 97.78%

True 69 15.44% 30 7.63% 5 2.22%

PAEB System

Equipped 167 37.36% 210 53.44% 117 52.00%

Not Equipped 280 62.64% 183 46.56% 108 48.00%

Most pedestrians involved in crashes were male and sustained incapacitating injuries
(67.79 % of all incapacitating injuries) compared to female drivers, who were 32.21% of all
incapacitating injuries. Additionally, non-passenger vehicles caused more incapacitating injuries,
amounting to 53.47% of all incapacitating injuries, while crashes involving passenger cars resulted
in pedestrians sustaining non-incapacitating injuries and no injury (53.44% and 56.89% of all the
injuries, respectively). Furthermore, the data indicates that 58.39% of all the incapacitating injuries
occurred in the roadway that had a posted speed limit greater than 45 mph, while 49.62% of all the
non-incapacitating injuries and 66.22% of all the no injury vehicle-pedestrian crashes occurred in
the roadway with a posted speed limit less than 35 mph.

Most of the crash incidents are observed to occur in areas with no traffic control, whereas
incapacitating injuries (89.71%) were the predominant type of injuries that pedestrians sustained.
The data indicates most vehicle-pedestrian crashes occurred during clear weather conditions and
dry road surfaces suggesting that either few numbers of people or none walked during these
adverse weather conditions The data also indicate that lighting conditions had a role in the
occurrence of the crashes with incapacitating injuries outcome since 51.68% of all the
incapacitating injuries occurred during dark light while 58.27% and 62.67% of all the non-
incapacitating and no injuries respectively occurred during daylight times. The data clearly shows
that the majority of the vehicle-pedestrian crashes involved drivers who were neither speeding nor
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under the influence of alcohol or drugs. The data validates that vehicles that were not equipped
with the PAEB technology caused 62.64% of all the incapacitating injury crashes, while the
vehicles equipped with the PAEB technology were involved in crashes that had non-incapacitating
and no injury crashes (53.44% and 52.00% respectively).

4 METHODS AND MATERIALS

The research project implemented mainly two methodologies, which were latent Dirichlet
allocation (LDA) topic modeling and Bayesian network. These two methodologies were selected
because of the nature of the data, which were mainly categorical data and unstructured text data.
The two methodologies, considering their respective capabilities, can accurately analyze the
mentioned types of data to provide accurate inferences about the road safety conditions that prevail
in the case study. This section shows the mathematical formulation of both methodologies and the
assumptions that were considered during the analysis to make the inference.

Latent Dirichlet Allocation (LDA) Topic Modeling

LDA topic modeling is a generative probabilistic model that discloses the hidden meaning
or semantic structures in a collection of discrete data from text corpora. The LDA topic modeling
follows a series of data processing and analysis to obtain the results, as shown in Figure 5. Most
of the data processing involves cleaning the unstructured text to obtain a bag of words that can be
manipulated through topic modeling.

. . Removing stop words and Lemmatization of the
Importing the Converting text ; .
. special characters to words to obtain the
unstructured text into lowercase
create a bag of words stem words

J

]

by using the tf-idf
vector weight for
each words to
obtain the highest
weighted topic
based on the words

Result visualization ]

-

Figure 5: Data processing and analysis with LDA topic modeling

LDA is a three-level hierarchical Bayesian model, whereas each document (text corpora)
contains a mixture of latent topics wherein each topic is characterized by a distribution over the
words, and the relative importance of the topics captured in the form of different weights varies
from document to document. The underlying generative process of LDA topic modeling is shown
in Figure 6. For instance, given the parameters a and 3, consider the dimensional Dirichlet random
variables of topic mixture 6, a set of N topics z, and a set of N words w and K being the number
of topics generated.
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Document Level Topics

Word Level

Figure 6: Three-level LDA topic modeling

Considering the illustration in Figure 6, where the linking arrow lines show conditional
interdependency. The probability of generating a topic B given the corpora of text generated from
the document and word level is given by;

p(0,z,wla,B) = p(6la) [1}—1 P(Z,,|0)p(Wy|2s, B) )

Figure 6 and Equation 1 shows clearly the three levels of hierarchy represented by the
LDA model. The parameters o and  are corpus-level parameters, assumed to be sampled once
in the process of generating a corpus. The parameter 8 are document-level variables, sampled once
per document. Finally, the variables Z,,and w,, are word-level variables and are sampled once for
each word in each document. Inferencing the output of the model is a crucial aspect since we are
required to generate relevant and salient words on a topic. The words generated are grouped into
topics and ranked based on relevance and salience. Relevance is defined by combining the weight
of the probability of a term w to appear in topic K denoted by @,,, and lift (ratio of the probability
of the appearance on its topic (@y,,) to the probability of the term to appear in the overall corpus
of words (p,,))

r(w,k|6) = 8log(Dy,,) + (1 — &) log (Q;ﬂ) (2)

Equation 2 defines the relevance of term w to topic k given a weight parameter § (where
0 <6 <1) as the § determines the weight given to the probability of the term w under topic k
relative to its lift (measured both on the log scale). For the term to be relevant, the weighing
parameter 6 should be optimal since when § = 1, the term will be ranked based on the topic-
specific probability, and when § = 0, the ranking of the term will be solely based on the lift.
Therefore, based on the literature and studies, the optimal value for the weight parameter was
found to be 0.67 and was adopted for this study. Furthermore, the ranking terms considered salient
terms in corpora where the salient term was defined as the product of the probability of the term
w being selected for a topic and the distinctiveness of the term w. Whereas the distinctiveness of
term w was defined as the Kullback-Leibler divergence between p(k|w) and marginal probability

p ().

p(w) 3

distinctiveness(w) = Y rp(klw) X log( o0
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Whereas k represents the topic and w represents the words. The LDA topic modeling was
implemented in Python, and the LDAvis module was used to visualize the LDA analysis results.

Bayesian Networks

The study utilized Bayesian Network (BN) algorithms to explore the influence of the
ADAS technology on crash severity for vehicles involved in rear-end crashes. This algorithm was
selected because it is a powerful tool that can accommodate multiple variables and produce better
results when modeled, providing an upper hand compared to the models (Janssens et al., 2004;
Kutela et al., 2022). The BN algorithm offers a distinguishing statistical modeling approach that
interrelates variables using nodes, arcs, and conditional probability theory. The nodes represent the
random variables, and arcs indicate the conventional relationship between these variables, where
arcs are arrows in nature. The node found at the origin of the arc is known as the parent node,
while the node at the tail head of the arc is known as the child node. The connection between nodes
can be described using the joint probability distribution (Korb & Nicholson, 2010) represented by
Equation 4 below.

P(Xq ... Xp) = [liz1 P(Xi| ;) “4)

where X; represent a random variable, and I[1y; represents a set of parent nodes.

The BN involves two significant steps: structure learning and parameter learning. Structure
learning is the step that consists of comprehending the conditional interdependencies that exist
among the variables. This process can be performed through three analysis methods: the analytical
approach, expert knowledge, and a combination of analytical and expert knowledge to form a
hybrid approach (Demiroluk & Ozbay, 2014). The data set consists of uncertainty, so utilizing that
analytical approach is advisable. Additionally, the data set incorporates expert knowledge in
familiar matters (Rizzo & Blackburn, 2018). This study utilizes a hybrid approach, which allows
the analytical approach to formulate the dependencies and the expert knowledge to make
reasonable variable connections, hence striking a balance that is aligned with the study’s objective.
A greedy hill algorithm was employed to form the best network, and multiple scoring functions
were used to determine the optimal network (Kutela et al., 2022). These scoring functions include
the Akaike Information Criterion (AIC), K2 score, Bayesian Information Criterion (BIC), and
Bayesian Dirichlet equivalent uniform (Bdeu) score. The expression for each of the scoring
functions is shown in the equation below.

AIC=2+LL+2xn (5)
i i—1! i

K2score (X1, S5, D) = 10g(S5,D) + ZiLi( B}, (log (s ) + Bii, log(Nigc) (©)

BIC = In(N) xn — 2 * LL 7

BDeu (S,X) = log(P(X)) + I, (Z?zil(lOg <F<;(q_lll)

0 (e i)
+ Yot 108(F<Tf)” ®

Where LL represents the log-likelihood; n represents the number of instances of parameters
in a Bayesian Network, Individual sensitivity analysis. S; represents the BN structure; N’
represents the sample size; N;; represents the number of instances in data D; r; represents the
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number of states of the finite random variable X;, where the value X; represent the possible
configuration of the parent set.

The optimal structure that results from the scoring function is determined using structure
learning, and parameter learning proceeds to estimate the variables’ Conditional Probability
Distribution (CPD). Two methods for determining CPD are maximum likelihood estimation
(MLE) and comprehensive simulations known as Markov Chain Monte Carlo. This study utilizes
the MLE method for parameter learning (Koller & Friedman, 2009). This method estimates the
parameters of a specific distribution by using observed data to maximize the likelihood function,
considering a set of observations, for example, x4, X5, X3, X4, «.. ... , Xn. Therefore, the optimization
function is represented as shown in Equation 9.

f(x1, X2, X3, X4, oo .. ) Xn|D) ©)]

The MLE is defined as a logarithmic probability of the observation given the parameters
(Scutari, 2009), denoted by Equation 10.

11(3) = 325} tog P () 10 (3) = 15} tog P (L) 10 (3) = 25} teg P (37E) 10

where D;; represents the counts of the observations for the variable x; in dataset D;, while
PA;; represents the count of occurrences of x;Parent variables in D;. S represents BN’s structure,
D is the data, n represents the total number of distinct variables in the BN structure, and @
represents the projected parameters. To determine the influence of an ADAS-equipped vehicle on
a rear-end crash, a value of 1.0 (equivalent to 100%) was assigned to the category of parent
variable, and its influence on the category of child variable was assessed as denoted in Equation
11. This type of analysis is known as sensitivity analysis, where the model provides an evaluation
of the impact of a given variable. Thus, the sensitivity analysis provides an estimated change in
the predicted probability for the given sets of variables.

P(crash severity = i|Evidence, = 1) (11)

Where i is the probability of whether the respondent will incur a severe rear-end crash,
provided that evidence x represents a hypothesis variable, such as ADAS operation mode usage.
The BN was performed on the R 4.3.2 environment. Multiple packages, including Rgraphviz and
bnlearn, were utilized to perform this analysis (R Core Team, 2024).

5 RESULTS AND DISCUSSION

Based on the analysis conducted, the results and discussions were presented in two
sections. The first section shows the influence of ADAS on crash prevention, where the research
team discusses the results from analyzing the rear-end collision and sideswipe collision. In the
second section, the research team discusses the influence of the ADAS systems in the protection
of the vulnerable road users (VRUs), specifically pedestrians. The following are the results
discussions of the analysis.

5.1 Influence of ADAS on Crash Prevention
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Consider the following BNs for the trained and optimal network, which aim to identify the
variation in the severity level for vehicles involved in rear-end crashes based on the ADAS
technology equipped in the vehicle.

VehicleTechnology

automation_level @
"~ ADASINErTOr ‘

T S T
S, -
A

=y .
A\ o>
crash_severity 7 =

0

"ﬂ’
R

intersectionrelated

Figure 7: Initial trained network from either the rear-end crashes

The response variable is the crash severity, which has two categories: PDO and KABC.
The BN structures selected as the initially trained network for either manner of collision assessed
in this study were characterized by having the lowest value of the score function. Thus, the initially
trained network for rear-end crashes, as shown in Figure 7, is obtained from the AIC scoring
function. The interconnection shown by the arcs in Figure 7 between the variables (both
explanatory and response variables) shows the influence of one variable on another. Nevertheless,
when there is no connection between the variables, there is an implication that there is insufficient
information within the data to initiate or define the interdependency between these variables.
However, it should be considered that the scoring algorithm initiated the interdependency observed
in Figure 7 and does not reflect the actual scenarios. Therefore, expert knowledge and the findings
from previous studies are used to redefine the interconnection between the variables to obtain an
optimal BN structure that has logical connections aligned with the study objective and can be
formed, as shown in Figure 8.
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Figure 8: Optimal network used for rear-end crashes

Connections shown in Figure 8 are constructed by reversing, setting, and deleting the
initial arc relations established from the initial BN structure, respectively, for either of the two
types of manner of collision analyzed. The optimal network shows that the response variable,
which is crash severity, is a child variable for 15 explanatory variables, which are weather, lighting
conditions, vehicle technology equipped, automation level, ADAS operating mode, unit in error
(if it is ADAS equipped), the age group for the driver, vehicle type, driving under the influence,
gender, speeding related, posted speed limit, road conditions, location of the collision, and lastly
traffic control involved. Although some explanatory variables did not have a direct connection
response variable, these variables were parented to some of the hypothesis variables and thus
influenced these explanatory variables. For instance, intersection-related and number of thrulanes
were attributed to the location of the collision and the traffic control, respectively. Furthermore,
the direct and indirect interdependencies shown in Figure 8 were evaluated to obtain the predicted
probabilities of the hypothesis variables, which were the estimation of the effects of individual
evidence on the likelihood of severe crashes that caused injury or fatal outcomes. A sensitivity
analysis involving all the hypothesis variables was conducted along the same lines.

The study includes both individual evidence and combined evidence analysis. Individual
evidence analysis focuses on the likelihood of the crash with an injury or fatal outcome using
individual variable evidence. Also, the study conducted a combination analysis to examine the
likelihood of a vehicle equipped with one or more ADAS technologies being involved in a crash
with an injury or fatal outcome.

Individual Evidence Analysis

The results of the individual evidence analysis are presented in Table S for rear-end
crashes. Crash severity is used as the targeted variable for prediction purposes. Interpretation
performed for this model is based on the predicted probability and the sensitivity analysis results.
The analysis and interpretation focused on responding to the research question: what is the
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likelihood of the vehicle equipped with ADAS being involved rear-end crash with a severity
outcome of injury or fatal injury? The reference category used in Table 5 was selected based on
the criteria that it has the least likelihood of occurring or leading to less severe crash outcomes.

Table 5: Predictions and Sensitivity Scores for Individual Evidence

Overall Sensitivity
Score

Variable/Category Predict Probability

Gender
Female 33.72%
Male 34.47% 0.75%

ADAS In Error
No 34.03%
Yes 35.07% 1.04%

Automation Level
Level 0 34.04%
Level 1+ 42.51% 8.47%

Traffic Control
No 38.15%
Yes 26.45% -11.70%

Intersection Related
No 34.18%
Yes 34.22% 0.05%

Weather
Clear 34.91%
Adverse condition 32.33% -2.58%
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Overall Sensitivity

Variable/Category Predict Probability

Score
Dry 35.00%
Wet/Snow/Ice 29.68% -5.32%
Light Condition
Daylight 33.46%
Dark 36.89% 3.43%
Speed Related
No 32.90%
Yes 52.93% 20.03%
Under Influence
No 34.01%
Yes 48.95% 14.93%
Vehicle Technology
No ADAS system 34.76%
1+ ADAS system 33.26% -1.49%

The findings of the study indicate that the probability of severe rear-end crashes is
increased by 5.28% for a driver aged between 25 to 64 years old, whereas the probability increases
by 5.64% for the senior drivers with an age of more than 65 years old. This finding substantiates
the fact that as people age, the perception of reaction time increases; thus, the capability of instantly
applying brakes before colliding with the front vehicle decreases, especially for senior drivers (F.
Chen et al., 2019; Hell et al., 2002; Zou et al., 2023). The results show that male drivers have a
0.75% probability higher probability of being involved in crashes with severe outcomes than
female drivers. The findings are highly associated with the vehicle’s speeding since male drivers
are found to be mostly speeding and hence fail to stop on short notice when required (Li et al.,
2016). Hang et al., (2022) indicate that male drivers are more aggressive compared to females.

The results indicate a 33.58% probability of passenger cars being involved in rear-end
crashes with a severe outcome, which was 0.95% lower than the probability of other non-passenger
cars (34.54%). The findings complement the advancement in technology that has been made in the
passenger car, such as equipping the passenger car with an effective braking system and equipping
it with ADAS technology, such as CIB and FCW. Counterintuitively, the results indicate that the
probability of the rear-end having a severe outcome increases by 1.04% when an ADAS-equipped
vehicle in an error, and the magnitude of the likelihood increases by 9.49% when the vehicle
involved was operating in ADAS mode (Masello et al., 2022), and capping all the results indicates
the probability of the rear-end to have a severe outcome increases by 8.47% when the vehicle has
with automation level greater than one. These counterintuitive results complement the observation
in the data description in Table 2 that most rear-end crashes in Ohio rural areas involve
conventional vehicles that are not equipped with ADAS. Few ADAS-equipped vehicles were
found in error, and the one ADAS operating when involved in rear-end crashes with severe
outcomes, driver behavior, and action had a high contribution since most of these vehicles are not
fully automated.

Furthermore, the probability of rear-end crashes having severe outcomes increases with an
increase in the posted speed limit, where there was a 28.86% probability of this crash occurring on
the road with a speed limit ranging from 35 mph to 45 mph. There is a 10.69% increase compared
to the road, with a speed limit of less than 35mph. There was a 40.25% probability of this crash
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occurring on the road with a posted limit greater than 45 mph, which indicated a 22.08% increase
compared to the road with a posted speed limit of less than 35 mph. This finding suggests that rear-
end crashes with severe outcomes mainly occur on highways and arterial roads (Dabbour et al.,
2020). Using traffic control systems on the road section tends to decrease the probability of rear-
end crashes with severe outcomes by 11.7%. This finding indicates that traffic control is helping
Ohio rural areas to control congestion, which is the primary cause of rear-end crashes in rural
areas. The probability of severe rear-end crashes decreases by 2.58% under adverse weather
conditions and decreases by 5.32% when the road surface condition is wet, snowy, or icy. The
decrease in probability is caused by concentration, alertness, and relatively lower travel speed by
drivers traversing these harsh conditions.

Rear-end crashes are 3.43% more likely to occur during dark times than daytime when the
surroundings are visible and the sight distance is long enough to spot a stopped vehicle from a
distance, alerting the driver (Dabbour et al., 2020). Intuitively, speeding vehicles are 20.03% more
likely to be involved in rear-end crashes that have severe outcomes because the vehicle fails to
stop on time; hence, a hard rear-end collision has a high probability of occurring. Similarly, drivers
driving under the influence of drugs or alcohol have a 14.93% higher likelihood of being involved
in a rear-end crash with severe outcomes. The finding suggests that drivers who are influenced by
alcohol or drugs are not mentally well enough to make decisions on the road, hence causing
collisions (Masello et al., 2022). However, the probability of a vehicle equipped with one or more
ADAS technologies is decreased by 1.49%. Therefore, this finding indicates that equipping more
vehicles with ADAS or influencing the people in Ohio’s rural areas to use technologically
improved vehicles will decrease the probability of rear-end crashes with severe outcomes.

Combined Evidence Analysis Results

Table 6 presents the predicted probabilities and associated sensitivity scores for the various
combinations of variables. The main goal of performing the combined evidence analysis was to
explore the additional benefits for vehicles involved in severe rear-end crashes when equipped
with ADAS technology.

Table 6: Predictions and Sensitivity Scores for the Combined Evidence Analysis
Sensitivity Scores

Variable Category P::){)‘:L‘iclti v No ADAS ADAS
Equipped Equipped
Age Group
Under 25 31.07%
No ADAS Equipped 25 - 64 36.21% 5.14%
65+ 34.80% 3.74%
Under 25 28.91%
1+ ADAS Equipped 25-64 33.88% 4.98%
65+ 38.05% 9.15%
Gender
. Female 33.87%
No ADAS Equipped 1 35.73% 1.86%
. Female 32.57%
I+ ADAS Equipped —p o 33.48% 0.90%
Unit Type
No ADAS Equipped Non-passenger cars 34.83%
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Predict Sensitivity Scores

Variable Category Probability go :lAiDzz(Sl EAIEASe .

ADAS In Error
. No 34.90%
No ADAS Equipped Yes 0.00% -34.90%
. No 32.13%
1+ ADAS Equipped Yes 35.18% 3.05%

Automation Level

. Level 0 34.76%
No ADAS Equipped " " ©1 0 45.81% 11.05%
. Level 0 33.02%
I+ ADAS Equipped " "0 39.39% 6.36%

Traffic Control
. No 38.67%
No ADAS Equipped Yes 26.97% -11.70%
. No 37.29%
1+ ADAS Equipped Yes 25.45% -11.85%

Intersection Related

. No 34.85%
No ADAS Equipped Yes 34.84% -0.01%
. No 32.92%
1+ ADAS Equipped Yes 33.06% 0.14%

Weather
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Sensitivity Scores

Predict

Variable Category ili No ADAS ADAS
Probability Equipped Equipped
. Clear 35.08%
No ADAS Equipped Adverse condition 34.25% -0.83%
. Clear 34.67%
I+ ADAS Equipped Adverse condition 29.49% -5.17%
Road Condition
: Dry 35.58%
NoADAS Equipped  we/snow/lce 31.71% -3.87%
: Dry 34.18%
+
I+ ADAS Bquipped v s how/Tce 26.77% ~141%
Light Condition
. Daylight 34.54%
No ADAS Equipped Dark 36.06% 1.52%
. Daylight 32.44%
1+ ADAS Equipped Dark 37.70% 5.26%
Speed Related
. No 33.32%
No ADAS Equipped Yes 53.96% 20.63%
. No 32.18%
1+ ADAS Equipped Yes 51.28% 19.09%
Under Influence
. No 34.61%
No ADAS Equipped Yes 47.13% 12.52%
: No 32.49%
1+ ADAS Equipped Yes 51.07% 18.58%

Based on the results, each hypothesis displayed a trend when vehicle technology was kept
as evidence for the combination analysis. The discussion in Table 7 shows a clear understanding
of the trend for different explanatory variables used in the study.

Table 7: Findings of

the combination analysis of the rear-end crashes

Variable

Discussion

Age Group

There was an increase in the probability of vehicles being involved in a severe rear-
end crash as the driver’s age increased for both vehicles equipped and not equipped
with ADAS technology. However, the magnitude of the probability changes for the
drivers aged between 25 to 64 years old who were using vehicles equipped with one
or more ADAS technology (4.98%) is observed to be lower than drivers of similar
age but using a vehicle with no ADAS technology (5.14%). Implies that a
significant number of adult drivers are likely to be involved in crashes when using
vehicles equipped with one or more ADAS technologies (Hell et al., 2002).
However, the opposite becomes valid in the case of senior drivers since there is a
rise in the magnitude of the probability change for the senior drivers utilizing
vehicles equipped with ADAS.

Gender

Male drivers are found to have an increased probability of being involved in severe
rear-end crashes. The likelihood of male drivers being involved in severe rear-end
crashes is increased by 1.86% when using a vehicle not equipped with ADAS. In
comparison, the probability is increased by 0.9% when using a vehicle equipped
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Variable

Discussion

with ADAS. However, the magnitude of the probability changes decreases when the
male driver is using the ADAS-equipped vehicle, implying that when a vehicle is
equipped with either CIB or FCW or both, the male driver is less likely to be
involved in a severe rear-end crash (Md Shakir Mahmud et al., 2024).

Unit Type

Passenger cars were less likely to be involved in severe rear-end crashes, and the
probability of passenger cars not being equipped with ADAS decreased by 0.04%,
while those equipped with ADAS decreased by 2.22%. The findings indicate that
passenger cars equipped with ADAS are less likely to be involved in severe rear-
end crashes than vehicles not equipped with ADAS technologies (F. Chen et al.,
2019).

ADAS In Error

The results also indicate that when a vehicle equipped with one or more ADAS
technologies was found to be in error, the probability of rear-end collisions with
severe outcomes increased by 3.05%.

ADAS Operating

Furthermore, the probability of change for the vehicles equipped with one or more
ADAS and during the crash had their ADAS technology operating (9.53%) was less
than those not equipped with ADAS (23.43%).

Automation
Level

vehicle that was equipped with ADAS and the automation level of the vehicle was
higher than that of a typical conventional vehicle, the probability of this vehicle
being involved in a severe crash was lower (6.36%) compared to the vehicle that
was not equipped with ADAS technology, which had a probability change of
11.05%. The study’s findings indicate that when the vehicle is equipped with ADAS
and has a higher automation level, the probability of being involved in a severe rear
crash is lowered significantly, improving safety.

Posted Speed
Limit

Regarding the influence of speed, the findings indicate that the higher the posted
speed limit along the road section, the higher the probability of severe rear-end
crashes for vehicles equipped with ADAS and those not equipped with ADAS. This
finding validates that vehicles traversing highways and other high-speed roads
cannot stop on short notice or in time to prevent rear-end collisions.

Traffic Control

Traffic control along the road decreases the probability of both vehicles that are
equipped and vehicles that are not equipped with ADAS technology. The finding
shows that traffic control signs and systems, such as stop signs, yield signs, and
traffic signals, help reduce preventable rear-end collisions that are prominent in
Ohio’s rural areas (Dabbour et al., 2020; Zou et al., 2023).

Impact Location

Vehicles not equipped with ADAS were found to be more likely to be involved in
off-roadway rear-end crashes, where the probability of these vehicles being
involved increased by 3.44%. In contrast, the probability of vehicles equipped with
ADAS being involved in an off-roadway severe rear-end crash was decreased by
9.01%. The findings show that vehicles with ADAS technology could detect and
alert the driver, preventing crashes.

Weather

During adverse weather conditions, visibility is obscured, preventing drivers from
having to extend long-sighted distances. The adverse weather conditions affect the
road, causing the road to be wet and slippery due to rain or snow. However, the
study results show that when the vehicle is equipped with one or more ADAS
technologies, the probability of the crash is decreased by 5.17% during adverse
weather conditions, and the probability is decreased by 7.41% when there are poor
road conditions. The finding shows that ADAS-equipped vehicles are much safer to
use for travel during adverse weather conditions because drivers will be alerted to
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Variable Discussion
stopped vehicles or reduce the speed of the leading vehicle, hence stopping at much
safer distances.

Light Condition = The probability of a vehicle equipped with ADAS technology and a vehicle not
equipped with ADAS technology increased by 5.26% and 1.52%, respectively,
during nighttime when the light condition is dark. Therefore, vehicles equipped with
ADAS technology do not help reduce severe rear-end crashes during the night for
vehicles in rural areas in Ohio. However, poor lighting conditions affect the
efficiency of the sensors (Ma & Yan, 2014; Zou et al., 2023).

Speed Related The study’s findings indicate that the probability of a vehicle equipped with ADAS
technology and a vehicle not equipped with ADAS technology increased by 19.09%
and 20.63%, respectively, when the vehicle is speeding. Therefore, vehicles
equipped with ADAS technology do not help prevent rear-end crashes for vehicles
speeding in Ohio’s rural areas. However, equipping the vehicle with ADAS
technology decreased the number of speeding vehicles.

Under Influence The findings also indicated that the probability of both a vehicle equipped with
ADAS technology and a vehicle that is not equipped with ADAS technology having
a severe outcome in a crash was increased by 18.58% and 12.52%, respectively,
when the driver is under the influence of either drugs or alcohol. Therefore, vehicles
equipped with ADAS technology do not have the assurance to prevent severe rear-
end crashes by intoxicated drivers.

Consider the following Bayesian Networks for the trained and optimal network, which aim
to identify the variation in the severity level for vehicles involved in sideswipe crashes based on
the ADAS technologies equipped in these vehicles. The response variable is the crash severity,
which has two categories: PDO and KABC (severity level includes minor injury, injury suspected,
serious injury, and fatal crash). The BN structure selected as the initially trained network assessed
in this study was characterized by having the lowest value of the score function. Thus, the initially
trained network of the sideswipe crashes, as shown in Figure 9, is obtained from the K2 search
algorithm scoring function. The interconnection shown by the arcs in Figure 9 between the
variables (both explanatory and response variables) shows the influence of one variable on another.
Nevertheless, when there is no connection between the variables, there is an implication that there
is insufficient information within the data to initiate or define the interdependency between these
variables. However, it should be considered that the scoring algorithm initiated the
interdependency observed in Figure 9 and does not reflect the actual scenarios. Therefore, expert
knowledge and the findings from previous studies are used to redefine the interconnection between
the variables to obtain an optimal BN structure that has logical connections aligned with the study
objective. The refined network is shown in Figure 10.
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Figure 9: Initial trained network from sideswipe crashes.
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Figure 10: Optimal network used for sideswipe crashes

The connections shown in Figure 8 are constructed by reversing, setting, and deleting the
initial arc relations established from the initial BN structure, respectively, for either of the two
types of manner of collision analyzed. The optimal network shows that the response variable,
which is crash severity, is a child variable for 15 explanatory variables, which are weather, lighting
conditions, vehicle technology equipped, automation level, ADAS operating mode, unit in error
(if it is ADAS equipped), the age group for the driver, vehicle type, driving under the influence,
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gender, speeding related, posted speed limit, road conditions, location of the collision, and lastly
traffic control involved. Although some explanatory variables did not have a direct connection
response variable, these variables were parented to some of the hypothesis variables and thus
influenced these explanatory variables. For instance, intersection-related and number of thru lanes
were attributed to the location of the collision and the traffic control, respectively. Furthermore,
the direct and indirect interdependencies shown in Figure 8 were evaluated to obtain the predicted
probabilities of the hypothesis variables, which were the estimation of the effects of individual
evidence on the likelihood of severe crashes that caused injury or fatal outcomes. A sensitivity
analysis involving all the hypothesis variables was conducted along the same lines.

The study includes both individual evidence and combined evidence analysis. An
individual evidence analysis analyzed the likelihood of the crash with injury or fatal outcome using
individual variable evidence. Also, the study conducted a combination analysis to examine the
likelihood of a vehicle equipped with one or more ADAS technologies to be involved in a crash
with an injury or fatal outcome concerning the hypothesis variables. The results of the individual
evidence analysis are shown in Table 8. Also, the results of the combination analysis are presented
in Table 9.

Individual Evidence Analysis for Hypothesis Variables

Model results presented in Table 8 are obtained by considering crash severity as the
targeted variable for the prediction. Interpretation performed for this model is based on the
predicted probability and the sensitivity analysis results. The analysis and interpretation focused
on responding to the research question: What is the likelihood of the vehicle equipped with ADAS
being involved in a sideswipe crash resulting in a severe injury outcome (KABC)? The reference
category used in Table 8 was selected based on the criteria that has the least likelihood of occurring
or leading to less severe injury outcomes.

Table 8: Predicted Probability and Sensitivity Analysis Scores

Variable/Category Predict Probability Overall Sensitivity Score
Age Group

Under 25 12.62%

25-64 15.65% 3.02%
65+ 11.17% -1.46%
Gender

Female 16.83%

Male 13.00% -3.83%
Unit Type

Non-passenger cars 14.72%

Passenger cars 14.46% -0.26%
ADAS In Error

No 14.39%

Yes 15.33% 0.94%
ADAS Operating

No 14.64%

Yes 8.79% -5.86%
Automation Level

Level 0 14.61%

Level 1+ 13.18% -1.43%
Posted Speed Limit
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Variable/Category Predict Probability Overall Sensitivity Score

<35 mph 3.83%

35 - 45 mph 9.09% 5.26%

> 45 mph 17.57% 13.73%
Traffic Control

No 15.16%

Yes 10.48% -4.68%
Thrulanes

Not Two thrulanes 14.36%

Two thrulanes 14.47% 0.11%

Intersection Related

No 14.52%

Yes 14.55% 0.03%

Impact Location

On roadway 14.65%

Off roadway 9.98% -4.66%
Weather

Clear 14.10%

Adverse condition 15.07% 0.96%

Road Condition

Dry 14.48%

Wet/Snow/Ice 14.93% 0.45%

Light Condition

Daylight 14.20%

Dark 16.83% 2.63%

Speed Related

No 13.76%

Yes 19.68% 5.92%

Under Influence

No 14.35%

Yes 38.73% 24.38%
Vehicle Technology

No ADAS system 14.29%

1+ ADAS system 14.84% 0.55%

The findings of individual evidence analysis are based on analyzing the sideswipe crashes
dataset. There was a 0.26% decrease in the probability of passenger cars being involved in
sideswipe crashes with severe outcomes. The likelthood of ADAS vehicles being in error in
sideswipe crashes with severe outcomes was increased by 0.94%. Roads with a posted speed limit
of more than 35 mph have a higher probability of severe sideswipe crashes. For instance, the
likelihood of a vehicle being involved in a sideswipe crash that has a severe outcome increases by
5.26% while traversing roads with posted speed limits ranging between 35mph and 45mph.
Furthermore, the probability increased by 13.73% while crossing a road with a posted speed limit
greater than 45 mph. However, for roads with traffic control, the probability of a vehicle being
involved in a sideswipe crash with a severe outcome is decreased by 4.68%.

In the same line, the results indicate a 4.66% decrease in the probability of severe sideswipe
crashes off the roadway, thus indicating that most severe sideswipe crashes in Ohio rural areas
occur between vehicles traveling in adjacent lanes. The results suggest that the probability of
severe sideswipe crashes increases by 2.63% during dark conditions, whereas Jumaa et al. (Jumaa
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et al., 2019) suggest that the darkness hinders the ADAS system from detecting the road markings.
The probability increases by 5.92% when the vehicle is speeding, which is similar to various
studies (Fildes et al., 1991; Fleiter et al., 2010). Also, the results indicate that the probability of a
sideswipe crash with a severe outcome is increased by 24.38% when the driver is under the
influence of alcohol or drugs; thus, it is difficult to maintain road stability (Alonso et al., 2015).

The probability of drivers aged between 25 and 64 years old being involved in a severe
sideswipe crash is increased by 3.02%. In comparison, the likelihood of senior drivers aged 65
years and above being involved in similar crashes decreased by 1.46%. This finding validates that
the adult group of drivers is often distracted and aggressive when driving, hence increasing the
chance of moving out of the lane or not seeing vehicles that are in the blind spot of the vehicle,
which are typical causes of sideswipe collisions. However, the senior drivers were most likely
experienced, aware of their surroundings while driving, and concentrated on staying in their travel
lane. The probability of male drivers being involved in severe sideswipe crashes decreases by
3.83% compared to female drivers. The findings indicate that most females have a higher chance
of moving out of their travel lane and colliding with other vehicles than male drivers.

Furthermore, the results indicated that for vehicles with ADAS systems operating at the
time of the crash and with automation levels greater than one, their probability of being involved
in a severe sideswipe crash decreased by 5.83% and 1.43%, respectively. The findings are
intuitively valid because systems like LKA, which offer a degree of automation, have been found
to reduce the occurrence of certain types of crashes (Leslie et al., 2021). The findings imply that
the ADAS technology lowers the likelihood of vehicles being involved in severe sideswipe
crashes. However, when considering the influence of weather implying the presence of adverse
weather conditions that directly led to having wet, snowy, or icy road conditions, the probability
of a vehicle to involved in a severe sideswipe crash was increased by 0.96% during adverse
weather and 0.45% when the road section was wet, snowy, or icy. This finding implied that drivers'
chances of moving out of the lane or being unable to see the vehicle in the blind spot increased
during adverse weather and road conditions caused by a loss of traction or poor visibility. Finally,
the probability of a vehicle equipped with ADAS technology being involved in a severe sideswipe
crash increased by 0.55%. The probability increase observed indicates that vehicles involved in
the crashes were equipped with these technologies. Still, only a few of the vehicles had the
technology operating during the crash.

Combination Analysis for the Hypothesis Variables

Table 9 presents the predicted probabilities and associated sensitivity scores for the various
combinations of variables. Based on the results in Table 9, each hypothesis displayed a trend when
vehicle technology was kept as evidence for the combination analysis. The results of the
combination analysis show a decrease in the probability of vehicles being involved in severe
sideswipe crashes as the driver's age increased for both vehicles equipped and not equipped with
ADAS technology. However, the magnitude of the probability changes for drivers aged between
25 to 64 years old who were using vehicles equipped with one or more ADAS technology (0.17%)
is observed to be lower than drivers of similar age but using a vehicle with no ADAS technology
(4.34%). This implies that the number of adult drivers likely to be involved in crashes when using
vehicles equipped with one or more ADAS technologies is decreasing. Concurrently, a similar case
was observed on senior drivers, where the probability of the senior drivers utilizing vehicles
equipped with ADAS decreased by 2.56% compared to senior drivers driving vehicles not
equipped with ADAS. The findings align with previous studies indicating that ADAS has
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significantly reduced the sideswipe crashes in rural areas. Overall, male drivers were found to have
an increased probability of being involved in severe sideswipe crashes. In contrast, the likelihood
of male drivers being involved in severe sideswipe crashes decreased by 2.97% when using a
vehicle not equipped with ADAS. In comparison, the likelihood decreased by 4.28% when using
a vehicle equipped with ADAS. The magnitude of the probability change decreased further below
when the male driver was using the ADAS-equipped vehicle, implying that when the vehicle is
equipped with either BSW, LKA, or LDW, all led to the male driver being less likely to be involved
in a severe sideswipe crash.

Passenger cars were found to be less likely to be involved in severe sideswipe crashes,
where the probability of passenger cars not equipped with ADAS increased by 1.90% while the
number of ones equipped with ADAS decreased by 3.98%. The findings indicate that passenger
cars that are equipped with ADAS are less likely to be involved in severe sideswipe crashes
compared to vehicles that are not equipped with ADAS technologies since these drivers are alerted
as soon as they start moving out of their lanes or when there was the vehicle on their blind spot
hence significantly reduces the likelihood of causing or involved in these types of crashes. The
result indicates that when the vehicle with one or more ADAS technologies was in error, the
probability of sideswipe collisions having severe outcomes increased by 0.98%. This is because
of the adaptive behavior of the drivers, which is caused by dependencies on the ADAS technology
(Vertlib et al., 2023).

Table 9: Predicted Probabilities and Sensitivity Score for the Combined Evidence Analysis
Predict Sensitivity Scores

Variable Category Probability =~ No ADAS Equipped ADAS Equipped
Age Group
Under 25 11.45%
No ADAS Equipped 25 - 64 15.79% 4.34%
65+ 10.51% -0.94%
Under 25 15.06%
1+ ADAS Equipped 25 - 64 15.23% 0.17%
65+ 12.50% -2.56%
Gender
Female 16.11%
No ADAS Equipped
© AHPPEE Male 13.13% 2.97%
. Female 17.50%
+
I+ ADAS Equipped /1o 13.21% -4.28%
Unit Type
. Non-passenger cars 13.55%
I AUDEE BT Passenger cars 15.45% 1.90%
. Non-passenger cars 16.26%
REC R usope Passenger cars 12.37% -3.89%
ADAS In Error
No 14.11%
No ADAS Equi d
© AUPPEE yeg 0.00% 14.11%
No 14.53%
1+ ADAS Equipped
UPPEE yes 15.51% 0.98%
ADAS Operating
. No 14.31%
W0 ADASImaEEs 1.06% -13.25%
1+ ADAS Equipped  No 14.97%
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Predict Sensitivity Scores
Probability No ADAS Equipped ADAS Equipped

Variable Category

Automation Level

. Level 0 14.40%
No ADAS Equipped 12.65% -1.75%
. Level 0 14.75%
+
1+ ADAS Equipped Level 1+ 13.11% -1.65%

Traffic Control
) No 14.83%
No ADAS Equipped Yes 10.77% -4.06%
) No 15.53%
+
1+ ADAS Equipped Yes 10.09% -5.44%

Intersection Related

] No 14.12%
No ADAS Equipped Yes 14.22% 0.11%
) No 14.84%
+
1+ ADAS Equlpped Yes 14.72% -0.12%

Weather
. Clear 13.36%
No ADAS Equipped Adverse condition 16.22% 2.86%
. Clear 15.29%
+
I+ ADAS Equipped Adverse condition 13.72% -1.57%

Light Condition
) Daylight 14.49%
No ADAS Equipped Dark 13.11% -1.38%
_ Daylight 13.87%
+
1+ ADAS Equlpped Dark 22.77% 8.90%

38



Predict Sensitivity Scores

Variable Category Probability =~ No ADAS Equipped ADAS Equipped
Speed Related
. No 13.37%
No ADAS Equipped Yes 19.58% 6.21%
_ No 14.36%
1+ ADAS Equipped Yes 18.89% 4.53%
Under Influence
No 14.03%
No ADAS Equipped
° quPPet yog 39.06% 25.03%
No 14.77%
1+ ADAS Equipped
quippe Yes 29.78% 15.02%

The results indicated that the probability of change for vehicles equipped with one or more
ADAS and had their ADAS technology operating decreased by 5.97% during the crash. Similarly,
the vehicle that was equipped with ADAS and the automation level of the vehicle was higher than
regular conventional vehicles, the probability of the vehicle being involved in a severe crash
decrease by 1.65% compared to the cars that were not equipped with ADAS technology, which
had a reduced probability change of 1.75%. The study's findings indicate that when the vehicle is
equipped with ADAS and has a higher automation level, the probability of being involved in a
severe sideswipe crash is lowered significantly, hence improving the safety of the occupants
(Cicchino, 2018; Jumaa et al., 2019). The finding is valid because ADAS, like LKA, offers a degree
of automation and has been found to reduce the occurrence of certain types of crashes (Leslie et
al., 2021).

The study's findings indicate that the higher the posted speed limit along the road section,
the higher the probability of severe sideswipe crashes occurring for vehicles equipped with ADAS
and those not equipped with ADAS. The finding validates that vehicles traversing highways and
other high-speed roads are generally unstable in one lane, and a slight tilt on the steering wheel
can lead to a severe sideswipe crash. The findings indicated that traffic control along the road
decreases the probability of both vehicles that are equipped and vehicles that are not equipped with
ADAS technology. The finding suggests that traffic control signs and systems, such as stop signs,
yield signs, and traffic signals, help reduce preventable sideswipe collisions that are likely to occur
in Ohio's rural areas.

Vehicles not equipped with ADAS were found to be less likely to be involved in off-
roadway sideswipe crashes, where the probability of these vehicles being involved in these crashes
decrease by 5.44%. At the same time, the likelihood of the vehicle equipped with ADAS being
engaged in an off-roadway severe sideswipe crash was decreased by 2.01%. The findings show
that both vehicles equipped with ADAS technology and those that are not equipped are less likely
to be involved in roadway sideswiping since crashes at off-roadway, for instance, merging and
diverging ramp areas depend on the driver's attentiveness to the surroundings by knowing where
other vehicles are located before making a maneuver action thus the severity of this crash is not
affected by the presence of the technology. During adverse weather conditions, visibility is
obscured, preventing drivers from maintaining traction on the tire, and they can slip to the next
lane or off the road without notice. The adverse weather conditions affect the road, causing the
road to be wet and slippery due to rain or snow. However, the study results show that when the
vehicle is equipped with one or more ADAS technologies, the probability of a crash is decreased
by 1.57% during adverse weather conditions. In contrast, the likelihood of vehicles not being
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equipped with ADAS technology increased by 2.86%. Similarly, the probability of a vehicle
equipped with ADAS technology being involved in a sideswipe crash with a severe outcome was
decreased by 3.29% when there were poor road conditions.

In comparison, the probability of a vehicle not equipped with ADAS technology was
increased by 3.19%. The finding shows that ADAS-equipped vehicles are much safer to use for
travel during adverse weather conditions because drivers would be alerted that the vehicle is
moving out of the lane; thus, drivers can reduce their speed and gain control of the vehicle, hence
maneuvering quickly and safely without causing or being involved in a sideswipe crash (Uddin &
Huynh, 2020). The finding is counterintuitive because, according to Jumaa et al., (2019), adverse
weather, such as heavy rain and snow, interferes with the effectiveness of LKA, which may
increase the probability of crashes. However, this study’s findings show this is not the case in rural
areas. The study's findings are counterintuitive since they indicate that the probability of a vehicle
equipped with ADAS technology being involved in a severe sideswipe crash is increased by 8.9%.
Jumaa et al., (2019) support this by validating that poor light conditions compromise the
effectiveness of ADAS, causing errors in the system that drivers rely on in these conditions. In
comparison, the likelihood of vehicles not being equipped with ADAS technology decreased by
1.38% when the light condition was dark. Therefore, the vehicle has been equipped with ADAS
technology, which helps reduce severe sideswipe crashes during the night for vehicles in rural
areas in Ohio.

The study's findings indicate that the probability of a vehicle equipped with ADAS
technology and a vehicle not equipped with ADAS technology increased by 4.53% and 6.21%,
respectively, when the vehicle is speeding. Therefore, vehicles equipped with ADAS technology
do not help prevent sideswipe crashes caused by speeding cars in Ohio's rural areas. However,
equipping the vehicle with ADAS technology decreases the number of speeding vehicles. The
findings of the study indicate that the probability of both a vehicle equipped with ADAS
technology and a car that was not equipped with ADAS technology was increased by 15.02% and
25.03%, respectively, when the driver is under the influence of either drugs or alcohol. Therefore,
vehicles with ADAS technology do not significantly help prevent severe sideswipe crashes for
intoxicated drivers. However, if the level of automation increases, these crashes will likely
decrease since the driver is required to meet a minimum percentage.

5.2 Influence of ADAS on VRU Protection
LDA topic modeling results

Crash narratives were divided into two groups (vehicles equipped with PAEB and vehicles
not equipped with PAEB). These narratives formed a corpus (bag of words) that was analyzed
using the LDA topic modeling to obtain relevant and salient topics and terms. The LDA results
are based on the two groups of the crash narratives.

Vehicles equipped with PAEB

The left-hand side of Figure 11 shows the Intertopic Distance Map. The topics in the corpus
are well-dispersed, indicating a wide range of independent subjects. However, some topics are
closely related, as shown by the short intertopic distances, such as between topic 12 and topic 5,
and similarly between topic 8 and topic 1. The right-hand side displays the top 30 most salient
terms for the overall corpus, ranked based on their relevance. Words such as “travel”, “strike”,
“pedestrian”, “run”, “walk”, “crosswalk”, and other words on the charts were ranked high as
relevant words in the corpus that explained pedestrian crashes involving vehicles equipped with
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PAEB. The words provided a general overview of actions and incident points where a crash
between a pedestrian and a PAEB-equipped vehicle occurred. However, to obtain a specific
interpretation of these corpora, the topics presented in the left side chart were weighted and ranked
by level of significance/importance based on the terms contained in the topic.
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Figure 11: Overall Topics and Relevant Terms for Crashes involving vehicles equipped with PAEB

Words in the topic have different weights in terms of TF-IDF value, causing every topic to
carry a unique weight or different value of importance in explaining the corpus of words. Upon
analysing the topics that explain the narrative of crashes involving a pedestrian and a vehicle
equipped with PAEB. As shown in Figure 12, the findings show that topic number 14 carries the
highest significance level compared to other topics. Therefore, the words found in this topic can
representatively explain the narrative of crashes involving a pedestrian and a vehicle equipped
with PAEB.
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Figure 12: Ranking of the topic's importance

The right-hand side of Figure 13 shows the words contained in topic number 14. Some of
the top-ranked relevant words are “push”, “behind”, “tree”, “leave rear”, “ditch”, “corner”,
“drug toxicology”, and other keywords. Most of the top-ranked keywords are observed to be
exclusively represented in this topic since the ratio of the estimated term frequency within the
selected topic (represented by the red bar) to overall term frequency (represented by the skyblue
bar) is high (close to ). Keywords suggest that most of the crashes involved the action push, and
the crashes tend to mostly occur from behind and hit a tree or ditch, and the keywords suggest that
victims involved in the crashes undergo drug toxication tests. For instance, one of the crash
narratives states “...Unit I drove back onto Township Road 1109 and struck Unit 2 in the rear.
Unit 2 was pushed into Unit 3 pedestrian and Unit 4 trailer... ", another narrative states “... Unit [
struck Unit 2 rear driver side door, pushing Unit 3 to the ground...”, from both of these narratives,
we observe that the vehicle equipped with the ADAS is parked and then hit by a vehicle in motion
initiating motion on the parked vehicle that cause collision (pushing) to the pedestrian standing
beside the once parked vehicle. The narrative suggests that the scenario leading to the crash did
not activate the PAEB system, as the parked vehicle that struck the pedestrian was not at fault.
However, most vehicles are observed to have lost control as suggested in the previous narrative,
and the following “... Unit # I traveled onto the right berm and struck unit # 4 and 2 pedestrians
standing beside unit # 4. Unit # 1 then lost control; traveled off the right side of the road; and
came to final rest...” and another narrative “... Unit #2 and Unit #3 were parked on the south berm
of eastbound U.S. 30. Unit #4, a pedestrian; was standing on the left side of Unit #2. Unit #1
crossed the solid white edge line of eastbound U.S. 30, sideswiping Unit #2 and striking Unit
#4...”. A driver losing control is an indicator of driving under the influence, causing most of these
crashes involving the PAEB vehicle to require a drug toxicology test to confirm whether the driver
was influenced by any drug or alcohol.
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Figure 13: Term frequency and relevant terms for topic_14

The outcomes of these crashes are observed to cause minor injury, or no injury sustained
by the pedestrian as suggested by the following narratives “...unit I was assessed by medics and
checked fine. Unit 1 was strongly advised to be more careful...” and another narrative “...Unit [
struck the pedestrian causing minor damage to the front of Unit I and minor injury to the
pedestrian...”. The finding suggests that more use of the ADAS-equipped vehicle (specifically the
PAEB system) can help in the reduction of the crash injury severity sustained by pedestrians in
rural areas. These findings are consistent with the previous research (Cicchino, 2022). On the other
hand, the literature suggests that PAEB has limitations in the recognition of capabilities, as well
as the range of recognition of pedestrians (Tang et al., 2016). These limitations are observed not
to be prevailing in rural areas, although the technological upgrading focused on improving the
PAEB system should continue to increase the efficiency and effectiveness of the PAEB system.
These findings highlight that human behavior (especially driver behavior) has continued to
diminish the advantages brought by ADAS in improving safety.

Vehicles not equipped with PAEB.

Following the discussion made on pedestrian crashes involving vehicles equipped with
PAEB, Figure 14 summarizes the results of LDA topic modeling for pedestrian crashes involving
vehicles not equipped with the PAEB system. Similar to the representation observed in the figures
presented while explaining vehicles equipped with PAEB. From Figure 14, we observe that topic
1 is closely related to topic 6. Similarly, topic 14 is closely related to topic 15. On the chart on the
right side of Figure 14, it is observed that words such as “travel”, “roadway”, “strike”, “walk”,
“turn”, “pedestrian”, and other words on the charts were ranked high as relevant words in the

corpus that explained pedestrian crashes involving vehicles not equipped with PAEB. The words
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provide a general overview of actions and incident points where a crash between a pedestrian and
a vehicle not equipped with PAEB can occur. However, to obtain a specific interpretation of these
corpora, the topics presented in the left side chart were weighted and ranked by level of
significance/importance based on the terms contained in the topic. Words in the topic have
different weights in terms of #/~idf value, causing every topic to carry a unique weight or a different
value of importance in explaining the corpus of words. Upon analysing the topics that explain the
narrative of crashes involving a pedestrian and a vehicle not equipped with PAEB topics were
ranked in level of significance.
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Figure 14: Overall topics and Relevant Terms for Crashes involving vehicles not equipped with
PAEB

As shown in Figure 15, the findings show that topic number 9 carries the highest
significance level compared to other topics. Therefore, the words found in this topic can
representatively explain the narrative of crashes involving a pedestrian and a vehicle not equipped
with PAEB.
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Figure 15: Ranking of the topic's importance
The chart on the right side of Figure 16 shows the words contained in topic number 9.

2

Some of the top-ranked relevant words are “cross”, “enter”, “make left turn”, ‘“begin”,
“crosswalks”, “fail_yield”, “crossing”, and other keywords. Most of the top ranked keywords are
observed to be exclusively represented in this topic since the ratio of the estimated term frequency
within the selected topic (represented by the red bar) to overall term frequency (represented by
the skyblue bar) is high although their top rank words such as “cross” and “crosswalks” appear
to widespread into different topic since the ratio of the estimated term frequency within the selected
topic (represented by the red bar) to overall term frequency (represented by the skyblue bar) is
observed to be low. Keywords suggest that most of the crashes involved pedestrian crossing using
the crosswalks and the vehicle drivers failing to yield to pedestrians, especially when making
turning movements. For instance, one of the crash narratives states “...Unit 1 made a left turn
onto League Street and failed to yield to Units 2 and 3 in the crosswalk; striking both of them....”,
“...Unit #2 was found at fault and issued a citation for fail to yield to a pedestrian in a
crosswalk...”, another narrative states “...Unit 2 was traveling west on Walnut Street failing to
yield striking the pedestrian. Unit 2 was found at fault in the crash...”, from these narratives, we
observe that the vehicles not equipped with the PAEB system were not capable of detecting from
a distance the pedestrian who was interacting with the roadway leading to the vehicle (motorists)
failing to yield on time before striking a pedestrian. Another observation shows that most of the
pedestrian crashes involving vehicles not equipped with the PAEB system occur mostly in the
intersection areas as suggested in the following narrative “... unit # 2 entered the intersection
continuing south across watt st. unit #1 made a right hand turn onto watt st striking unit #2 causing
injuries...”, “Unit 2 proceeded through the intersection of Dewey Ave and Wheeling Ave; heading
eastbound; when struck crossing Unit 1...”" and another narrative “...As Unit #2 approached the
intersection; under a green light; Unit #I ran into the traffic lane; out of the crosswalk; and was

struck by unit #2...”. The PAEB system helps drivers to brake abruptly when a pedestrian is
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unexpectedly detected on the roadway. Therefore, vehicles that are not equipped with PAEB were
not able to detect and prevent these types of crashes hence resulting in pedestrian crashes.
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Figure 16: Term frequency and relevant terms for topic 9

The outcomes of these crashes are observed to cause fatal and serious injuries to the
pedestrian involved as suggested by the following narratives “...This is completed to indicate the
crash has resulted in fatal injuries to Unit #4....”, “The pedestrian suffered serious injuries as a
result of the crash and was transported to the Fisher-Titus Medical Center by North Central EMS
and later flown by LifeFlight to University of Toledo Medical Center...” and another narrative
“...Unit 2 received injuries to her head and leg...”. The finding suggests that vehicles that are not
equipped with the PAEB system increase the vulnerability of pedestrians in the roadway. This is
consistent with previous research conducted by Gajera et al., (2023). Although the LDA results
have substantiated that vehicles equipped with the PAEB system led to low-severity injuries to the
pedestrian. In the next section, we present the results of the Bayesian network analysis to
understand variables associated with the probability of incapacitating or non-incapacitating
injuries.

Bayesian Network Results

Figure 17 and Figure 18 are Bayesian Networks for the trained and optimal network,
respectively, which aim to identify the variation in the injury severity level for pedestrians involved
in vehicle-pedestrian crashes. The analysis is focused on the ADAS technology equipped in the
vehicle, specifically the PAEB.
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Figure 17: Trained a network for the pedestrian crashes

The response variable is the injury severity, which has three categories: no injury, non-
incapacitating injuries, and incapacitating injuries. The BN structure was selected as the trained
network (Figure 17) assessed in this study was characterized by having the lowest value of the
score function. Thus, the initially trained network of pedestrian crashes, as shown in Figure 17, is
obtained from the AIC search algorithm scoring function. The interconnection shown by the arcs
in Figure 17 between the variables (both explanatory and response variables) shows the influence
of one variable on another. Nevertheless, when there is no connection between the variables, there
is an implication that there is insufficient information within the data to initiate or define the
interdependency between these variables. However, it should be considered that the scoring
algorithm initiated by the interdependency observed in Figure 17 reflects the scenarios learned
from the data and does not imply the actual scenarios. Therefore, expert knowledge and the
findings from previous studies are used to redefine the interconnection between the variables to
obtain an optimal BN structure that has logical connections aligned with the study objective and
can be formed, as shown in Figure 18.
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Figure 18: Optimal network for pedestrian crashes

The connections shown in Figure 18 are constructed by reversing, setting, and deleting the
arc relations defined through data training. The optimal network shows that the response variable,
injury severity is a child variable for 12 explanatory variables, which are weather, lighting
conditions, Presence of PAEB in the vehicle, the age group for the driver, vehicle type, driving
under the influence, gender, speeding related, posted speed limit, road conditions, location of the
collision, and lastly traffic control involved. Figure 18 shows the direct and indirect
interdependencies evaluated to obtain the predicted probabilities of the hypothesis variables. These
probabilities highlight the estimation of the effects of individual evidence on the likelihood that a
pedestrian can either sustain non-incapacitating or incapacitating injuries when involved in a crash
with a vehicle. A sensitivity analysis involving all the hypothesis variables was conducted.

The study includes both individual evidence and combined evidence analysis. An
individual evidence analysis analyzed the likelihood that a pedestrian can either sustain non-
incapacitating or incapacitating injuries using individual variable evidence. Combination analysis
examined the likelihood of a vehicle not equipped with PAEB technology being involved in a
crash and further assessed the likelihood of the pedestrian either sustaining non-incapacitating or
incapacitating injuries concerning the hypothesis variables. The results of the individual evidence
analysis are shown in Table 10. Also, the results of the combination analysis are presented in Table
11.
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Individual Evidence Analysis for Hypothesis Variables

Model results presented in Table 10 are obtained by considering injury severity as the
targeted variable for prediction. Interpretation performed for this model is based on the predicted
probability and the sensitivity analysis results. The analysis and interpretation focused on
responding to the research question: what level of injury severity is a pedestrian likely to sustain
when involved in a crash with a PAEB-equipped vehicle? The reference category used in Table 10
was selected based on the criteria that it has the least likelihood of occurring or leading to less
severe outcomes.

Table 10: Predicted Probability and Sensitivity Analysis Scores

Non-Incapacitating Injury Incapacitating Injury

Variable/Category Predict Overall Sensitivity Predict Overall Sensitivity

Probability Score Probability Score
Age Group
Under 25 44.27% 34.27%
25-64 37.32% -6.95% 40.30% 6.03%
65+ 29.30% -14.97% 57.83% 23.55%
Gender
Male 37.20% 42.06%
Female 41.86% 4.66% 36.77% -5.29%
Unit Type
Passenger cars 35.70% 44.86%
Non-passenger cars 40.67% 4.97% 37.25% -7.61%
Posted Speed Limit
<35 mph 44.43% 24.63%
35 - 45 mph 44.46% 0.04% 42.26% 17.63%
> 45 mph 29.13% -15.30% 59.45% 34.82%
Traffic Control
Yes 59.24% 12.00%
No 35.41% -23.83% 44.72% 32.73%
Intersection Related
No 38.35% 41.35%
Yes 39.38% 1.04% 36.28% -5.08%
Weather
Clear 38.44% 41.39%
Adverse condition 39.13% 0.69% 35.46% -5.92%
Road Condition
Dry 38.37% 40.98%
Wet/Snow/Ice 40.70% 2.33% 35.10% -5.88%
Light Condition
Daylight 39.88% 37.89%
Dark 36.42% -3.47% 44.31% 6.42%
Speed Related
No 38.89% 39.65%
Yes 23.72% -15.16% 72.34% 32.69%
Under Influence
No 38.80% 40.19%
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Non-Incapacitating Injury Incapacitating Injury

Variable/Category Predict Overall Sensitivity Predict Overall Sensitivity
Probability Score Probability Score

Yes 29.45% -9.35% 53.62% 13.43%

Presence PAEB

Equipped 42.82% 32.03%

Not Equipped 34.63% -8.19% 48.38% 16.34%

The findings of individual evidence analysis are based on analyzing the pedestrian crash
dataset. As shown in Table 10, there was a 4.97% increase in the probability of the non-passenger
car causing non-incapacitating injuries to a pedestrian, while there was a 7.61% decrease in the
probability of the same unit type causing incapacitating injuries to pedestrians compared to the
passenger cars. On roads with a posted speed limit of more than 35 mph, pedestrians have a higher
probability of enduring incapacitating injuries. For instance, the likelihood of a pedestrian
sustaining an incapacitating injury is increased by 17.63% when involved in a crash with a vehicle
while traversing roads with posted speed limits ranging between 35mph and 45mph. Furthermore,
the probability was increased by 34.82% while traversing a road with a posted speed limit greater
than 45 mph. Consistently, the likelihood of the pedestrian sustaining an incapacitating injury
increased by 32.69% while the likelihood of the pedestrian sustaining a non-incapacitating injury
decreased by 15.16% when the vehicle involved was speeding. Furthermore, the likelihood of a
pedestrian sustaining an incapacitating injury is increased by 32.73% when a crash occurs on roads
without traffic control. However, the result indicates that pedestrians are more likely to sustain a
non-incapacitating injury (likelihood is increased by 1.04%) than an incapacitating injury when
the crash is intersection-related.

The results suggest that the probability of pedestrians sustaining non-incapacitating injury
during dark conditions is decreased by 3.47% but the probability of sustaining incapacitating
injuries increases by 6.42% during dark conditions. Jumaa et al., (2019) found that the performance
of ADAS technology is hindered by darkness. Also, the results indicate that a pedestrian is more
likely to sustain an incapacitating injury (likelihood is increased by 13.43%) than to sustain a non-
incapacitating injury (likelihood is decreased by 9.35%) when the driver is under the influence of
alcohol or drugs; thus, it is difficult to maintain road stability and concentration during driving
(Alonso et al., 2015).

The results indicate that pedestrians aged greater than 25 years are more likely to sustain
an incapacitating injury than a non-incapacitating injury when involved in a crash. The results
show that the probability of adult pedestrians (aged between 25 and 64 years old) sustaining an
incapacitating injury is increased by 6.03% and for senior pedestrians (aged 65 years and older),
the likelihood of sustaining an incapacitating injury is increased by 23.55%. In comparison, the
likelihood of adults (aged between 25 and 64 years old) and senior pedestrians (aged 65 years)
sustaining non-incapacitating injury when involved in vehicle-pedestrian crashes decreased by
6.95% and 14.97% respectively. Furthermore, the result indicates that the probability of female
pedestrians sustaining a non-incapacitating injury is increased by 4.66% while the likelihood of
the same gender pedestrians sustaining an incapacitating injury is decreased by 5.29% compared
to male pedestrians when involved in a vehicle-pedestrian crash. The findings from the analysis
indicate that vehicles not equipped with the PAEB technology are more likely to cause
incapacitating injuries to a pedestrian (likelihood increased by 16.34%) than to cause non-
incapacitating injuries (likelihood is lowered by 8.19%). The results imply that vehicles that are
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not equipped with PAEB technology are mostly involved in crashes that have fatal or serious injury
outcomes for the pedestrian.

However, when considering the influence of weather implying the presence of adverse
weather conditions that directly led to having wet, snowy, or ice road conditions, the probability
of a pedestrian sustaining an incapacitating injury is decreased by 5.92% while the likelihood of
the pedestrian to sustain a non-incapacitating injury is increased by 0.69% during adverse weather
conditions compared to the clear weather conditions. This suggests that during adverse weather
conditions, there are few pedestrians, and most vehicles travel at low speed, thus causing the
outcome of the crashes to be less severe. Finally, the results indicate that a driver under the
influence of either drug or alcohol is more likely to be involved in a crash that inflicts
incapacitating injuries on a pedestrian (likelihood is increased by 13.43%) than a crash that inflicts
non-incapacitating injuries (likelihood is decreased by 9.35%).

Combination Analysis for the Hypothesis Variables

Table 11 presents the predicted probabilities and associated sensitivity scores for the
various combinations of variables. Based on the results in Table 11, each hypothesis variable
displayed a trend when vehicle technology (specifically PAEB technology) was kept as evidence
for the combination analysis. The results of the combination analysis show that pedestrians aged
25 years old and older are likely to endure an incapacitating injury when involved in a crash with
a vehicle that is not a PAEB-equipped vehicle. The results show that there is an increase of 0.97%
likelihood for pedestrians aged between 25 and 64 years old, and there is an increase of 23.76%
for pedestrians aged above 65 years old to endure an incapacitating injury when a vehicle.

Table 11: Predicted Probabilities and Sensitivity Score for the Combined Evidence Analysis

Non-Incapacitating Injury Incapacitating Injury
Variable Category Predict Sensitivity Scores Predict Sensitivity Scores
Probability ~TAEB ~ NoPAEB  p ity  PAEB  NoPAEB
Equipped Equipped Equipped Equipped

Age Group

Under 25 49.04% 22.03%
E‘:i?pe . 25-64 39.45%  -9.59% 34.06% 12.04%

65+ 43.59% -5.45% 44.96% -4.08%

Under 25 40.40% 44.92%
ggﬁ&g? 25 - 64 35.34% -5.07% 45.89% 0.97%

65+ 16.59% -23.81% 68.68% 23.76%
Gender
PAEB Male 41.17% 33.52%
Equipped  Female 47.59% 6.42% 27.27% -13.90%
No PAEB Male 33.20% 49.79%
Equipped  Female 37.80% 4.61% 44.22% -5.57%
Unit Type
PAEB PC** 44.48% 32.09%
Equipped ~ NpPC* 41.11% -3.36% 31.58% -12.90%
No PAEB PC** 27.86% 56.25%
Equipped ~ NpPC* 39.72% 11.86% 41.72% -14.53%
Posted Speed Limit

<35 mph 48.64% 16.41%
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Traffic Control

PAEB Yes 61.11% 7.81%
Equipped  No 39.78% -21.33% 35.94% -25.17%

No PAEB Yes 57.52% 17.26%

Equipped  No 31.77% -25.76% 51.89% 34.62%

Weather

PAER Clear 43.75% 31.51%

Equipped ‘;ivdei;sjn 39.40% -4.35% 33.44% -10.31%

Nopapp  Clear 33.66% 50.73%

Equipped ~ Adverse 38.37% 4.71% 37.15% -13.58%

condition

Light Condition

PAEB Daylight 44.71% 26.25%

Equipped  Dark 40.32% -4.39% 39.58% -5.12%

No PAEB  Daylight 35.75% 47.99%

Equipped  Dark 32.61% -3.14% 48.70% 0.71%

Under Influence

PAEB No 43.08% 31.03%

Equipped  Yes 40.08% -3.00% 50.85% 7.77%

NoPAEB No 35.05% 47.99%

Equipped  Yes 17.53% -17.52% 54.42% 6.43%
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The results indicate that vehicles with no PAEB technology are more likely to inflict
incapacitating injuries on pedestrians when crashes occur in roadways with a posted speed limit
greater than 35 mph. The results indicate that the likelihood of pedestrians sustaining
incapacitating injuries when struck by a vehicle that is not equipped with PAEB technology
increased by 20.56% and 31.76% for roadways with posted speed limits of 35-45 mph and greater
than 45 mph, respectively. On the other hand, the likelihood of pedestrians sustaining
incapacitating injuries when struck by a vehicle equipped with PAEB technology is decreased by
19.46% for roadways with posted speed limits ranging between 35 and 45 mph. The findings
suggest that pedestrians are more likely to sustain incapacitating injuries (likelihood increased by
34.62%) when struck by a vehicle not equipped with PAEB technology in an area that has no
traffic control. However, the likelihood of sustaining incapacitating injuries is lowered (likelihood
decreased by 25.17%) when the pedestrian is struck vehicle equipped with PAEB.

The study’s findings indicate that regardless of vehicle is equipped or not equipped with
PAEB technology, the likelihood of the pedestrian sustaining incapacitating injuries is increased
when the vehicle is speeding. The likelihood of pedestrians sustaining incapacitating injuries is
increased by 27.69% when struck by a vehicle equipped with PAEB. Furthermore, the likelihood
of the pedestrian sustaining incapacitating injuries is increased by 28.75% for vehicles not
equipped with PAEB. Similarly to pedestrian crashes that involve a speeding vehicle, the study’s
findings indicate that regardless of vehicle is equipped or not equipped with PAEB technology,
the likelihood of the pedestrian sustaining incapacitating injuries is increased when the driver is
under the influence of either drugs or alcohol. The likelihood of pedestrians sustaining
incapacitating injuries increased by 7.77% when a driver under the influence (drugs or alcohol)
was using a vehicle equipped with PAEB. Furthermore, the likelihood of the pedestrian sustaining
incapacitating injuries increased by 6.43% when the driver under the influence (drugs or alcohol)
was using a vehicle not equipped with PAEB.

6 CONCLUSION

The research project focused on road safety in rural areas, exploring challenges that
contribute to high fatality rates in these areas. The research project employed different state-of-
the-art methodologies that assisted in examining pedestrian, rear-end, and sideswipe crashes
involving conventional (non-ADAS-equipped) vehicles and those with ADAS technology,
utilizing crash data from forty-nine rural counties in Ohio from 2017 to 2023. One of the
methodologies implemented was a probabilistic graphical modeling approach that assessed the
likelihood of severe crash involvement for ADAS-equipped vehicles, considering factors such as
driver demographics, ADAS operation mode, automation level, traffic control, road and weather
conditions, speeding, and driving under the influence. The findings offer valuable insights into the
role of ADAS in enhancing road safety. For instance, in rear-end crashes, the results indicate that
when an ADAS-equipped vehicle is at fault, the probability of a severe crash outcome is lower
than with conventional vehicles. Moreover, operating vehicles under ADAS mode significantly
reduces the likelihood of rear-end collisions, particularly in adverse weather conditions, where
ADAS systems assist drivers by detecting surrounding conditions and activating braking systems
to prevent severe crashes. However, ADAS does not mitigate the risk of severe crashes caused by
speeding or driving under the influence of highlighting the continued need for strict enforcement
of traffic laws. Additionally, the study found that effective traffic control reduces the likelihood of
severe rear-end crashes in rural areas, regardless of ADAS engagement.
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Similarly, for sideswipe crashes, the analysis revealed that ADAS-equipped vehicles are
less likely to be at fault, reinforcing the technology’s potential to improve road safety. The data
also highlighted a lower prevalence of ADAS-equipped vehicles in rural areas, emphasizing the
need for broader adoption of these technologies. Vehicles with operational ADAS systems or
automation levels greater than one exhibited a significantly lower probability of severe crash
outcomes. However, like in rear-end crashes, ADAS technology did not reduce crash severity when
drivers were intoxicated or speeding, further stressing the importance of robust enforcement
measures, such as speed regulations and DUI laws. In addition to vehicle-related crashes, this study
also explored the effectiveness of PAEB systems in reducing pedestrian fatalities in rural areas.
Using Topic Modeling and Bayesian Network Analysis, the findings indicate that vehicles
equipped with PAEB were involved in fewer severe crashes, with most resulting in minor or no
injuries to pedestrians. In contrast, vehicles lacking PAEB were frequently involved in high-
severity crashes, especially at intersections where failure to yield was a common contributing
factor. These results highlight the potential of PAEB technology in improving pedestrian safety in
rural areas. However, the effectiveness of ADAS can be undermined by poor driver behavior,
reinforcing the need for awareness campaigns and policy initiatives to complement technological
advancements.

Overall, this study underscores the importance of promoting ADAS-equipped vehicles in
rural areas to reduce crash severity and improve road safety. However, a key limitation lies in the
assumption that each crash outcome was independent. Additionally, the study lacked detailed
information on the specific ADAS technology operating at the time of each crash. Future research
should explore crash dynamics involving multiple vehicles and investigate driver behavior in
relation to PAEB and other ADAS technologies. Developing predictive models based on these
insights could further enhance the strategic deployment of ADAS in high-risk areas, ultimately
improving road safety outcomes.
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