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from the U.S. Department of Transportation’s University Transportation Centers Program. The 
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METRIC CONVERSION CHART 

 
When You Know  Multiply by  To Find  

   

Length 

inches (in)  25.4  millimeters (mm)  

feet (ft)  0.305  meters (m)  

yards (yd)  0.914  meters (m)  

miles (mi)  1.61  kilometers (km)  

   

Volume 

fluid ounces (fl oz)  29.57  milliliters (mL)  

gallons (gal)  3.785  liters (L)  

cubic feet (ft3)  0.028 meters cubed (m3)  

cubic yards (yd3)  0.765  meters cubed (m3)  

   

Area 

square inches (in2)  645.1  millimeters squared (mm2)  

square feet (ft2)  0.093  meters squared (m2)  

square yards (yd2)  0.836  meters squared (m2)  

acres  0.405  hectares (ha)  

square miles (mi2)  2.59  kilometers squared (km2)  

 



 

iii 

 

TECHNICAL REPORT DOCUMENTATION PAGE 

 
1. Report No. 

 
2. Government Accession No. 

 
3. Recipient's Catalog No. 

 
4. Title and Subtitle 

Examine the Impact of Vehicle Automation Levels on Road Safety in Rural 

Areas 

5. Report Date 

02/28/2025 

6. Performing Organization Code 

59-0977035 

7. Author(s) 

Emmanuel Kidando, Josiah S Owusu-Danquah, Abdul S Ngereza 
8. Performing Organization Report No. 

 
9. Performing Organization Name and Address 

Washkewicz College of Engineering, Cleveland State University  

2121 Euclid Ave, FH 122.,  

Cleveland, OH 44115-2214, USA 

10. Work Unit No. (TRAIS) 

 
11. Contract or Grant No. 

69A3552348321 
12. Sponsoring Agency Name and Address 

Rural Safe Efficient Advanced Transportation Center  

2525 Pottsdamer Street  

Tallahassee, FL 32310 

13. Type of Report and Period Covered 

Final Report 

Period Covered: 03/01/2024 – 02/28/2025 

14. Sponsoring Agency Code 

 
15. Supplementary Notes 

 

16. Abstract 

Motor vehicle crashes are a prominent and distressing cause of fatalities in the United States and globally. Addressing this 

issue, the integration of Partially Automated in-vehicle technologies, notably Advanced Driver Assistance Systems (ADAS), 

emerged as a promising avenue for enhancing safety on highways. These systems become even more critical to older adult 

drivers, who face increased risks of fatality and crashes due to age-related declines in physical, health, and cognitive abilities. 

ADAS has the potential to decrease the sensory cognitive load of the driving task, and many automated safety features can 

decrease crash severity. The ADAS vary widely in complexity and scope, which can mainly be classified into three major 

groups: collision warning, collision intervention, and driving control assistance. Several researchers have investigated these 

in-vehicle technologies to learn older drivers’ perceptions of safety and interaction with the ADAS. However, little is known 

about the role of these technologies and their impact on crash injuries. It will be beneficial to the community to understand the 

role of ADAS technologies in the safe mobility of drivers in rural areas. 

17. Key Words 

Advanced Driver Assistance Systems (ADAS), rural areas, 

rear-end collisions, sideswipe collisions, vehicle 

identification number (VIN) 

18. Distribution Statement 

No restrictions 

19. Security Classif. (of this report) 

Unclassified 
20. Security Classif. (of this page) 

Unclassified 
21. No. of Pages 

70 
22. Price 



 

iv 

 

ACKNOWLEDGMENTS 

 

This project was sponsored by the Rural Safe Efficient Advanced Transportation (R-SEAT) Center 

and the United States Department of Transportation (USDOT). The Principal Investigators would 

like to thank the representatives of the R-SEAT Center for their valuable feedback throughout the 

project activities. 

 



 

v 

 

EXECUTIVE SUMMARY 

Rural areas experience a higher fatality rate per distance traveled compared to urban areas. 

Despite only 19% of the American population residing in rural areas, these regions encompass 

over 70% of the roadways and exhibit a higher fatality rate than urban areas. Major types of crashes 

in rural crashes constitute sideswipe, rear-end, and pedestrian-related crashes that are attributed to 

driver errors. Advanced Driver Assistance Systems (ADAS) such as crash imminent braking 

(CIB), forward collision warning (FCW), pedestrian automated emergency braking system 

(PAEB), Blind Spot Warnings (BSW), Lane Departure Warnings (LDW), and Lane Keeping 

Assistance (LKA) can help mitigate these types of crashes. Although these technologies are 

becoming more widely available, their adoption in rural areas remains notably low. This limited 

penetration has resulted in a scarcity of research examining the potential of ADAS to enhance road 

safety in rural settings. 

This research project contributes to existing studies by evaluating the impact of ADAS on 

reducing crash severity, focusing on Rural Ohio as a case study. Using a comparative approach, 

this project analyzes the differential impact of ADAS-equipped vehicles versus those without such 

technologies. The study utilized Latent Dirichlet Allocation (LDA) Topic Modelling and Bayesian 

Networks in the analysis of crash data collected from 49 rural counties in Ohio between 2017 and 

2023. The analysis revealed several compelling insights into the factors driving elevated fatality 

rates in rural regions. Also, it highlights the potential role of ADAS in mitigating road safety 

challenges specific to these areas. Key findings from the study are briefly discussed below. 

Crash statistics indicate a high likelihood for drivers aged between 25 and 64 to be involved 

in rear-end or sideswipe crashes. The analysis further indicates that vehicles equipped with ADAS 

are less likely to be involved in fatal or severe injury crashes, particularly under adverse weather 

conditions and during speeding events. The findings highlight the positive impact of traffic control 

systems in reducing rear-end collisions, especially on highway access roads. However, it also notes 

that the presence of drugs or alcohol significantly increases the risk of severe rear-end and 

sideswipe crashes, regardless of the vehicle’s technology. Additionally, the analysis revealed that 

vehicles classified as Level 0 automation are more prone to sideswipe and rear-end crashes 

compared to those equipped with higher levels of automation. Furthermore, pedestrians also face 

an elevated likelihood of experiencing fatal or serious injuries when involved in vehicle-related 

crashes, primarily due to their unprotected and exposed position in the traffic environment. 

Although the findings from this project demonstrate that vehicles equipped with ADAS are 

generally less likely to be involved in crashes, their effectiveness in protecting pedestrians, 

particularly for vehicles equipped with PAEB, can be compromised. Key limiting factors include 

driver intoxication, distracted driving, and the system’s reduced ability to detect pedestrians at 

long range, especially under adverse weather conditions.  

Conclusively, this study highlights the potential of ADAS technologies to improve road 

safety in rural areas by reducing crash incidence and severity. Key findings show that mid-aged 

drivers are more prone to rear-end and sideswipe collisions, and that vehicles with higher levels of 

automation are less likely to be involved in severe crashes. While traffic control systems help 

mitigate rear-end crashes, factors like intoxication and distraction still pose significant risks. 

Pedestrians remain highly vulnerable, and although PAEB systems offer safety benefits, their 

effectiveness is limited by drivers’ behavior, environmental conditions, and detection challenges. 

Overall, the research emphasizes the need for integrating these technologically improved systems 

and traditional strategies to enhance rural traffic safety.  
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1 INTRODUCTION 

Vehicle automation presents a transformative shift in the transportation landscape, with 

significant implications for road safety, particularly in rural areas. This report delves into these 

aspects by analyzing the role of automation technologies such as Advanced Driver Assistance 

Systems (ADAS) in reducing crash risks and protecting vulnerable road users. The introduction 

section provides an overview of road safety in rural areas and the role of ADAS in crash 

prevention. This section will also discuss challenges associated with adapting to ADAS vehicles 

in rural areas. Furthermore, discussing the main and specific objectives of the research project, and 

focusing on the relevance of this research work to the Rural Safe Efficient Advanced 

Transportation (R-SEAT) center, considering the themes and the United States Department of 

Transportation (USDOT) Strategic Plan. Finally, providing the structure of this technical report. 

 

1.1 Road Safety in Rural Areas 

Road safety in rural areas of the United States presents unique challenges distinct from 

urban settings. While rural roads account for a smaller portion of the nation's traffic volume, they 

disproportionately contribute to traffic fatalities. According to data from the National Highway 

Traffic Safety Administration (NHTSA) 2024 fact sheet on rural/urban fatalities, show that rural 

areas have constantly had a higher fatality rate per every 100 million vehicle miles traveled (VMT) 

compared to urban areas, as shown in Figure 1. These statistics indicate the presence of traffic 

safety disparities that require targeted interventions and policies that consider the specific 

characteristics of rural roadways and communities.  

 

 
Figure 1: Fatality Rates per 100 Million VMT in Traffic Crashes by Land Use (Source: FARS 2013-

2021 Final File, 2022 ARF; VMT – FHWA) 

 

Rural roads exhibit distinct characteristics compared to urban roads. For example, features 

such as narrow lanes, the absence of shoulders, and poorly maintained surfaces are more prevalent 

in rural areas. Additionally, many rural roads consist of two-lane highways with limited access 
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points and minimal signage, creating a unique travel experience. However, these geometric 

differences alone do not fully explain the factors contributing to higher fatality rates, nor do they 

address how vulnerable road users interact with rural roads, or the traditional strategies 

implemented to enhance road safety in these areas. 

 

1.1.1 Factors Associated with an Increase in Fatality Rate 

Several factors contribute to the higher fatality rates observed in rural areas. One notable 

factor is the higher speed limits on rural roads, combined with drivers’ tendency to speed due to 

the perception of open and empty roadways, which significantly increases the likelihood of fatal 

crashes. According to statistics from NHTSA (2024), a substantial proportion of rural crashes 

involve alcohol impairment. Over the past decade, the fatality rate per 100 million vehicle miles 

traveled (VMT) in rural areas consistently surpassed that of urban areas, as illustrated in Figure 2. 

Additionally, the long distances between destinations and the limited availability of public 

transportation in rural regions contribute to drunk driving and elevating the risk of fatigue-related 

crashes.  

 
Figure 2: Alcohol-Impaired-Driving Fatality Rate per 100 million VMT in Traffic Crashes, by 

Rural/Urban Classification, 2013–2022 (Source: FARS 2013-2021 Final File, 2022 ARF; VMT – 

FHWA) 

According to existing literature, additional contributors to fatal crash risk include seat belt 

usage, which tends to be significantly lower in rural areas than in urban environments (Mohamed 

et al., 2017; Uddin & Huynh, 2020; Zou et al., 2023). From the literature, the following are 

identified. Rural roads are more prone to animal-vehicle collisions, especially in areas near forests 

and farmland.  Uniquely, the presence of a high number of special attention and vulnerable road 

users in rural areas faces increased crash risks. For instance, older drivers are more vulnerable to 

severe injuries in crashes and may struggle with navigating poorly designed rural roads. Limited 

pedestrian infrastructure, such as sidewalks and crosswalks, increases the risk of crashes involving 

non-motorized road users. The presence of slow-moving farm equipment on roads creates 

additional hazards. These factors, combined with the unique characteristics of rural roadways, 

underscore the need for targeted interventions to improve road safety in these areas. 
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1.1.2 Strategies for Improving Road Safety 

Over the years, various traditional strategies have been implemented to enhance road safety 

in rural areas, combining engineering, enforcement, education, and emergency response 

improvements. These strategies include widening shoulders, adding rumble strips to mitigate run-

off-road incidents, improving road signage and lighting for better visibility, and installing barriers 

and median separations on high-speed routes. Additionally, increasing police presence to monitor 

speeding and impaired driving, promoting seat belt usage, and educating drivers about the dangers 

of speeding and drunk driving through local campaigns have been key initiatives. Strengthening 

coordination between rural communities and emergency services, expanding telemedicine 

capabilities to assist first responders in remote areas, and implementing automated enforcement 

technologies such as speed cameras have also contributed to road safety efforts. Furthermore, 

utilizing technologically advanced vehicles equipped with advanced driver assistance systems 

(ADAS) holds significant potential in reducing crashes. Improving road safety in rural areas of the 

USA remains a critical public health and infrastructure challenge. By addressing the unique 

characteristics of rural roadways and adopting a comprehensive approach, the high rate of traffic 

fatalities and injuries in these areas can be significantly reduced. However, some strategies, such 

as the adoption of ADAS-equipped vehicles, remain underestimated despite their potential to 

substantially decrease the number of crashes in rural settings. 

 

1.2 Role of ADAS in Rural Crash Prevention 

In the United States, over 90 percent of vehicle crashes can be attributed to driver error 

(NHTSA, 2015), with rural areas consistently experiencing a higher rate of vehicle fatalities per 

distance traveled versus urban areas (Clark & Cushing, 2004). To mitigate crashes, newer vehicles 

are increasingly equipped with technological features such as warnings for forward collision, lane 

departure, and blind spot, automatic emergency braking, lane-keeping assistance, and adaptive 

cruise control, with these and similar technologies being collectively known as advanced driver 

assistance systems (ADAS). However, in rural areas, vehicles are likely to be less technologically 

advanced, thus having fewer or less advanced ADAS (Lowell et al., 2020). The systems will often 

face suboptimal roadway surface and pavement marking conditions, hence causing challenges or 

total failure of ADAS technology equipped in a vehicle especially in adverse weather conditions 

(Mahlberg et al., 2021; Pike et al., 2018; Rahman et al., 2023; Roh et al., 2020). Additionally, the 

demographics of rural areas, which feature large populations of older and elderly adults, influence 

driving behavior and the perception and use of ADAS. Given the unique conditions of the rural 

environment, it provides an interesting context for understanding the full interaction between 

ADAS equipment and engagement, the environmental and exposure conditions, and 

demographics, particularly age. 

The purpose of ADAS is to reduce the severity of crashes involving driver error by alerting 

the driver to dangerous maneuvers and taking control of the vehicle when necessary. Research 

studies on the effectiveness of ADAS have consulted driving simulators, showing safety benefits 

during mandatory lane-changing maneuvers (Ali et al., 2020) and reductions in the occurrence of 

lane departure, speeding, and events of excessive acceleration and braking (Birrell & Young, 2011; 

Gouribhatla & Pulugurtha, 2022).  However, the ADAS technologies have faced setbacks in rural 

areas where the adoption of these technologies has become a major challenge due to various 

reasons that are explored in this project. 

 

1.3 Challenges in Adoption of ADAS in Rural Areas 
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The adaptation and implementation of ADAS vehicles in rural areas of the United States 

present unique challenges. These challenges are shaped by the distinct characteristics of rural 

regions, including infrastructure, demographics, and driver behavior. Some of these challenges are 

explained below. 

• ADAS technologies often rely on high-quality infrastructure, such as well-maintained 

roads, visible lane markings, and clear signage, for optimal functionality. Rural areas 

frequently lack these features due to inadequate funding for road maintenance. 

Additionally, many ADAS vehicles depend on GPS and cellular networks for real-time 

updates and navigation. Rural areas, which often have limited connectivity, pose 

significant challenges for these systems. Poor communication networks can disrupt the 

functioning of features such as traffic sign recognition and navigation-based adaptive 

systems.  

• Rural areas are home to older populations who may be less familiar with and more resistant 

to adopting new technologies. The perception that ADAS is unnecessary or overly complex 

further hinders adaptation among rural populations. Moreover, the primary users in rural 

areas often include farmers, truck drivers, and other professionals who rely on large 

vehicles for their livelihood. Adapting ADAS features to these specific vehicle types and 

user needs presents an additional technological and educational challenge. 

• Rural residents generally have lower median incomes compared to urban populations, 

limiting their ability to purchase newer vehicles equipped with ADAS features. This 

financial divide contributes to slower adoption rates, leaving rural drivers with older 

vehicles that lack these safety enhancements.  

• Rural areas often have unique driving conditions, including unpaved roads, sharp curves, 

and limited visibility. These conditions challenge the effectiveness of ADAS features, 

many of which are optimized for urban environments. Systems such as automatic 

emergency braking may struggle to detect obstacles like wildlife on rural roads.  

• Another critical challenge is the lack of awareness and understanding of ADAS 

technologies among rural populations. Many drivers are unaware of the potential safety 

benefits or how to use ADAS features effectively.  

• The maintenance and repair of ADAS vehicles require specialized equipment and trained 

technicians, which are often unavailable in rural areas. As a result, even minor issues with 

ADAS systems can lead to extended downtime for vehicles or drivers opting not to repair 

these systems. 

 

1.4 Objective of the Research Project 

The primary objective of this study is to evaluate the influence of Advanced Driver 

Assistance Systems (ADAS) on road safety outcomes in rural areas, with stratification by age 

group. The specific objectives of the research were to assess the influence of ADAS in crash 

prevention within rural areas and to assess the influence of ADAS in protecting Vulnerable Road 

Users in rural areas.  

 

1.5 Relevance of the Research Project to the R-SEAT Center 

This project is consistent with the US DOT priorities and goals on highway safety. The 

findings from this research will shed light on the effective ADAS technologies that significantly 

reduce crashes and injuries of different road users and age groups in rural areas. This project will 

contribute to a safe system, particularly in safe vehicle components. Anticipated output from this 
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project will offer comprehensive insights into the most effective ADAS technologies that ensure 

safety based on age groups and other socio-economic factors in rural areas. Analyses will focus on 

the major types of crashes prominent in the rural areas. The research team will also provide 

recommendations based on the study findings, which will benefit policymakers, engineers, and 

stakeholders in making decisions that can ultimately enhance road safety for a vulnerable 

demographic while bolstering transportation technology’s trajectory. Furthermore, the proposed 

project is expected to assist with meeting some of the major goals outlined in the USDOT 2022-

2026 strategic plan, including improving the safety of transportation systems and their users and 

establishing new policies and procedures (mainly focusing on emergency evacuation planning) to 

satisfy the critical needs of communities. 

 

1.6 Structure of the Technical Report  

This report is organized to guide the readers through the major activities associated with 

examining the impacts of vehicle automation levels on road safety in rural areas. More specifically, 

the main sections of the present report were organized as follows. Section 1 sets the project 

background on road safety in rural areas, stating the measures that have traditionally been used to 

improve road safety in rural areas and the problem statement by showing the roles and challenges 

of implementing technological advancement in the rural transportation system. Section 2 reviews 

the previous efforts related to the theme of this project. The reviews provide insight into different 

safety practices, types of crashes, and different approaches and efforts, showing how technological 

advancement in vehicles (specifically assessing ADAS) has been used to prevent crashes. In 

section 3, the steps followed to acquire and prepare the data are described. Furthermore, this 

section shows the study area and the types of data used for this project. Section 4 covers the 

methodology and the materials used to perform the analysis. Section 5 shows the results and the 

discussion that tends to provide insight into the response to the two specific objectives of the 

project. Section 6 provides the main concluding remarks and summarizes the main outcomes of 

this project. 
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2 LITERATURE REVIEW 

Rural areas, despite having a smaller population, account for a substantial portion of 

roadways and crash fatalities. Although only 19% of the population lives in rural areas, they 

account for more than 70% of the 4 million miles of roadways in the United States. According to 

the National Highway Traffic Safety Administration (NHTSA) (NHTSA, 2023), the fatality rate 

in rural areas is 1.5 times higher than in urban areas. In Ohio, the fatality rate per 100 million 

vehicle miles traveled (VMT) is 1.53 in rural areas compared to 1.04 in urban areas. Different 

kinds of traditional safety measures have been implemented to improve safety on rural roads with 

relatively minimal significant changes. However, technological improvements in vehicles, such as 

equipping the vehicle with ADAS, have helped to improve road safety, especially in urban areas. 

Various traditional safety measures have been implemented to enhance safety on rural roads with 

minimal significant changes. However, advancements in vehicle technology, such as equipping 

vehicles with Advanced Driver Assistance Systems (ADAS), have significantly improved road 

safety, particularly in urban areas. Evaluating the impact of these technologies in rural areas is 

challenging due to their lower penetration rates. Nevertheless, the limited available data on vehicle 

automation levels in rural regions presents an opportunity to assess how these technologies are 

contributing to safety improvements. To gain a deeper understanding of vehicle automation in 

rural areas, it is essential to first examine existing literature on the most common types of crashes 

and collision patterns in these regions. Additionally, reviewing previous studies on the 

effectiveness of various vehicle technologies in preventing these crashes is crucial. 

 

2.1 Prominent types of crashes in rural areas 

Rural areas feature unique crash characteristics, with a higher likelihood of a fatal crash 

involving a light or heavy truck, intoxication, occupant ejection, or a non-collision crash (such as 

a mechanical failure) than a fatal crash in an urban context (Muelleman & Mueller, 1996). Single-

vehicle crashes, including rollovers and roadway departures, as well as head-on collisions, rear-

end collisions, and sideswipe collisions, are common rural crash types, caused by factors including 

roadway curvature and grade, speeding, darkness, land and shoulder width, and roadside hazards, 

such as utility poles and ditches (H. Y. Chen et al., 2009; Lord et al., 2011). There is a marked 

influence of driver demographics on base driving behavior, with a large influence being exercised 

by driver age. Older drivers are less capable of handling distractions, possess poorer memory, and 

struggle in complex driving situations (Mather, 2007). However, rear-end and sideswipe collisions 

were found to be more prominent types of crashes contributing significantly to an increase in 

fatality rate in rural areas. The use of ADAS has been observed to continuously decrease and 

prevent these types of crashes, as elaborated below. 

 

2.2 Prevention of crashes using ADAS 

Real-world crash data has shown results indicating crash mitigation, but also unsafe 

changes in driving behavior induced by ADAS. An analysis of over three hundred thousand Toyota 

and Lexus vehicle crashes between 2015 and 2019 showed vehicles equipped with automatic 

emergency braking to be 43% less likely to be the striking vehicle in front-to-rear collisions, as 

well as finding vehicles equipped with lane-keeping assistance to be 9% less likely to experience 

a roadway departure event (Spicer et al., 2021). However, this study did not determine whether 

the relevant ADAS system was triggered or active during the crash and did not consider 

demographic factors. A study comparing rear-end crash incidence between ADAS and automated 

driving system (ADS) equipped vehicles found that ADAS-involved crashes were more likely to 
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occur on highways and rural roads, with a plausible explanation being driver over-reliance on 

ADAS until the moment before collision, leading to unexpected hard braking and a higher 

likelihood of rear-end collision (Huang et al., 2024). ADAS has also been shown to increase the 

time that drivers spend glancing away from the road (Bärgman & Victor, 2020).  

Perception and use of ADAS are also variably correlated with age and other demographic 

factors. A Korean experimental study utilizing an aftermarket ADAS system found that males were 

more accepting of front collision warnings and received more lane departure warnings, while 

females experienced a significant increase in both warning types and a large decrease in headway 

when compared to the control group operating a non-ADAS vehicle (Son et al., 2015). Older 

drivers were more accepting lane departure warnings and had a generally more positive attitude 

towards ADAS. A German survey of elderly drivers’ attitudes toward ADAS found barriers to 

perceived usefulness, functional limitation, system cost, and lack of system trust (Trübswetter & 

Bengler, 2013). However, the case can be different when evaluating a specific type of crash, such 

as a rearend or sideswipe collision. Rear-end collisions constitute approximately one-third of all 

traffic accidents in the United States, with over 2.5 million incidents occurring annually. These 

crashes are a leading cause of injuries and fatalities worldwide (Mohamed et al., 2017). The 

introduction of Advanced Driver Assistance Systems (ADAS) has significantly improved road 

safety and reduced accident rates. ADAS features such as forward collision warning (FCW), rear-

end collision warning, crash imminent braking (CIB), and pilot assistance aid drivers in 

minimizing preventable rear-end collisions (Hang et al., 2022; Perumal et al., 2021). 

Crash Imminent Braking (CIB) is designed to automatically engage a vehicle’s brakes to 

prevent or lessen the severity of a collision. By utilizing radar sensors and video cameras 

(Ackermann et al., 2014), CIB enhances safety when interacting with pedestrians (Abdel-Aty et 

al., 2022; Broggi et al., 2009; Cicchino, 2022; Coelingh et al., 2010; Keller et al., 2011) and helps 

mitigate rear-end collisions involving other vehicles (Cicchino, 2019; Elsasser et al., 2019; Guo et 

al., 2022; Hang et al., 2022; Pipkorn & Bianchi Piccinini, 2020) as well as two-wheelers 

(Giovannini et al., 2013; Huertas-Leyva et al., 2023; Lucci et al., 2021; Sui et al., 2021). Research 

by Tan et al., (2021) suggests that CIB, particularly when integrated with active steering, exhibits 

greater crash avoidance capabilities compared to other warning systems. In low-severity collisions, 

vehicles equipped with CIB have been shown to reduce occupant injuries, providing protection 

not only for passengers but also for pedestrians, especially at intersections where rear-end crashes 

frequently occur (Abdel-Aty et al., 2022; Broggi et al., 2009; Cicchino, 2022). Another system 

recognized as a leading solution for reducing rear-end collisions is Forward Collision Warning 

(FCW). This technology helps drivers maintain shorter headway and improves their reaction time 

when the lead vehicle accelerates or when there is a significant speed difference between the lead 

and the following vehicle. However, FCW frequently generates a high number of alerts, some of 

which have low or no relevance, potentially impacting driver responsiveness and satisfaction 

(Seaman et al., 2022). While FCW enhances safety for all drivers, aggressive drivers particularly 

benefit from adaptive FCW systems, as they find them less frustrating and stressful (Jamson et al., 

2008). 

FCW has been shown to significantly reduce rear-end crash rates and related injuries, with 

the combination of FCW and Crash Imminent Braking (CIB) proving to be the most effective. 

Estimates suggest that if all vehicles in the U.S. had been equipped with these technologies in 

2014, nearly one million rear-end crashes and over 400,000 associated injuries could have been 

prevented (Cicchino, 2017). However, ADAS systems alone do not ensure occupant safety, as the 

severity of injuries remains high in the absence of protective features such as airbags and seatbelts 
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(F. Chen et al., 2019). Research highlights the crucial role of ADAS technologies, including FCW 

and CIB, in crash reduction, particularly in urban areas. However, rear-end collisions are also a 

major cause of fatalities in rural regions of the U.S., emphasizing the need for further assessment 

of how these technologies contribute to crash prevention in rural environments. 

Sideswipe collisions are among the most common types of crashes, second only to rear-

end collisions (Ning et al., 2022). Several factors contribute to these accidents, including driver 

behavior, speed, and road design. Of these, driver behavior is the most significant, accounting for 

approximately 88% of all vehicle collisions (Ning et al., 2022). According to crash data from the 

Ohio Department of Public Safety (ODPS) covering rural crashes from 2017 to 2023, sideswipe 

collisions make up around 10% of all accidents. This high occurrence is largely attributed to 

hazardous road conditions such as poorly designed roads, blind spots, narrow lanes, inadequate 

signage, insufficient lighting, and roadside obstacles, all of which heighten the risk of severe 

crashes in rural areas (ODPS, 2020). The integration of advanced driver assistance systems 

(ADAS) in modern vehicles has helped mitigate crash severity by alerting drivers to dangerous 

maneuvers and, in some cases, taking corrective action. However, older vehicles, which are more 

prevalent in rural areas, often lack updated ADAS technology, making them more susceptible to 

crashes (Lowell et al., 2020). Additionally, rural road conditions—such as faded pavement 

markings and uneven surfaces—can hinder ADAS functionality, leading to system failures, 

particularly in adverse weather conditions (Mahlberg et al., 2021; Pike et al., 2018; Roh et al., 

2020) 

Key ADAS technologies, including lane departure warnings (LDW), lane-keeping 

assistance (LKA), and blind spot warnings (BSW), play a crucial role in preventing sideswipe 

collisions. LDW systems use cameras and optical recognition to detect when a vehicle drifts 

toward the lane edge or center line, alerting the driver through sound or vibration. A study of 

single-vehicle, sideswipe, and head-on crashes across 25 U.S. states found that vehicles equipped 

with LDW were 11% less likely to be involved in sideswipe collisions and 21% less likely to be 

involved in crashes resulting in injuries (Cicchino, 2018). Simulation studies further highlight 

LDW’s effectiveness in reducing crash likelihood (Kusano & Gabler, 2012; Sternlund et al., 2017). 

However, concerns remain regarding ADAS reliability, particularly in rural settings. A 

study conducted in Italy revealed two significant flaws in LDW systems on passenger vehicles: 

they issued alerts closer to the edge line when drifting right than when drifting left and, more 

critically, failed to detect road edges in the absence of signs or pavement markings (Re et al., 2021) 

These issues are especially concerning in rural areas, where narrow lanes and steep drop-offs make 

accurate and reliable LDW systems essential for driver safety. Like LDW, LKA relies on cameras 

to monitor lane positioning and provides steering input to prevent a vehicle from crossing the lane 

edge or center line. Research indicates that combining LDW and LKA can reduce certain crash 

types, including sideswipe, head-on, and single-vehicle accidents, by 12% (Leslie et al., 2021). 

Additionally, vehicles equipped with LKA are 9% less likely to experience roadway departures 

(Spicer et al., 2021). However, LKA’s effectiveness is diminished by factors such as poor 

pavement markings, adverse weather conditions (e.g., heavy rain, snow, darkness, or glare), and 

inadequate lighting, all of which can lead to system errors (Jumaa et al., 2019). Simulation studies 

suggest that clearer lane markings and wider shoulders enhance the performance of LKA and 

LDW, reducing the likelihood of roadway departures and serious driver injuries. This implies that 

these systems may be less reliable in suboptimal driving conditions. 

Blind Spot Warning (BSW) systems help drivers detect vehicles in their blind spots, 

particularly in adjacent lanes to the side and rear. Research on BSW has primarily focused on its 
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application in large commercial vehicles, such as buses and trucks, and its potential to prevent 

crashes involving vulnerable road users (Jansen & Varotto, 2022; Pyykönen et al., 2015; Schaudt 

et al., 2014). In General Motors passenger vehicles, the side blind zone alert has been found to 

reduce lane-change crashes by 9% (Leslie et al., 2021). This suggests that BSW, similar to LKA 

and LDW, plays a crucial role in preventing collisions (Tan et al., 2021). Assessing the impact of 

these ADAS technologies in reducing severe crashes is particularly important in rural areas, where 

fewer drivers may have access to these safety features. However, many other studies show how 

the implementation of the ADAS technologies has helped to improve safety, as shown in Table 1. 

Different findings and objectives have shown how ADAS can significantly assist in lowering the 

risk of crashes  

 
Table 1: Summary of literature review on ADAS technologies 

Author Objective/Focus  Data Findings 

Mason et al., (2023) • Examine the 

understanding of 

advanced vehicle 

technologies among 

drivers and other road 

user populations. 

• An online survey 

was conducted to 

collect data from a 

representative 

sample of more than 

2500 respondents. 

• Findings suggest that 

road users with a strong 

understanding of ADAS 

are younger. 

• Young road users 

preferred relying on 

videos and the internet 

to find educational 

material. 

• Results also underscore 

the importance of 

targeted education 

about vehicle 

technology. 

Mcdonald et al., 

(2017) 

• Provide insight on 

how learning about 

ADAS technologies 

from an owner’s 

manual or through a 

ride-along 

demonstration drive 

impacts a driver’s 

knowledge and 

understanding of the 

technology. 

• Study procedures 

included a Pre-Visit 

Survey, a site visit 

(including an Intake 

Survey), completion 

of a randomly 

assigned learning 

protocol (either 

reading an owner’s 

manual, 

participating in a 

ride-along 

demonstration drive, 

or a combination of 

• Regardless of the 

learning protocol, 

participants gained 

knowledge about the 

ADAS technologies. 

• Learning protocol had 

an overall effect on 

participants’ knowledge 

of the ADAS 

technologies. 



 

10 

 

Author Objective/Focus  Data Findings 

the two), and a Post-

Visit Survey. 

Nees et al., (2020) • Explore mental 

models of ADAS 

(ACC, LKA, and level 

2 systems). 

• The study used 

qualitative, semi-

structured 

interviews to 

explore mental 

models of ADAS. 

• There are shortcomings 

in the driver’s 

understanding of the 

hardware, software, and 

limitations of these 

systems. 

• Mental models will 

affect behavior while 

using automation. 

Bato & Boyle,(2011) • Evaluate the 

perceived use and 

safety of Adaptive 

Cruise Control 

(ACC). 

• A survey was 

distributed to drivers 

to gather specific 

opinions from 

drivers about the 

ACC. 

• The less-dense 

roadways of Iowa 

might lead this group of 

drivers to feel that ACC 

is effective in detecting 

vehicles and allowing 

drivers to avoid 

crashes. 

Utriainen et al., 

(2020) 

• Focus on LKA 

systems and their 

potential safety effects 

by analyzing real-

world crash data and 

LKA’s possibilities to 

prevent fatal 

passenger car crashes. 

• The study utilized 

364 fatal head-on 

and single-vehicle 

crashes.  

• Data provided by 

the Finnish Crash 

Data Institute in 

Finland. 

 

• Based on the analysis, 

LKA could potentially 

have prevented 27% of 

364 fatal crashes and 

28% of 415 fatalities. 

• In these crashes, which 

LKA was assessed to 

potentially prevent, lane 

markings were fully 

visible, and weather 

and driver’s input were 

favorable for the 

operation of LKA. 

Sternlund et al., 

(2017) 

• Estimate the safety 

benefits of in-vehicle 

LDW/LKA systems in 

reducing head-on and 

single-vehicle 

passenger car crashes. 

• The study was based 

on police-reported 

crashes.  

• Crashes were 

extracted from the 

Swedish Traffic 

• The analysis showed a 

positive effect of the 

LDW/LKA systems in 

reducing lane departure 

crashes. 
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Author Objective/Focus  Data Findings 

Crash Data 

Acquisition database 

(STRADA). 

• 53% reduction in head-

on and single-vehicle 

crashes. 

Masello et al., (2022) • Quantify the expected 

impact of ADAS on 

crash reduction across 

a combination of road 

types, lighting, and 

weather conditions. 

• Utilized road safety 

reports from the UK 

Department of 

Transportation. 

 

• Deployment of the 6 

most common ADAS 

would reduce crash 

frequency in the UK by 

23.8%. 

• AEB is the most 

impactful technology. 

Cicchino, (2017) • Examine the 

effectiveness of FCW 

in preventing rear-end 

crashes. 

• Police-reported 

crashes from various 

agencies in the US. 

• FCW alone, low-speed 

AEB, and FCW with 

AEB reduced rear-end 

striking crash 

involvement rates by 

27%, 43%, and 50%, 

respectively. 

Fildes et al., (2015) • Evaluate the 

effectiveness of low-

speed autonomous 

emergency braking 

(AEB) technology. 

• Used the national 

(police-reported) 

crash database for 

rear-end crashes 

from 2009. 

• Findings show a 38 

percent overall 

reduction in rear-end 

crashes for vehicles 

fitted with AEB 

compared to a 

comparison sample of 

similar vehicles. 

 

2.3 Influence of ADAS on Vulnerable Road Users' Safety 

Pedestrians are among the most vulnerable road user groups, and their crashes have become 

increasingly prevalent in recent years.  In the United States, traffic crashes claimed the lives of 

over 7,500 pedestrians in 2022, marking an 11 percent increase in pedestrian injuries in 

comparison to the previous year (NHTSA, 2024). The nationwide disparity is evident as rural 

communities accounted for 15% of pedestrian fatalities in 2022 (IIHS, 2022), even though 8% of 

walking trips occurred in rural communities that same year (Jones et al., 2024). In 2022, Ohio 

recorded a 1.61 fatality rate per 100 million VMT in rural areas compared to urban areas, 0.94 

(NHTSA, 2024). These statistics underscore the efforts needed to improve pedestrian safety in 

rural areas to lower the number of pedestrian fatalities. 

Traditional safety measures such as traffic lights, stop signs, and pedestrian crossings have 

long played a crucial role in ensuring road safety. However, despite their benefits, these measures 

have proven insufficient to fully address the escalating risks to pedestrians (Bella et al., 2017). 
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Without disregarding the advantages of these traditional safety measures, advances in vehicle 

technology offer promising solutions that enhance pedestrian safety. A widely adopted example 

of vehicle technology is the ADAS (Sangve et al., 2024). Within the ADAS, a key system 

specifically aimed at preventing pedestrian crashes is the Pedestrian Automatic Emergency 

Braking (PAEB) system, which has become increasingly prevalent in modern vehicles. The PAEB 

utilizes a combination of camera and radar sensors to detect pedestrians along the predicted vehicle 

path (Haus et al., 2019). This technology aims to minimize the impact of a collision with a 

pedestrian by preventing fatalities or injuries. The PAEB system assists by either avoiding the 

crash altogether or reducing the vehicle’s speed before the impact (Haus et al., 2019; Kullgren et 

al., 2023; Nasution & Dirgantara, 2023). Lowering the vehicle's velocity decreases the crash's 

severity, significantly reducing the likelihood of serious injury to the pedestrian. However, the 

potential of PAEB in rural areas remains underexplored. Lower income levels and underdeveloped 

transportation infrastructure contribute to technological inequities, such as lower penetration rates 

of ADAS-equipped vehicles (Dianin et al., 2021; Fatima et al., 2024).   

Despite the promising benefits of PAEB, existing studies have identified critical limitations 

in its effectiveness. Previous research has shown that PAEB has two major limitations: the range 

of pedestrian detection and the varying appearance of the pedestrian (Bella et al., 2017; Nasution 

& Dirgantara, 2023; Tang et al., 2015). These limitations are particularly significant in rural 

settings, where crashes often occur under challenging conditions such as poor lighting, higher 

speeds, and fewer pedestrian infrastructure. Efforts like improving machine learning models to 

cater to the varying appearance of pedestrians are important improvements (Tang et al., 2015). The 

significance of these improvements can be underlined by addressing the gap in knowledge 

regarding PAEB's effectiveness in rural pedestrian crashes, focusing on the real-world 

performance of PAEB-equipped vehicles compared to non-equipped vehicles in reducing 

pedestrian injury severity. 

The increased interest in PAEB-equipped vehicles underscores the importance of assessing 

the efficiency in reducing pedestrian fatalities. This is particularly crucial in rural settings where 

fatality rates remain disproportionately high. A growing body of literature depicts the 

methodologies used to assess the effectiveness of ADAS technologies. Logistic regression has 

been widely used in estimating the probability of crash occurrence given a dataset of independent 

variables/factors. It has been employed to identify significant variables directly related to crash 

risks associated with various medical disorders (Ridella et al., 2015), as well as crash severity and 

factors influencing lane-change crashes, including driver characteristics, road features, and 

environmental conditions (Shawky, 2020). Torkashvand et al., (2022) used binomial logistic 

regression mixed with high-order ordinary differential equations to examine the risk probability of 

time to collision threshold for rear-end collisions on two-lane roads. On a similar note, Reagan & 

McCartt, (2016) assessed the extent to which total mileage, vehicle model, and dealership had 

significance on whether a vehicle would be observed with lane-departure warning turned on. Chi-

square tests and t-tests were employed to compare the observed results with the expected results 

of the studies through the means of two groups of data sets. A relationship between the presence 

of advanced driver assistance equipment and crash outcomes such as injury severity could be 

established (Schoner et al., 2023). The difference between two subsets of cars with and without 

automated emergency braking was established to evaluate the crash mitigation effect of low-speed 

automated emergency braking systems (Isaksson-Hellman & Lindman, 2016). Despite extensive 

research on determining the effectiveness of ADAS technologies, a specific gap exists in the 

performance of PAEB systems, particularly in rural areas.  
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3 DATA PREPARATION AND PREPROCESSING 

3.1 Study Area 

The research project focused on the state of Ohio, where 49 rural counties were considered 

for the research. The criteria used to identify the rural counties were based on the population. The 

details of these rural counties were obtained from the Census Bureau repository. Figure 3 shows 

the distribution of the rural counties across Ohio. The research team identified these counties 

because the data utilized in this project were centered around these counties.  

 
Figure 3: Rural counties in Ohio 

 

3.2 Types of Data 

The research team analyzed crash data in Ohio from 2017 to 2023, obtained from the Ohio 

Department of Public Safety (ODPS). The data is divided into three key repositories: crash 

statistics, unit statistics, and person statistics, each representing a dataset with unique details about 

the crashes. Crash statistics provided information such as crash severity, weather, posted speed 

limit, and impact location. Unit statistics included details about the vehicles involved, such as 

vehicle identification number (VIN) and vehicle model and make. Person statistics contained 

information about the vehicle’s occupants, such as age, gender, and person type. These three 

datasets are connected through unique identifiers (document numbers) to merge the data. The 

research team used the VIN to obtain automation information about the vehicle from the NHTSA 

website through web scraping. ADAS technology data obtained from the website indicated only 

what type of technologies a particular vehicle is equipped with, based on the parsed VIN. 
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Figure 4: Distribution of the crash dataset 

 

3.3 Data Preprocessing 

The research project focused on three major types of crashes that were highlighted in the 

literature review to significantly affect rural areas. These types of crashes include rear-end 

collisions, sideswipe collisions, and pedestrian crashes. Crash data that involved this type of 

scenario were collected and preprocessed, and the following elaboration explains how the crash 

data were preprocessed and also shows the data summary. 

In this research project, crashes were analyzed by categorizing the crash data based on the 

type of collision for evaluation. The datasets, which included information on the vehicle’s ADAS 

technology, were merged, and the necessary variables for analysis were selected. The primary 

focus of the study was to determine the impact of ADAS-equipped vehicles on reducing crash 

severity, specifically assessing CIB and FCW technologies in rear-end crashes, LKA, LDW, and 

BSW in sideswipe crashes, and PAEB in pedestrian crashes. Additionally, the ADAS operating 

mode and automation level were considered when selecting data for the study, which are reflected 

in the unit statistics. Each vehicle involved in the crash was identified alongside its automation 

status and the ADAS technologies equipped. However, in these rural area crashes, there was a high 

proportion of conventional vehicles (those not equipped with ADAS), leading to a data imbalance. 

To address this, the crashes were mapped using the ArcGIS Pro application, and based on the 

literature review, a 50-feet buffer was established around the crash location of each ADAS-

equipped vehicle (Chengula et al., 2024; Kutela et al., 2020; Md Shakir Mahmud et al., 2024). All 

conventional vehicles within the buffer zone were extracted, and each ADAS-equipped vehicle 

was associated with one to five surrounding conventional vehicles. We were able to obtain a well-

balanced amount of datasets that were used for the analysis.  

The data description in Table 2 contains both the rear-end crash data. It should be noted 

that the data presented is essential unit-level data, where the crash data is described for every 

vehicle involved in the crash. According to the data description in Table 2, crashes that led to 

property damage only (PDO) were more frequent in Ohio rural areas than possible injury, minor 

injury, serious injury, and fatal (KABC) crashes. About 65.41% of all rear-end crashes had a PDO 

outcome, while all the severe outcomes of a crash were combined to form 34.59% of the crash 
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dataset for the analysis. Drivers aged between 25 – 64 years old were in most of the crashes, where 

63.01% of all drivers were involved in rear-end crashes. 

 
Table 2: Data Description Summary for Rear-end Crashes 

Variable Category 
Rear End Crashes (n=11238) 

Count Percent 

Crash Severity 

crash_severity 
PDO 7351 65.41% 

KABC 3887 34.59% 

Age Group 

age_group 

Under 25 2874 25.57% 

25 - 64 7081 63.01% 

65+ 1283 11.42% 

Gender 

gender 
Female 4911 43.70% 

Male  6327 56.30% 

Unit Type 

unit_Type 
Non-passenger cars 6383 56.80% 

Passenger cars 4855 43.20% 

ADAS In Error 

ADASinError 
No 9697 86.29% 

Yes 1541 13.71% 

ADAS  Operating 

ADAS_operating 
No 11085 98.64% 

Yes 153 1.36% 

Automation Level 

automation_level 
Level 0 10981 97.71% 

Level 1+ 257 2.29% 

Posted Speed Limit 

posted_speed 

< 35 mph 1789 15.92% 

35 - 45 mph 3043 27.08% 

> 45 mph 6406 57.00% 

Traffic Control 

traffic_control 

No 7203 64.10% 

Yes (includes stop sign, yield sign, or 

signalized control) 
4035 35.90% 

Thrulanes  

thrulanes 
Not two thrulanes 2524 22.46% 

Two thrulanes 8714 77.54% 

Intersection Related 

intersectionrelated 
No 7046 62.70% 

Yes 4192 37.30% 

Impact Location 

impact_location 
On roadway 10886 96.87% 

Off  roadway 352 3.13% 

Weather 

weather 
Clear 7037 62.62% 

Adverse condition 4201 37.38% 

Road Condition 



 

16 

 

Variable Category 
Rear End Crashes (n=11238) 

Count Percent 

road_condition 
Dry 9136 81.30% 

Wet/Snow/Icy 2102 18.70% 

Light Condition 

lght_condition 
Daylight 9276 82.54% 

Dark  1962 17.46% 

Speed Related 

speed_related 
No 10275 91.43% 

Yes 963 8.57% 

Under Influence 

UnderInfluence 
No 10922 97.19% 

Yes 316 2.81% 

Vehicle Technology 

VehicleTechnology 
No ADAS system 6462 57.50% 

1+ ADAS system 4776 42.50% 

 

Most drivers involved in the rear-end crashes were male drivers (56.30%) compared to 

female drivers (43.70%). The data show that 56.8% of vehicles involved in rear-end crashes were 

not passenger cars. Along the same line, only 2.29% of the vehicles involved in rear-end crashes 

had automation levels greater than one, whereas 1.36% of all the vehicles in rear-end crashes had 

the ADAS in operation. The data indicate that 86.29% of the vehicles found in error were not 

ADAS-equipped vehicles. Furthermore, the data shows 57.50% of vehicles in rear-end crashes 

were not equipped with ADAS, and 42.50% of vehicles were equipped with ADAS for the 

vehicles. 

Data suggest that most rear-end (57.00%) crashes occur on the road with a posted speed 

limit greater than 45 mph. 64.10% of all vehicles involved in rear-end crashes were using road 

sections without traffic control. The data indicates that most rear-end crashes (77.54%) occur on 

roads with two through lanes. About 62.70% of rear-end crashes occur in areas that are not 

intersection-related, and this is shown by the impact areas mainly on the roadway, where more 

than 95% of rear-end crashes occur. Finally, some of the exposure conditions incorporated in the 

study as variables show that most of the rear-end crashes occurred during clear weather, implying 

during the daytime when there are dry road conditions. Also, most drivers involved in these crashes 

were not speeding or under the influence of drugs or alcohol. 

Table 3 describes sideswipe crash data, focusing on unit-level details for each vehicle 

involved in crashes. Notably, crashes resulting in property damage only (PDO) were predominant 

in Ohio’s rural areas, accounting for 83.82% of all sideswipe crashes. Additionally, drivers aged 

between 25 and 64 were involved in most of these incidents, with 65.75% of all sideswipe crash 

participants falling within this age group. 

 
Table 3: Data Description Summary for Sideswipe Crashes 

Variable Category 

Sideswipe Crashes  

(n = 1971) 

Count Percent 

Crash Severity 

crash_severity 
PDO 1652 83.82% 

KABC 319 16.18% 
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Variable Category 

Sideswipe Crashes  

(n = 1971) 

Count Percent 

Age Group 

age_group 

Under 25 313 15.88% 

25 - 64 1296 65.75% 

65+ 362 18.37% 

Gender 

gender 
Female 810 41.10% 

Male  1161 58.90% 

Unit Type 

unit_type 
Non-passenger cars 1164 59.06% 

Passenger cars 807 40.94% 

ADAS In Error 

ADASinerror 
No 1635 82.95% 

Yes 336 17.05% 

ADAS  Operating 

ADAS_operating 
No 1906 96.70% 

Yes 65 3.30% 

Automation Level 

automation_level 
Level 0 1878 95.28% 

Level 1+ 93 4.72% 

Posted Speed Limit 

posted_speed 

< 35 mph 335 17.00% 

35 - 45 mph 391 19.84% 

> 45 mph 1245 63.17% 

Traffic Control 

traffic_control 
No 1612 81.79% 

Yes 359 18.21% 

Thrulanes 

thrulanes 
Not Two thrulanes 531 26.94% 

Two thrulanes 1440 73.06% 

Intersection Related 

intersectionrelated 
No 1577 80.01% 

Yes 394 19.99% 

Impact Location 

impct_location 
On roadway 1913 97.06% 

Off  roadway 58 2.94% 

Weather 

weather 
Clear 1219 61.85% 

Adverse condition 752 38.15% 

Road Condition 

road_condition 
Dry 1627 82.55% 

Wet/Snow/Ice 344 17.45% 

Light Condition 

lght_condition Daylight 1606 81.48% 
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Variable Category 

Sideswipe Crashes  

(n = 1971) 

Count Percent 

Dark  365 18.52% 

Speed Related 

speed_related 
No 1609 81.63% 

Yes 362 18.37% 

Under Influence 

UnderInfluence 
No 1902 96.50% 

Yes 69 3.50% 

Vehicle Technology 

VehicleTechnology 
No ADAS system 1075 54.54% 

1+ ADAS system 896 45.46% 

Most drivers involved in sideswipe crashes were male (58.90%) compared to female 

drivers (41.10%). Additionally, 59.06% of the vehicles involved in these crashes were not 

passenger cars. Only 4.72% of the vehicles had higher automation levels than one, and just 3.3% 

had ADAS operating during the crash. The data indicate that 82.95% of the vehicles found at fault 

in sideswipe crashes were not equipped with ADAS, suggesting that ADAS-equipped vehicles 

were less likely to be at fault. After data processing, the study showed that 54.54% of the vehicles 

were not equipped with ADAS, while 45.46% were equipped with ADAS. 

Furthermore, the data suggest that most sideswipe crashes (63.17%) occur on roads with a 

posted speed limit greater than 45 mph, and most of these crashes happen in areas without traffic 

control. Specifically, 81.79% of drivers involved in sideswipe crashes were on road sections 

lacking traffic control. The data also indicate that 73.06% of sideswipe crashes occur on roads with 

two through lanes. Additionally, 80.01% of these crashes happen in non-intersection areas, with 

over 95% of sideswipe crashes occurring on the roadway. The study also incorporated exposure 

conditions as variables, revealing that most sideswipe crashes occurred during clear weather, 

typically in the daytime with dry road conditions. Furthermore, most drivers involved in these 

crashes were neither speeding nor under the influence of drugs or alcohol. 

Table 4 presents a summary of the crash data, focusing on injury-level details sustained by 

pedestrians. Pedestrians were significantly more likely to suffer incapacitating injuries in crashes 

occurring in rural areas, accounting for 447 incidents, which represents 41.97% of all pedestrian 

crashes. Additionally, pedestrians aged between 25 and 64 were involved in most of these 

incidents, with 51.45% of all incapacitating injuries sustained by this age group, 53.44% of all 

non-incapacitating injuries falling within this age group, and 51.11% of all no injury crashes 

involved an individual within this age group. 
 

Table 4: Description of Pedestrian Crashes 

Variables 

Incapacitating Injury 

(N=447) 

Non-Incapacitating Injury 

(N=393) 

No Injury 

(N=225) 

Count percent Count percent Count percent 

Age  
25-64 230 51.45% 210 53.44% 115 51.11% 

65+ 116 25.95% 56 14.25% 23 10.22% 

Under 25 101 22.60% 127 32.32% 87 38.67% 

Gender 

Female 144 32.21% 145 36.90% 87 38.67% 
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Variables 

Incapacitating Injury 

(N=447) 

Non-Incapacitating Injury 

(N=393) 

No Injury 

(N=225) 

Count percent Count percent Count percent 

Male 303 67.79% 248 63.10% 138 61.33% 

Unit Type 

Non-Passenger Vehicle 239 53.47% 183 46.56% 97 43.11% 

Passenger Vehicle 208 46.53% 210 53.44% 128 56.89% 

Posted Speed Limit 

35-45 mph 61 13.65% 75 19.08% 28 12.44% 

< 35 mph 125 27.96% 195 49.62% 149 66.22% 

> 45 mph 261 58.39% 123 31.30% 48 21.33% 

Traffic Control 

Controlled 46 10.29% 135 34.35% 91 40.44% 

No Control 401 89.71% 258 65.65% 134 59.56% 

Weather 

Clear 316 70.69% 262 66.67% 146 64.89% 

Not Clear 131 29.31% 131 33.33% 79 35.11% 

Road Condition 

Dry 382 85.46% 313 79.64% 176 78.22% 

Not Dry 65 14.54% 80 20.36% 49 21.78% 

Lighting Conditions 

Dark 231 51.68% 164 41.73% 84 37.33% 

Daylight 216 48.32% 229 58.27% 141 62.67% 

Under Influence 

False 373 83.45% 363 92.37% 215 95.56% 

True 74 16.55% 30 7.63% 10 4.44% 

Speed Related 

False 378 84.56% 363 92.37% 220 97.78% 

True  69 15.44% 30 7.63% 5 2.22% 

PAEB System 

Equipped 167 37.36% 210 53.44% 117 52.00% 

Not Equipped 280 62.64% 183 46.56% 108 48.00% 

 

Most pedestrians involved in crashes were male and sustained incapacitating injuries 

(67.79 % of all incapacitating injuries) compared to female drivers, who were 32.21% of all 

incapacitating injuries. Additionally, non-passenger vehicles caused more incapacitating injuries, 

amounting to 53.47% of all incapacitating injuries, while crashes involving passenger cars resulted 

in pedestrians sustaining non-incapacitating injuries and no injury (53.44% and 56.89% of all the 

injuries, respectively). Furthermore, the data indicates that 58.39% of all the incapacitating injuries 

occurred in the roadway that had a posted speed limit greater than 45 mph, while 49.62% of all the 

non-incapacitating injuries and 66.22% of all the no injury vehicle-pedestrian crashes occurred in 

the roadway with a posted speed limit less than 35 mph.  

Most of the crash incidents are observed to occur in areas with no traffic control, whereas 

incapacitating injuries (89.71%) were the predominant type of injuries that pedestrians sustained. 

The data indicates most vehicle-pedestrian crashes occurred during clear weather conditions and 

dry road surfaces suggesting that either few numbers of people or none walked during these 

adverse weather conditions The data also indicate that lighting conditions had a role in the 

occurrence of the crashes with incapacitating injuries outcome since 51.68% of all the 

incapacitating injuries occurred during dark light while 58.27% and 62.67% of all the non-

incapacitating and no injuries respectively occurred during daylight times. The data clearly shows 

that the majority of the vehicle-pedestrian crashes involved drivers who were neither speeding nor 



 

20 

 

under the influence of alcohol or drugs. The data validates that vehicles that were not equipped 

with the PAEB technology caused 62.64% of all the incapacitating injury crashes, while the 

vehicles equipped with the PAEB technology were involved in crashes that had non-incapacitating 

and no injury crashes (53.44% and 52.00% respectively).  

 

4 METHODS AND MATERIALS 

The research project implemented mainly two methodologies, which were latent Dirichlet 

allocation (LDA) topic modeling and Bayesian network. These two methodologies were selected 

because of the nature of the data, which were mainly categorical data and unstructured text data. 

The two methodologies, considering their respective capabilities, can accurately analyze the 

mentioned types of data to provide accurate inferences about the road safety conditions that prevail 

in the case study. This section shows the mathematical formulation of both methodologies and the 

assumptions that were considered during the analysis to make the inference. 

    

Latent Dirichlet Allocation (LDA) Topic Modeling 

LDA topic modeling is a generative probabilistic model that discloses the hidden meaning 

or semantic structures in a collection of discrete data from text corpora. The LDA topic modeling 

follows a series of data processing and analysis to obtain the results, as shown in Figure 5. Most 

of the data processing involves cleaning the unstructured text to obtain a bag of words that can be 

manipulated through topic modeling.  

 
Figure 5: Data processing and analysis with LDA topic modeling 

 

LDA is a three-level hierarchical Bayesian model, whereas each document (text corpora) 

contains a mixture of latent topics wherein each topic is characterized by a distribution over the 

words, and the relative importance of the topics captured in the form of different weights varies 

from document to document. The underlying generative process of LDA topic modeling is shown 

in Figure 6.  For instance, given the parameters α and β, consider the dimensional Dirichlet random 

variables of topic mixture 𝜃, a set of 𝑁 topics 𝑧, and a set of 𝑁 words 𝑤 and K being the number 

of topics generated. 
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Figure 6: Three-level LDA topic modeling 

 

Considering the illustration in Figure 6, where the linking arrow lines show conditional 

interdependency. The probability of generating a topic β given the corpora of text generated from 

the document and word level is given by; 

 

𝒑(𝜽, 𝒛, 𝒘|𝜶, 𝜷) = 𝒑(𝜽|𝜶) ∏ 𝑷(𝒁𝒏|𝜽)𝒑(𝒘𝒏|𝒛𝒏, 𝜷)𝑵
𝒏=𝟏                                                                               (1) 

 

Figure 6 and Equation 1 shows clearly the three levels of hierarchy represented by the 

LDA model. The parameters  α and β  are corpus-level parameters, assumed to be sampled once 

in the process of generating a corpus. The parameter 𝜃 are document-level variables, sampled once 

per document. Finally, the variables 𝑍𝑛and 𝑤𝑛 are word-level variables and are sampled once for 

each word in each document. Inferencing the output of the model is a crucial aspect since we are 

required to generate relevant and salient words on a topic. The words generated are grouped into 

topics and ranked based on relevance and salience. Relevance is defined by combining the weight 

of the probability of a term 𝑤 to appear in topic 𝐾 denoted by ∅𝒌𝒘 and lift (ratio of the probability 

of the appearance on its topic (∅𝒌𝒘) to the probability of the term to appear in the overall corpus 

of words (𝑝𝑤))  

 

𝒓(𝒘, 𝒌|𝜹) =  𝜹 𝐥𝐨𝐠(∅𝒌𝒘) + (𝟏 − 𝜹) 𝐥𝐨𝐠 (
∅𝒌𝒘

𝒑𝒘
)                                                                                          (2) 

 

Equation 2 defines the relevance of term 𝑤 to topic 𝑘 given a weight parameter 𝛿 (where 

0 ≤ 𝛿 ≤ 1) as the 𝛿 determines the weight given to the probability of the term 𝑤 under topic 𝑘 

relative to its lift (measured both on the log scale). For the term to be relevant, the weighing 

parameter 𝛿 should be optimal since when 𝛿 = 1, the term will be ranked based on the topic-

specific probability, and when 𝛿 = 0, the ranking of the term will be solely based on the lift. 

Therefore, based on the literature and studies, the optimal value for the weight parameter was 

found to be 0.67 and was adopted for this study. Furthermore, the ranking terms considered salient 

terms in corpora where the salient term was defined as the product of the probability of the term 

𝑤 being selected for a topic and the distinctiveness of the term 𝑤. Whereas the distinctiveness of 

term 𝑤 was defined as the Kullback-Leibler divergence between 𝑝(𝑘|𝑤) and marginal probability 

𝑝(𝑘). 

 

𝒅𝒊𝒔𝒕𝒊𝒏𝒄𝒕𝒊𝒗𝒆𝒏𝒆𝒔𝒔(𝒘) =  ∑ 𝒑(𝒌|𝒘)𝑻  ×  𝐥𝐨𝐠 (
𝒑(𝒌|𝒘)

𝒑(𝒌)
)                                                                           (3) 
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Whereas 𝑘 represents the topic and 𝑤 represents the words. The LDA topic modeling was 

implemented in Python, and the LDAvis module was used to visualize the LDA analysis results. 

 

Bayesian Networks 

The study utilized Bayesian Network (BN) algorithms to explore the influence of the 

ADAS technology on crash severity for vehicles involved in rear-end crashes. This algorithm was 

selected because it is a powerful tool that can accommodate multiple variables and produce better 

results when modeled, providing an upper hand compared to the models (Janssens et al., 2004; 

Kutela et al., 2022). The BN algorithm offers a distinguishing statistical modeling approach that 

interrelates variables using nodes, arcs, and conditional probability theory. The nodes represent the 

random variables, and arcs indicate the conventional relationship between these variables, where 

arcs are arrows in nature. The node found at the origin of the arc is known as the parent node, 

while the node at the tail head of the arc is known as the child node. The connection between nodes 

can be described using the joint probability distribution (Korb & Nicholson, 2010) represented by 

Equation 4 below. 

  

𝑷(𝑿𝟏 … … . 𝑿𝒏) =  ∏ 𝑷(𝑿𝒊|𝜫𝑿𝒊
𝒏
𝒊=𝟏 )                                                                                                         (4) 

                                                

where 𝑋𝑖 represent a random variable, and Π𝑋𝑖 represents a set of parent nodes.  

The BN involves two significant steps: structure learning and parameter learning. Structure 

learning is the step that consists of comprehending the conditional interdependencies that exist 

among the variables. This process can be performed through three analysis methods: the analytical 

approach, expert knowledge, and a combination of analytical and expert knowledge to form a 

hybrid approach (Demiroluk & Ozbay, 2014). The data set consists of uncertainty, so utilizing that 

analytical approach is advisable. Additionally, the data set incorporates expert knowledge in 

familiar matters (Rizzo & Blackburn, 2018). This study utilizes a hybrid approach, which allows 

the analytical approach to formulate the dependencies and the expert knowledge to make 

reasonable variable connections, hence striking a balance that is aligned with the study’s objective. 

A greedy hill algorithm was employed to form the best network, and multiple scoring functions 

were used to determine the optimal network (Kutela et al., 2022). These scoring functions include 

the Akaike Information Criterion (AIC), K2 score, Bayesian Information Criterion (BIC), and 

Bayesian Dirichlet equivalent uniform (Bdeu) score. The expression for each of the scoring 

functions is shown in the equation below. 

 

𝐀𝐈𝐂 = 𝟐 ∗ 𝐋𝐋 + 𝟐 ∗ 𝐧                                                                                                                                     (5) 

𝐤𝟐𝐬𝐜𝐨𝐫𝐞(𝐗𝐢, 𝐒𝐬, 𝐃) = 𝐥𝐨𝐠(𝐒𝐬, 𝐃) +  ∑ ( ∑ (𝐥𝐨𝐠 (
(𝐫𝐢−𝟏)!

(𝐍𝐢𝐣+𝐫𝐢−𝟏)!
) + ∑ 𝐥𝐨𝐠(𝐍𝐢𝐣𝐤!)) 

𝐫𝐢
𝐤=𝟏

𝐪𝐢
𝐣=𝟏

𝐧
𝐢=𝐣                       (6) 

𝐁𝐈𝐂 = 𝐥𝐧(𝐍) ∗ 𝐧 − 𝟐 ∗ 𝐋𝐋                                                                                                                            (7)  

𝐁𝐃𝐞𝐮 (𝐒, 𝐗) = 𝐥𝐨𝐠(𝐏(𝐗)) +  ∑  𝐧
𝐢=𝟏 ( ∑ (𝐥𝐨𝐠 (

𝚪(
𝐍′

𝐪𝐢
)

𝚪(𝐍𝐢𝐣+ 
𝐍′

𝐪𝐢
)
) +  ∑ 𝐥𝐨𝐠(

𝚪(𝐍𝐢𝐣𝐤+ 
𝐍′

𝐫𝐢𝐪𝐢
)

𝚪(
𝐍′

𝐫𝐢𝐪𝐢
 )

𝐫𝐢
𝐤=𝟏

𝐪𝐢
𝐣=𝟏 )                   (8) 

 
Where LL represents the log-likelihood; n represents the number of instances of parameters 

in a Bayesian Network, Individual sensitivity analysis. 𝑆𝑠 represents the BN structure; 𝑁′  

represents the sample size; 𝑁𝑖𝑗 represents the number of instances in data D; 𝑟𝑖 represents the 
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number of states of the finite random variable 𝑋𝑖, where the value 𝑋𝑖 represent the possible 

configuration of the parent set. 

The optimal structure that results from the scoring function is determined using structure 

learning, and parameter learning proceeds to estimate the variables’ Conditional Probability 

Distribution (CPD). Two methods for determining CPD are maximum likelihood estimation 

(MLE) and comprehensive simulations known as Markov Chain Monte Carlo. This study utilizes 

the MLE method for parameter learning (Koller & Friedman, 2009). This method estimates the 

parameters of a specific distribution by using observed data to maximize the likelihood function, 

considering a set of observations, for example, 𝑥1, 𝑥2, 𝑥3, 𝑥4, … … , 𝑥𝑛. Therefore, the optimization 

function is represented as shown in Equation 9. 

 

𝒇(𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒, … … , 𝒙𝒏|∅)                                                                                                          (9) 

 

The MLE is defined as a logarithmic probability of the observation given the parameters 

(Scutari, 2009), denoted by Equation 10. 

 

𝑳𝑳 (
𝑺

𝑫
) =  ∑ ∑ 𝒍𝒐𝒈 𝑷 (

𝑫𝒊𝒋

𝑷𝑨𝒊𝒋
)𝑵

𝒋
𝒏
𝒊 𝑳𝑳 (

𝑺

𝑫
) =  ∑ ∑ 𝒍𝒐𝒈 𝑷 (

𝑫𝒊𝒋

𝑷𝑨𝒊𝒋
)𝑵

𝒋
𝒏
𝒊 𝑳𝑳 (

𝑺

𝑫
) =  ∑ ∑ 𝒍𝒐𝒈 𝑷 (

𝑫𝒊𝒋

𝑷𝑨𝒊𝒋
)𝑵

𝒋
𝒏
𝒊    (10) 

 

where 𝐷𝑖𝑗 represents the counts of the observations for the variable 𝑥𝑖 in dataset 𝐷𝑗 , while 

𝑃𝐴𝑖𝑗 represents the count of occurrences of 𝑥𝑖Parent variables in 𝐷𝑗 . S represents BN’s structure, 

D is the data, n represents the total number of distinct variables in the BN structure, and ∅ 

represents the projected parameters. To determine the influence of an ADAS-equipped vehicle on 

a rear-end crash, a value of 1.0 (equivalent to 100%) was assigned to the category of parent 

variable, and its influence on the category of child variable was assessed as denoted in Equation 

11. This type of analysis is known as sensitivity analysis, where the model provides an evaluation 

of the impact of a given variable. Thus, the sensitivity analysis provides an estimated change in 

the predicted probability for the given sets of variables. 

 

𝑷(𝒄𝒓𝒂𝒔𝒉 𝒔𝒆𝒗𝒆𝒓𝒊𝒕𝒚 = 𝒊|𝑬𝒗𝒊𝒅𝒆𝒏𝒄𝒆𝒙 = 𝟏)                                                                                     (11) 

 

Where 𝑖 is the probability of whether the respondent will incur a severe rear-end crash, 

provided that evidence 𝑥 represents a hypothesis variable, such as ADAS operation mode usage. 

The BN was performed on the R 4.3.2 environment. Multiple packages, including Rgraphviz and 

bnlearn, were utilized to perform this analysis (R Core Team, 2024). 

 

5 RESULTS AND DISCUSSION 

Based on the analysis conducted, the results and discussions were presented in two 

sections. The first section shows the influence of ADAS on crash prevention, where the research 

team discusses the results from analyzing the rear-end collision and sideswipe collision.  In the 

second section, the research team discusses the influence of the ADAS systems in the protection 

of the vulnerable road users (VRUs), specifically pedestrians. The following are the results 

discussions of the analysis. 

 

5.1 Influence of ADAS on Crash Prevention 
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Consider the following BNs for the trained and optimal network, which aim to identify the 

variation in the severity level for vehicles involved in rear-end crashes based on the ADAS 

technology equipped in the vehicle.  

  

Figure 7: Initial trained network from either the rear-end crashes 

The response variable is the crash severity, which has two categories: PDO and KABC. 

The BN structures selected as the initially trained network for either manner of collision assessed 

in this study were characterized by having the lowest value of the score function. Thus, the initially 

trained network for rear-end crashes, as shown in Figure 7, is obtained from the AIC scoring 

function. The interconnection shown by the arcs in Figure 7 between the variables (both 

explanatory and response variables) shows the influence of one variable on another. Nevertheless, 

when there is no connection between the variables, there is an implication that there is insufficient 

information within the data to initiate or define the interdependency between these variables. 

However, it should be considered that the scoring algorithm initiated the interdependency observed 

in Figure 7 and does not reflect the actual scenarios. Therefore, expert knowledge and the findings 

from previous studies are used to redefine the interconnection between the variables to obtain an 

optimal BN structure that has logical connections aligned with the study objective and can be 

formed, as shown in Figure 8.  
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Figure 8: Optimal network used for rear-end crashes 

Connections shown in Figure 8 are constructed by reversing, setting, and deleting the 

initial arc relations established from the initial BN structure, respectively, for either of the two 

types of manner of collision analyzed. The optimal network shows that the response variable, 

which is crash severity, is a child variable for  15 explanatory variables, which are weather, lighting 

conditions, vehicle technology equipped, automation level,  ADAS operating mode, unit in error 

(if it is ADAS equipped), the age group for the driver, vehicle type, driving under the influence, 

gender, speeding related, posted speed limit, road conditions, location of the collision, and lastly 

traffic control involved. Although some explanatory variables did not have a direct connection 

response variable, these variables were parented to some of the hypothesis variables and thus 

influenced these explanatory variables. For instance, intersection-related and number of thrulanes 

were attributed to the location of the collision and the traffic control, respectively. Furthermore, 

the direct and indirect interdependencies shown in Figure 8 were evaluated to obtain the predicted 

probabilities of the hypothesis variables, which were the estimation of the effects of individual 

evidence on the likelihood of severe crashes that caused injury or fatal outcomes. A sensitivity 

analysis involving all the hypothesis variables was conducted along the same lines. 

The study includes both individual evidence and combined evidence analysis. Individual 

evidence analysis focuses on the likelihood of the crash with an injury or fatal outcome using 

individual variable evidence. Also, the study conducted a combination analysis to examine the 

likelihood of a vehicle equipped with one or more ADAS technologies being involved in a crash 

with an injury or fatal outcome.  

 

Individual Evidence Analysis 

The results of the individual evidence analysis are presented in Table 5 for rear-end 

crashes. Crash severity is used as the targeted variable for prediction purposes. Interpretation 

performed for this model is based on the predicted probability and the sensitivity analysis results. 

The analysis and interpretation focused on responding to the research question: what is the 
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likelihood of the vehicle equipped with ADAS being involved rear-end crash with a severity 

outcome of injury or fatal injury? The reference category used in Table 5 was selected based on 

the criteria that it has the least likelihood of occurring or leading to less severe crash outcomes.   

Table 5: Predictions and Sensitivity Scores for Individual Evidence 

Variable/Category Predict Probability 
Overall Sensitivity 

Score 

Age Group 

Under 25 30.06%  

25 - 64 35.34% 5.28% 

65+ 35.69% 5.64% 

Gender 

Female 33.72%  

Male  34.47% 0.75% 

Unit Type 

Non-passenger cars 34.54%  

Passenger cars 33.58% -0.95% 

ADAS In Error 

No 34.03%  

Yes 35.07% 1.04% 

ADAS Operating 

No 33.96%  

Yes 43.45% 9.49% 

Automation Level 

Level 0 34.04%  

Level 1+ 42.51% 8.47% 

Posted Speed Limit 

< 35 mph 18.17%  

35 - 45 mph 28.86% 10.69% 

> 45 mph 40.25% 22.08% 

Traffic Control 

No 38.15%  

Yes 26.45% -11.70% 

Thrulanes 

Not Two thrulanes 32.32%  

Two thrulanes 34.71% 2.39% 

Intersection Related 

No 34.18%  

Yes 34.22% 0.05% 

Impact Location 

On roadway 34.17%  

Off  Roadway 32.60% -1.58% 

Weather 

Clear 34.91%  

Adverse condition 32.33% -2.58% 

Road Condition 
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Variable/Category Predict Probability 
Overall Sensitivity 

Score 

Dry 35.00%  

Wet/Snow/Ice 29.68% -5.32% 

Light Condition 

Daylight 33.46%  

Dark  36.89% 3.43% 

Speed Related 

No 32.90%  

Yes 52.93% 20.03% 

Under Influence 

No 34.01%  

Yes 48.95% 14.93% 

Vehicle Technology 

No ADAS system 34.76%  

1+ ADAS system 33.26% -1.49% 

 

The findings of the study indicate that the probability of severe rear-end crashes is 

increased by 5.28% for a driver aged between 25 to 64 years old, whereas the probability increases 

by 5.64% for the senior drivers with an age of more than 65 years old. This finding substantiates 

the fact that as people age, the perception of reaction time increases; thus, the capability of instantly 

applying brakes before colliding with the front vehicle decreases, especially for senior drivers (F. 

Chen et al., 2019; Hell et al., 2002; Zou et al., 2023). The results show that male drivers have a 

0.75% probability higher probability of being involved in crashes with severe outcomes than 

female drivers. The findings are highly associated with the vehicle’s speeding since male drivers 

are found to be mostly speeding and hence fail to stop on short notice when required (Li et al., 

2016). Hang et al., (2022) indicate that male drivers are more aggressive compared to females.  

The results indicate a 33.58% probability of passenger cars being involved in rear-end 

crashes with a severe outcome, which was 0.95% lower than the probability of other non-passenger 

cars (34.54%). The findings complement the advancement in technology that has been made in the 

passenger car, such as equipping the passenger car with an effective braking system and equipping 

it with ADAS technology, such as CIB and FCW. Counterintuitively, the results indicate that the 

probability of the rear-end having a severe outcome increases by 1.04% when an ADAS-equipped 

vehicle in an error, and the magnitude of the likelihood increases by 9.49% when the vehicle 

involved was operating in ADAS mode (Masello et al., 2022), and capping all the results indicates 

the probability of the rear-end to have a severe outcome increases by 8.47% when the vehicle has 

with automation level greater than one. These counterintuitive results complement the observation 

in the data description in Table 2 that most rear-end crashes in Ohio rural areas involve 

conventional vehicles that are not equipped with ADAS. Few ADAS-equipped vehicles were 

found in error, and the one ADAS operating when involved in rear-end crashes with severe 

outcomes, driver behavior, and action had a high contribution since most of these vehicles are not 

fully automated. 

Furthermore, the probability of rear-end crashes having severe outcomes increases with an 

increase in the posted speed limit, where there was a 28.86% probability of this crash occurring on 

the road with a speed limit ranging from 35 mph to 45 mph. There is a 10.69% increase compared 

to the road, with a speed limit of less than 35mph. There was a 40.25% probability of this crash 
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occurring on the road with a posted limit greater than 45 mph, which indicated a 22.08% increase 

compared to the road with a posted speed limit of less than 35 mph. This finding suggests that rear-

end crashes with severe outcomes mainly occur on highways and arterial roads (Dabbour et al., 

2020). Using traffic control systems on the road section tends to decrease the probability of rear-

end crashes with severe outcomes by 11.7%. This finding indicates that traffic control is helping 

Ohio rural areas to control congestion, which is the primary cause of rear-end crashes in rural 

areas. The probability of severe rear-end crashes decreases by 2.58% under adverse weather 

conditions and decreases by 5.32% when the road surface condition is wet, snowy, or icy. The 

decrease in probability is caused by concentration, alertness, and relatively lower travel speed by 

drivers traversing these harsh conditions. 

Rear-end crashes are 3.43% more likely to occur during dark times than daytime when the 

surroundings are visible and the sight distance is long enough to spot a stopped vehicle from a 

distance, alerting the driver (Dabbour et al., 2020). Intuitively, speeding vehicles are 20.03% more 

likely to be involved in rear-end crashes that have severe outcomes because the vehicle fails to 

stop on time; hence, a hard rear-end collision has a high probability of occurring. Similarly, drivers 

driving under the influence of drugs or alcohol have a 14.93% higher likelihood of being involved 

in a rear-end crash with severe outcomes. The finding suggests that drivers who are influenced by 

alcohol or drugs are not mentally well enough to make decisions on the road, hence causing 

collisions (Masello et al., 2022). However, the probability of a vehicle equipped with one or more 

ADAS technologies is decreased by 1.49%. Therefore, this finding indicates that equipping more 

vehicles with ADAS or influencing the people in Ohio’s rural areas to use technologically 

improved vehicles will decrease the probability of rear-end crashes with severe outcomes.  

 

Combined Evidence Analysis Results 

Table 6 presents the predicted probabilities and associated sensitivity scores for the various 

combinations of variables. The main goal of performing the combined evidence analysis was to 

explore the additional benefits for vehicles involved in severe rear-end crashes when equipped 

with ADAS technology.  

 
Table 6: Predictions and Sensitivity Scores for the Combined Evidence Analysis 

Variable Category 
Predict 

Probability 

Sensitivity Scores 

No ADAS 

Equipped 

ADAS 

Equipped 

Age Group 

No ADAS Equipped 

Under 25 31.07%   

25 - 64 36.21% 5.14%  

65+ 34.80% 3.74%  

1+ ADAS Equipped 

Under 25 28.91%   

25 - 64 33.88%  4.98% 

65+ 38.05%  9.15% 

Gender 

No ADAS Equipped 
Female 33.87%   

Male  35.73% 1.86%  

1+ ADAS Equipped 
Female 32.57%   

Male  33.48%  0.90% 

Unit Type 

No ADAS Equipped Non-passenger cars 34.83%   
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Variable Category 
Predict 

Probability 

Sensitivity Scores 

No ADAS 

Equipped 

ADAS 

Equipped 

Passenger cars 34.80% -0.04%  

1+ ADAS Equipped 
Non-passenger cars 33.84%   

Passenger cars 31.62%  -2.22% 

ADAS In Error 

No ADAS Equipped 
No 34.90%   

Yes 0.00% -34.90%  

1+ ADAS Equipped 
No 32.13%   

Yes 35.18%  3.05% 

ADAS Operating 

No ADAS Equipped 
No 34.76%   

Yes 58.19% 23.43%  

1+ ADAS Equipped 
No 32.80%   

Yes 42.33%  9.53% 

Automation Level 

No ADAS Equipped 
Level 0 34.76%   

Level 1+ 45.81% 11.05%  

1+ ADAS Equipped 
Level 0 33.02%   

Level 1+ 39.39%  6.36% 

Posted Speed Limit 

No ADAS Equipped 

< 35 mph 19.14%   

35 - 45 mph 29.72% 10.59%  

> 45 mph 41.13% 21.99%  

1+ ADAS Equipped 

< 35 mph 16.61%   

35 - 45 mph 28.11%  11.50% 

> 45 mph 39.37%  22.75% 

Traffic Control 

No ADAS Equipped 
No 38.67%   

Yes 26.97% -11.70%  

1+ ADAS Equipped 
No 37.29%   

Yes 25.45%  -11.85% 

Thrulanes 

No ADAS Equipped 
Not Two thrulanes 32.90%   

Two thrulanes 35.36% 2.46%  

1+ ADAS Equipped 
Not Two thrulanes 31.04%   

Two thrulanes 33.67%  2.63% 

Intersection Related 

No ADAS Equipped 
No 34.85%   

Yes 34.84% -0.01%  

1+ ADAS Equipped 
No 32.92%   

Yes 33.06%  0.14% 

Impact Location 

No ADAS Equipped 
On roadway 34.69%   

Off  roadway 38.13% 3.44%  

1+ ADAS Equipped 
On roadway 33.02%   

Off  roadway 24.01%  -9.01% 

Weather 
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Variable Category 
Predict 

Probability 

Sensitivity Scores 

No ADAS 

Equipped 

ADAS 

Equipped 

No ADAS Equipped 
Clear 35.08%   

Adverse condition 34.25% -0.83%  

1+ ADAS Equipped 
Clear 34.67%   

Adverse condition 29.49%  -5.17% 

Road Condition 

No ADAS Equipped 
Dry 35.58%   

Wet/Snow/Ice 31.71% -3.87%  

1+ ADAS Equipped 
Dry 34.18%   

Wet/Snow/Ice 26.77%  -7.41% 

Light Condition 

No ADAS Equipped 
Daylight 34.54%   

Dark  36.06% 1.52%  

1+ ADAS Equipped 
Daylight 32.44%   

Dark  37.70%  5.26% 

Speed Related 

No ADAS Equipped 
No 33.32%   

Yes 53.96% 20.63%  

1+ ADAS Equipped 
No 32.18%   

Yes 51.28%  19.09% 

Under Influence 

No ADAS Equipped 
No 34.61%   

Yes 47.13% 12.52%  

1+ ADAS Equipped 
No 32.49%   

Yes 51.07%  18.58% 

 

Based on the results, each hypothesis displayed a trend when vehicle technology was kept 

as evidence for the combination analysis. The discussion in Table 7 shows a clear understanding 

of the trend for different explanatory variables used in the study. 

 
Table 7: Findings of the combination analysis of the rear-end crashes 

Variable  Discussion 

Age Group There was an increase in the probability of vehicles being involved in a severe rear-

end crash as the driver’s age increased for both vehicles equipped and not equipped 

with ADAS technology. However, the magnitude of the probability changes for the 

drivers aged between 25 to 64 years old who were using vehicles equipped with one 

or more ADAS technology (4.98%) is observed to be lower than drivers of similar 

age but using a vehicle with no ADAS technology (5.14%). Implies that a 

significant number of adult drivers are likely to be involved in crashes when using 

vehicles equipped with one or more ADAS technologies (Hell et al., 2002). 

However, the opposite becomes valid in the case of senior drivers since there is a 

rise in the magnitude of the probability change for the senior drivers utilizing 

vehicles equipped with ADAS. 

Gender Male drivers are found to have an increased probability of being involved in severe 

rear-end crashes. The likelihood of male drivers being involved in severe rear-end 

crashes is increased by 1.86% when using a vehicle not equipped with ADAS. In 

comparison, the probability is increased by 0.9% when using a vehicle equipped 
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Variable  Discussion 

with ADAS. However, the magnitude of the probability changes decreases when the 

male driver is using the ADAS-equipped vehicle, implying that when a vehicle is 

equipped with either CIB or FCW or both, the male driver is less likely to be 

involved in a severe rear-end crash (Md Shakir Mahmud et al., 2024). 

Unit Type Passenger cars were less likely to be involved in severe rear-end crashes, and the 

probability of passenger cars not being equipped with ADAS decreased by 0.04%, 

while those equipped with ADAS decreased by 2.22%. The findings indicate that 

passenger cars equipped with ADAS are less likely to be involved in severe rear-

end crashes than vehicles not equipped with ADAS technologies (F. Chen et al., 

2019). 

ADAS In Error The results also indicate that when a vehicle equipped with one or more ADAS 

technologies was found to be in error, the probability of rear-end collisions with 

severe outcomes increased by 3.05%.  

ADAS Operating Furthermore, the probability of change for the vehicles equipped with one or more 

ADAS and during the crash had their ADAS technology operating (9.53%) was less 

than those not equipped with ADAS (23.43%). 

Automation 

Level 

vehicle that was equipped with ADAS and the automation level of the vehicle was 

higher than that of a typical conventional vehicle, the probability of this vehicle 

being involved in a severe crash was lower (6.36%) compared to the vehicle that 

was not equipped with ADAS technology, which had a probability change of 

11.05%. The study’s findings indicate that when the vehicle is equipped with ADAS 

and has a higher automation level, the probability of being involved in a severe rear 

crash is lowered significantly, improving safety. 

Posted Speed 

Limit 

Regarding the influence of speed, the findings indicate that the higher the posted 

speed limit along the road section, the higher the probability of severe rear-end 

crashes for vehicles equipped with ADAS and those not equipped with ADAS. This 

finding validates that vehicles traversing highways and other high-speed roads 

cannot stop on short notice or in time to prevent rear-end collisions. 

Traffic Control Traffic control along the road decreases the probability of both vehicles that are 

equipped and vehicles that are not equipped with ADAS technology. The finding 

shows that traffic control signs and systems, such as stop signs, yield signs, and 

traffic signals, help reduce preventable rear-end collisions that are prominent in 

Ohio’s rural areas (Dabbour et al., 2020; Zou et al., 2023). 

Impact Location Vehicles not equipped with ADAS were found to be more likely to be involved in 

off-roadway rear-end crashes, where the probability of these vehicles being 

involved increased by 3.44%. In contrast, the probability of vehicles equipped with 

ADAS being involved in an off-roadway severe rear-end crash was decreased by 

9.01%. The findings show that vehicles with ADAS technology could detect and 

alert the driver, preventing crashes. 

Weather During adverse weather conditions, visibility is obscured, preventing drivers from 

having to extend long-sighted distances. The adverse weather conditions affect the 

road, causing the road to be wet and slippery due to rain or snow. However, the 

study results show that when the vehicle is equipped with one or more ADAS 

technologies, the probability of the crash is decreased by 5.17% during adverse 

weather conditions, and the probability is decreased by 7.41% when there are poor 

road conditions. The finding shows that ADAS-equipped vehicles are much safer to 

use for travel during adverse weather conditions because drivers will be alerted to 
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Variable  Discussion 

stopped vehicles or reduce the speed of the leading vehicle, hence stopping at much 

safer distances. 

Light Condition The probability of a vehicle equipped with ADAS technology and a vehicle not 

equipped with ADAS technology increased by 5.26% and 1.52%, respectively, 

during nighttime when the light condition is dark. Therefore, vehicles equipped with 

ADAS technology do not help reduce severe rear-end crashes during the night for 

vehicles in rural areas in Ohio. However, poor lighting conditions affect the 

efficiency of the sensors (Ma & Yan, 2014; Zou et al., 2023). 

Speed Related The study’s findings indicate that the probability of a vehicle equipped with ADAS 

technology and a vehicle not equipped with ADAS technology increased by 19.09% 

and 20.63%, respectively, when the vehicle is speeding. Therefore, vehicles 

equipped with ADAS technology do not help prevent rear-end crashes for vehicles 

speeding in Ohio’s rural areas. However, equipping the vehicle with ADAS 

technology decreased the number of speeding vehicles. 

Under Influence The findings also indicated that the probability of both a vehicle equipped with 

ADAS technology and a vehicle that is not equipped with ADAS technology having 

a severe outcome in a crash was increased by 18.58% and 12.52%, respectively, 

when the driver is under the influence of either drugs or alcohol. Therefore, vehicles 

equipped with ADAS technology do not have the assurance to prevent severe rear-

end crashes by intoxicated drivers. 

 

Consider the following Bayesian Networks for the trained and optimal network, which aim 

to identify the variation in the severity level for vehicles involved in sideswipe crashes based on 

the ADAS technologies equipped in these vehicles. The response variable is the crash severity, 

which has two categories: PDO and KABC (severity level includes minor injury, injury suspected, 

serious injury, and fatal crash). The BN structure selected as the initially trained network assessed 

in this study was characterized by having the lowest value of the score function. Thus, the initially 

trained network of the sideswipe crashes, as shown in Figure 9, is obtained from the K2 search 

algorithm scoring function. The interconnection shown by the arcs in Figure 9 between the 

variables (both explanatory and response variables) shows the influence of one variable on another. 

Nevertheless, when there is no connection between the variables, there is an implication that there 

is insufficient information within the data to initiate or define the interdependency between these 

variables. However, it should be considered that the scoring algorithm initiated the 

interdependency observed in Figure 9 and does not reflect the actual scenarios. Therefore, expert 

knowledge and the findings from previous studies are used to redefine the interconnection between 

the variables to obtain an optimal BN structure that has logical connections aligned with the study 

objective. The refined network is shown in Figure 10.  
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Figure 9: Initial trained network from sideswipe crashes. 

 

 
Figure 10: Optimal network used for sideswipe crashes 

The connections shown in Figure 8 are constructed by reversing, setting, and deleting the 

initial arc relations established from the initial BN structure, respectively, for either of the two 

types of manner of collision analyzed. The optimal network shows that the response variable, 

which is crash severity, is a child variable for  15 explanatory variables, which are weather, lighting 

conditions, vehicle technology equipped, automation level,  ADAS operating mode, unit in error 

(if it is ADAS equipped), the age group for the driver, vehicle type, driving under the influence, 
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gender, speeding related, posted speed limit, road conditions, location of the collision, and lastly 

traffic control involved. Although some explanatory variables did not have a direct connection 

response variable, these variables were parented to some of the hypothesis variables and thus 

influenced these explanatory variables. For instance, intersection-related and number of thru lanes 

were attributed to the location of the collision and the traffic control, respectively. Furthermore, 

the direct and indirect interdependencies shown in Figure 8 were evaluated to obtain the predicted 

probabilities of the hypothesis variables, which were the estimation of the effects of individual 

evidence on the likelihood of severe crashes that caused injury or fatal outcomes. A sensitivity 

analysis involving all the hypothesis variables was conducted along the same lines. 

The study includes both individual evidence and combined evidence analysis. An 

individual evidence analysis analyzed the likelihood of the crash with injury or fatal outcome using 

individual variable evidence. Also, the study conducted a combination analysis to examine the 

likelihood of a vehicle equipped with one or more ADAS technologies to be involved in a crash 

with an injury or fatal outcome concerning the hypothesis variables. The results of the individual 

evidence analysis are shown in Table 8. Also, the results of the combination analysis are presented 

in Table 9. 

 

Individual Evidence Analysis for Hypothesis Variables 

Model results presented in Table 8 are obtained by considering crash severity as the 

targeted variable for the prediction. Interpretation performed for this model is based on the 

predicted probability and the sensitivity analysis results. The analysis and interpretation focused 

on responding to the research question: What is the likelihood of the vehicle equipped with ADAS 

being involved in a sideswipe crash resulting in a severe injury outcome (KABC)? The reference 

category used in Table 8 was selected based on the criteria that has the least likelihood of occurring 

or leading to less severe injury outcomes. 

   
Table 8: Predicted Probability and Sensitivity Analysis Scores 

Variable/Category Predict Probability Overall Sensitivity Score 

Age Group 

Under 25 12.62%  
25 - 64 15.65% 3.02% 

65+ 11.17% -1.46% 

Gender 

Female 16.83%  
Male  13.00% -3.83% 

Unit Type 

Non-passenger cars 14.72%  
Passenger cars 14.46% -0.26% 

ADAS In Error 

No 14.39%  
Yes 15.33% 0.94% 

ADAS Operating 

No 14.64%  
Yes 8.79% -5.86% 

Automation Level 

Level 0 14.61%  
Level 1+ 13.18% -1.43% 

Posted Speed Limit 
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Variable/Category Predict Probability Overall Sensitivity Score 

< 35 mph 3.83%  
35 - 45 mph 9.09% 5.26% 

> 45 mph 17.57% 13.73% 

Traffic Control 

No 15.16%  
Yes 10.48% -4.68% 

Thrulanes 

Not Two thrulanes 14.36%  
Two thrulanes 14.47% 0.11% 

Intersection Related 

No 14.52%  
Yes 14.55% 0.03% 

Impact Location 

On roadway 14.65%  
Off roadway 9.98% -4.66% 

Weather 

Clear 14.10%  
Adverse condition 15.07% 0.96% 

Road Condition 

Dry 14.48%  
Wet/Snow/Ice 14.93% 0.45% 

Light Condition 

Daylight 14.20%  
Dark  16.83% 2.63% 

Speed Related 

No 13.76%  
Yes 19.68% 5.92% 

Under Influence 

No 14.35%  
Yes 38.73% 24.38% 

Vehicle Technology 

No ADAS system 14.29%  
1+ ADAS system 14.84% 0.55% 

 

The findings of individual evidence analysis are based on analyzing the sideswipe crashes 

dataset. There was a 0.26% decrease in the probability of passenger cars being involved in 

sideswipe crashes with severe outcomes. The likelihood of ADAS vehicles being in error in 

sideswipe crashes with severe outcomes was increased by 0.94%. Roads with a posted speed limit 

of more than 35 mph have a higher probability of severe sideswipe crashes. For instance, the 

likelihood of a vehicle being involved in a sideswipe crash that has a severe outcome increases by 

5.26% while traversing roads with posted speed limits ranging between 35mph and 45mph. 

Furthermore, the probability increased by 13.73% while crossing a road with a posted speed limit 

greater than 45 mph. However, for roads with traffic control, the probability of a vehicle being 

involved in a sideswipe crash with a severe outcome is decreased by 4.68%.  

In the same line, the results indicate a 4.66% decrease in the probability of severe sideswipe 

crashes off the roadway, thus indicating that most severe sideswipe crashes in Ohio rural areas 

occur between vehicles traveling in adjacent lanes. The results suggest that the probability of 

severe sideswipe crashes increases by 2.63% during dark conditions, whereas Jumaa et al. (Jumaa 
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et al., 2019) suggest that the darkness hinders the ADAS system from detecting the road markings. 

The probability increases by 5.92% when the vehicle is speeding, which is similar to various 

studies (Fildes et al., 1991; Fleiter et al., 2010). Also, the results indicate that the probability of a 

sideswipe crash with a severe outcome is increased by 24.38% when the driver is under the 

influence of alcohol or drugs; thus, it is difficult to maintain road stability (Alonso et al., 2015).  

The probability of drivers aged between 25 and 64 years old being involved in a severe 

sideswipe crash is increased by 3.02%. In comparison, the likelihood of senior drivers aged 65 

years and above being involved in similar crashes decreased by 1.46%. This finding validates that 

the adult group of drivers is often distracted and aggressive when driving, hence increasing the 

chance of moving out of the lane or not seeing vehicles that are in the blind spot of the vehicle, 

which are typical causes of sideswipe collisions. However, the senior drivers were most likely 

experienced, aware of their surroundings while driving, and concentrated on staying in their travel 

lane. The probability of male drivers being involved in severe sideswipe crashes decreases by 

3.83% compared to female drivers. The findings indicate that most females have a higher chance 

of moving out of their travel lane and colliding with other vehicles than male drivers.  

Furthermore, the results indicated that for vehicles with ADAS systems operating at the 

time of the crash and with automation levels greater than one, their probability of being involved 

in a severe sideswipe crash decreased by 5.83% and 1.43%, respectively. The findings are 

intuitively valid because systems like LKA, which offer a degree of automation, have been found 

to reduce the occurrence of certain types of crashes (Leslie et al., 2021). The findings imply that 

the ADAS technology lowers the likelihood of vehicles being involved in severe sideswipe 

crashes. However, when considering the influence of weather implying the presence of adverse 

weather conditions that directly led to having wet, snowy, or icy road conditions, the probability 

of a vehicle to involved in a severe sideswipe crash was increased by 0.96% during adverse 

weather and 0.45% when the road section was wet, snowy, or icy. This finding implied that drivers' 

chances of moving out of the lane or being unable to see the vehicle in the blind spot increased 

during adverse weather and road conditions caused by a loss of traction or poor visibility. Finally, 

the probability of a vehicle equipped with ADAS technology being involved in a severe sideswipe 

crash increased by 0.55%. The probability increase observed indicates that vehicles involved in 

the crashes were equipped with these technologies. Still, only a few of the vehicles had the 

technology operating during the crash. 

 

Combination Analysis for the Hypothesis Variables 

Table 9 presents the predicted probabilities and associated sensitivity scores for the various 

combinations of variables. Based on the results in Table 9, each hypothesis displayed a trend when 

vehicle technology was kept as evidence for the combination analysis. The results of the 

combination analysis show a decrease in the probability of vehicles being involved in severe 

sideswipe crashes as the driver's age increased for both vehicles equipped and not equipped with 

ADAS technology. However, the magnitude of the probability changes for drivers aged between 

25 to 64 years old who were using vehicles equipped with one or more ADAS technology (0.17%) 

is observed to be lower than drivers of similar age but using a vehicle with no ADAS technology 

(4.34%). This implies that the number of adult drivers likely to be involved in crashes when using 

vehicles equipped with one or more ADAS technologies is decreasing. Concurrently, a similar case 

was observed on senior drivers, where the probability of the senior drivers utilizing vehicles 

equipped with ADAS decreased by 2.56% compared to senior drivers driving vehicles not 

equipped with ADAS. The findings align with previous studies indicating that ADAS has 
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significantly reduced the sideswipe crashes in rural areas. Overall, male drivers were found to have 

an increased probability of being involved in severe sideswipe crashes. In contrast, the likelihood 

of male drivers being involved in severe sideswipe crashes decreased by 2.97% when using a 

vehicle not equipped with ADAS. In comparison, the likelihood decreased by 4.28% when using 

a vehicle equipped with ADAS. The magnitude of the probability change decreased further below 

when the male driver was using the ADAS-equipped vehicle, implying that when the vehicle is 

equipped with either BSW, LKA, or LDW, all led to the male driver being less likely to be involved 

in a severe sideswipe crash. 

Passenger cars were found to be less likely to be involved in severe sideswipe crashes, 

where the probability of passenger cars not equipped with ADAS increased by 1.90% while the 

number of ones equipped with ADAS decreased by 3.98%. The findings indicate that passenger 

cars that are equipped with ADAS  are less likely to be involved in severe sideswipe crashes 

compared to vehicles that are not equipped with ADAS technologies since these drivers are alerted 

as soon as they start moving out of their lanes or when there was the vehicle on their blind spot 

hence significantly reduces the likelihood of causing or involved in these types of crashes. The 

result indicates that when the vehicle with one or more ADAS technologies was in error, the 

probability of sideswipe collisions having severe outcomes increased by 0.98%. This is because 

of the adaptive behavior of the drivers, which is caused by dependencies on the ADAS technology 

(Vertlib et al., 2023). 
 

Table 9: Predicted Probabilities and Sensitivity Score for the Combined Evidence Analysis 

Variable Category 
Predict 

Probability 

Sensitivity Scores 

No ADAS Equipped ADAS Equipped 

Age Group 

No ADAS Equipped 

Under 25 11.45%   

25 - 64 15.79% 4.34%  

65+ 10.51% -0.94%  

1+ ADAS Equipped 

Under 25 15.06%   

25 - 64 15.23%  0.17% 

65+ 12.50%  -2.56% 

Gender 

No ADAS Equipped 
Female 16.11%   

Male  13.13% -2.97%  

1+ ADAS Equipped 
Female 17.50%   

Male  13.21%  -4.28% 

Unit Type 

No ADAS Equipped 
Non-passenger cars 13.55%   

Passenger cars 15.45% 1.90%  

1+ ADAS Equipped 
Non-passenger cars 16.26%   

Passenger cars 12.37%  -3.89% 

ADAS In Error 

No ADAS Equipped 
No 14.11%   

Yes 0.00% -14.11%  

1+ ADAS Equipped 
No 14.53%   

Yes 15.51%  0.98% 

ADAS  Operating 

No ADAS Equipped 
No 14.31%   

Yes 1.06% -13.25%  

1+ ADAS Equipped No 14.97%   
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Variable Category 
Predict 

Probability 

Sensitivity Scores 

No ADAS Equipped ADAS Equipped 

Yes 9.00%  -5.97% 

Automation Level 

No ADAS Equipped 
Level 0 14.40%   

Level 1+ 12.65% -1.75%  

1+ ADAS Equipped 
Level 0 14.75%   

Level 1+ 13.11%  -1.65% 

Posted Speed Limit 

No ADAS Equipped 

< 35 mph 3.63%   

35 - 45 mph 10.18% 6.55%  

> 45 mph 17.54% 13.91%  

1+ ADAS Equipped 

< 35 mph 4.50%   

35 - 45 mph 7.33%  2.82% 

> 45 mph 18.54%  14.03% 

Traffic Control 

No ADAS Equipped 
No 14.83%   

Yes 10.77% -4.06%  

1+ ADAS Equipped 
No 15.53%   

Yes 10.09%  -5.44% 

Thrulanes 

No ADAS Equipped 
Not Two thrulanes 13.85%   

Two thrulanes 14.26% 0.41%  

1+ ADAS Equipped 
Not Two thrulanes 14.34%   

Two thrulanes 14.99%  0.65% 

Intersection Related 

No ADAS Equipped 
No 14.12%   

Yes 14.22% 0.11%  

1+ ADAS Equipped 
No 14.84%   

Yes 14.72%  -0.12% 

Impact Location 

No ADAS Equipped 
On roadway 14.49%   

Off  Roadway 9.05% -5.44%  

1+ ADAS Equipped 
On roadway 14.77%   

Off  Roadway 11.96%  -2.81% 

Weather 

No ADAS Equipped 
Clear 13.36%   

Adverse condition 16.22% 2.86%  

1+ ADAS Equipped 
Clear 15.29%   

Adverse condition 13.72%  -1.57% 

Road Condition 

No ADAS Equipped 
Dry 13.91%   

Wet/Snow/Ice 17.11% 3.19%  

1+ ADAS Equipped 
Dry 15.31%   

Wet/Snow/Ice 12.02%  -3.29% 

Light Condition 

No ADAS Equipped 
Daylight 14.49%   

Dark  13.11% -1.38%  

1+ ADAS Equipped 
Daylight 13.87%   

Dark  22.77%  8.90% 
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Variable Category 
Predict 

Probability 

Sensitivity Scores 

No ADAS Equipped ADAS Equipped 

Speed Related 

No ADAS Equipped 
No 13.37%   

Yes 19.58% 6.21%  

1+ ADAS Equipped 
No 14.36%   

Yes 18.89%  4.53% 

Under Influence 

No ADAS Equipped 
No 14.03%   

Yes 39.06% 25.03%  

1+ ADAS Equipped 
No 14.77%   

Yes 29.78%  15.02% 

 

The results indicated that the probability of change for vehicles equipped with one or more 

ADAS and had their ADAS technology operating decreased by 5.97% during the crash. Similarly, 

the vehicle that was equipped with ADAS and the automation level of the vehicle was higher than 

regular conventional vehicles, the probability of the vehicle being involved in a severe crash 

decrease by 1.65% compared to the cars that were not equipped with ADAS technology, which 

had a reduced probability change of 1.75%. The study's findings indicate that when the vehicle is 

equipped with ADAS and has a higher automation level, the probability of being involved in a 

severe sideswipe crash is lowered significantly, hence improving the safety of the occupants 

(Cicchino, 2018; Jumaa et al., 2019). The finding is valid because ADAS, like LKA, offers a degree 

of automation and has been found to reduce the occurrence of certain types of crashes (Leslie et 

al., 2021). 

The study's findings indicate that the higher the posted speed limit along the road section, 

the higher the probability of severe sideswipe crashes occurring for vehicles equipped with ADAS 

and those not equipped with ADAS. The finding validates that vehicles traversing highways and 

other high-speed roads are generally unstable in one lane, and a slight tilt on the steering wheel 

can lead to a severe sideswipe crash. The findings indicated that traffic control along the road 

decreases the probability of both vehicles that are equipped and vehicles that are not equipped with 

ADAS technology. The finding suggests that traffic control signs and systems, such as stop signs, 

yield signs, and traffic signals, help reduce preventable sideswipe collisions that are likely to occur 

in Ohio's rural areas. 

Vehicles not equipped with ADAS were found to be less likely to be involved in off-

roadway sideswipe crashes, where the probability of these vehicles being involved in these crashes 

decrease by 5.44%. At the same time, the likelihood of the vehicle equipped with ADAS being 

engaged in an off-roadway severe sideswipe crash was decreased by 2.01%. The findings show 

that both vehicles equipped with ADAS technology and those that are not equipped are less likely 

to be involved in roadway sideswiping since crashes at off-roadway, for instance, merging and 

diverging ramp areas depend on the driver's attentiveness to the surroundings by knowing where 

other vehicles are located before making a maneuver action thus the severity of this crash is not 

affected by the presence of the technology. During adverse weather conditions, visibility is 

obscured, preventing drivers from maintaining traction on the tire, and they can slip to the next 

lane or off the road without notice. The adverse weather conditions affect the road, causing the 

road to be wet and slippery due to rain or snow. However, the study results show that when the 

vehicle is equipped with one or more ADAS technologies, the probability of a crash is decreased 

by 1.57% during adverse weather conditions. In contrast, the likelihood of vehicles not being 
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equipped with ADAS technology increased by 2.86%. Similarly, the probability of a vehicle 

equipped with ADAS technology being involved in a sideswipe crash with a severe outcome was 

decreased by 3.29% when there were poor road conditions.  

In comparison, the probability of a vehicle not equipped with ADAS technology was 

increased by 3.19%. The finding shows that ADAS-equipped vehicles are much safer to use for 

travel during adverse weather conditions because drivers would be alerted that the vehicle is 

moving out of the lane; thus, drivers can reduce their speed and gain control of the vehicle, hence 

maneuvering quickly and safely without causing or being involved in a sideswipe crash (Uddin & 

Huynh, 2020). The finding is counterintuitive because, according to Jumaa et al., (2019), adverse 

weather, such as heavy rain and snow, interferes with the effectiveness of LKA, which may 

increase the probability of crashes. However, this study’s findings show this is not the case in rural 

areas. The study's findings are counterintuitive since they indicate that the probability of a vehicle 

equipped with ADAS technology being involved in a severe sideswipe crash is increased by 8.9%. 

Jumaa et al., (2019) support this by validating that poor light conditions compromise the 

effectiveness of ADAS, causing errors in the system that drivers rely on in these conditions. In 

comparison, the likelihood of vehicles not being equipped with ADAS technology decreased by 

1.38% when the light condition was dark. Therefore, the vehicle has been equipped with ADAS 

technology, which helps reduce severe sideswipe crashes during the night for vehicles in rural 

areas in Ohio. 

The study's findings indicate that the probability of a vehicle equipped with ADAS 

technology and a vehicle not equipped with ADAS technology increased by 4.53% and 6.21%, 

respectively, when the vehicle is speeding. Therefore, vehicles equipped with ADAS technology 

do not help prevent sideswipe crashes caused by speeding cars in Ohio's rural areas. However, 

equipping the vehicle with ADAS technology decreases the number of speeding vehicles. The 

findings of the study indicate that the probability of both a vehicle equipped with ADAS 

technology and a car that was not equipped with ADAS technology was increased by 15.02% and 

25.03%, respectively, when the driver is under the influence of either drugs or alcohol. Therefore, 

vehicles with ADAS technology do not significantly help prevent severe sideswipe crashes for 

intoxicated drivers. However, if the level of automation increases, these crashes will likely 

decrease since the driver is required to meet a minimum percentage. 

 

5.2 Influence of ADAS on VRU Protection 

LDA topic modeling results 

Crash narratives were divided into two groups (vehicles equipped with PAEB and vehicles 

not equipped with PAEB). These narratives formed a corpus (bag of words) that was analyzed 

using the LDA topic modeling to obtain relevant and salient topics and terms. The LDA results 

are based on the two groups of the crash narratives. 

  

Vehicles equipped with PAEB 

The left-hand side of Figure 11 shows the Intertopic Distance Map. The topics in the corpus 

are well-dispersed, indicating a wide range of independent subjects. However, some topics are 

closely related, as shown by the short intertopic distances, such as between topic 12 and topic 5, 

and similarly between topic 8 and topic 1. The right-hand side displays the top 30 most salient 

terms for the overall corpus, ranked based on their relevance. Words such as “travel”, “strike”, 

“pedestrian”, “run”, “walk”, “crosswalk”, and other words on the charts were ranked high as 

relevant words in the corpus that explained pedestrian crashes involving vehicles equipped with 
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PAEB. The words provided a general overview of actions and incident points where a crash 

between a pedestrian and a PAEB-equipped vehicle occurred. However, to obtain a specific 

interpretation of these corpora, the topics presented in the left side chart were weighted and ranked 

by level of significance/importance based on the terms contained in the topic. 

 

 
Figure 11: Overall Topics and Relevant Terms for Crashes involving vehicles equipped with PAEB 

 

Words in the topic have different weights in terms of TF-IDF value, causing every topic to 

carry a unique weight or different value of importance in explaining the corpus of words. Upon 

analysing the topics that explain the narrative of crashes involving a pedestrian and a vehicle 

equipped with PAEB. As shown in Figure 12, the findings show that topic number 14 carries the 

highest significance level compared to other topics. Therefore, the words found in this topic can 

representatively explain the narrative of crashes involving a pedestrian and a vehicle equipped 

with PAEB. 
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Figure 12: Ranking of the topic's importance 

 

The right-hand side of Figure 13 shows the words contained in topic number 14. Some of 

the top-ranked relevant words are “push”, “behind”, “tree”, “leave rear”, “ditch”, “corner”, 

“drug toxicology”, and other keywords. Most of the top-ranked keywords are observed to be 

exclusively represented in this topic since the ratio of the estimated term frequency within the 

selected topic (represented by the red bar) to overall term frequency (represented by the skyblue 

bar) is high (close to 1). Keywords suggest that most of the crashes involved the action push, and 

the crashes tend to mostly occur from behind and hit a tree or ditch, and the keywords suggest that 

victims involved in the crashes undergo drug toxication tests.  For instance, one of the crash 

narratives states “…Unit 1 drove back onto Township Road 1109 and struck Unit 2 in the rear. 

Unit 2 was pushed into Unit 3 pedestrian and Unit 4 trailer…”, another narrative states“…Unit 1 

struck Unit 2 rear driver side door; pushing Unit 3 to the ground…”, from both of these narratives, 

we observe that the vehicle equipped with the ADAS is parked and then hit by a vehicle in motion 

initiating motion on the parked vehicle that cause collision (pushing) to the pedestrian standing 

beside the once parked vehicle. The narrative suggests that the scenario leading to the crash did 

not activate the PAEB system, as the parked vehicle that struck the pedestrian was not at fault. 

However, most vehicles are observed to have lost control as suggested in the previous narrative, 

and the following “… Unit # 1 traveled onto the right berm and struck unit # 4 and 2 pedestrians 

standing beside unit # 4.  Unit # 1 then lost control; traveled off the right side of the road; and 

came to final rest…” and another narrative “…Unit #2 and Unit #3 were parked on the south berm 

of eastbound U.S. 30. Unit #4; a pedestrian; was standing on the left side of Unit #2. Unit #1 

crossed the solid white edge line of eastbound U.S. 30, sideswiping Unit #2 and striking Unit 

#4…”. A driver losing control is an indicator of driving under the influence, causing most of these 

crashes involving the PAEB vehicle to require a drug toxicology test to confirm whether the driver 

was influenced by any drug or alcohol.   
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Figure 13:  Term frequency and relevant terms for topic_14 

 

The outcomes of these crashes are observed to cause minor injury, or no injury sustained 

by the pedestrian as suggested by the following narratives “…unit 1 was assessed by medics and 

checked fine. Unit 1 was strongly advised to be more careful…” and another narrative “…Unit 1 

struck the pedestrian causing minor damage to the front of Unit 1 and minor injury to the 

pedestrian…”. The finding suggests that more use of the ADAS-equipped vehicle (specifically the 

PAEB system) can help in the reduction of the crash injury severity sustained by pedestrians in 

rural areas. These findings are consistent with the previous research (Cicchino, 2022). On the other 

hand, the literature suggests that PAEB has limitations in the recognition of capabilities, as well 

as the range of recognition of pedestrians (Tang et al., 2016). These limitations are observed not 

to be prevailing in rural areas, although the technological upgrading focused on improving the 

PAEB system should continue to increase the efficiency and effectiveness of the PAEB system. 

These findings highlight that human behavior (especially driver behavior) has continued to 

diminish the advantages brought by ADAS in improving safety. 

 

Vehicles not equipped with PAEB. 

Following the discussion made on pedestrian crashes involving vehicles equipped with 

PAEB, Figure 14 summarizes the results of LDA topic modeling for pedestrian crashes involving 

vehicles not equipped with the PAEB system. Similar to the representation observed in the figures 

presented while explaining vehicles equipped with PAEB. From Figure 14, we observe that topic 

1 is closely related to topic 6. Similarly, topic 14 is closely related to topic 15. On the chart on the 

right side of Figure 14, it is observed that words such as “travel”, “roadway”, “strike”, “walk”, 

“turn”, “pedestrian”, and other words on the charts were ranked high as relevant words in the 

corpus that explained pedestrian crashes involving vehicles not equipped with PAEB. The words 
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provide a general overview of actions and incident points where a crash between a pedestrian and 

a vehicle not equipped with PAEB can occur. However, to obtain a specific interpretation of these 

corpora, the topics presented in the left side chart were weighted and ranked by level of 

significance/importance based on the terms contained in the topic. Words in the topic have 

different weights in terms of tf-idf value, causing every topic to carry a unique weight or a different 

value of importance in explaining the corpus of words. Upon analysing the topics that explain the 

narrative of crashes involving a pedestrian and a vehicle not equipped with PAEB topics were 

ranked in level of significance. 

 

 
Figure 14: Overall topics and Relevant Terms for Crashes involving vehicles not equipped with 

PAEB 

 

As shown in Figure 15, the findings show that topic number 9 carries the highest 

significance level compared to other topics. Therefore, the words found in this topic can 

representatively explain the narrative of crashes involving a pedestrian and a vehicle not equipped 

with PAEB. 
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Figure 15: Ranking of the topic's importance 

The chart on the right side of Figure 16 shows the words contained in topic number 9. 

Some of the top-ranked relevant words are “cross”, “enter”, “make_left_turn”, “begin”, 

“crosswalks”, “fail_yield”, “crossing”, and other keywords. Most of the top ranked keywords are 

observed to be exclusively represented in this topic since the ratio of the estimated term frequency 

within the selected topic (represented by the red bar) to overall term frequency (represented by 

the skyblue bar) is high although their top rank words such as “cross” and “crosswalks” appear 

to widespread into different topic since the ratio of the estimated term frequency within the selected 

topic (represented by the red bar) to overall term frequency (represented by the skyblue bar) is 

observed to be low. Keywords suggest that most of the crashes involved pedestrian crossing using 

the crosswalks and the vehicle drivers failing to yield to pedestrians, especially when making 

turning movements.  For instance, one of the crash narratives states “…Unit 1 made a left turn 

onto  League Street and failed to yield to Units 2 and 3 in the crosswalk; striking both of them.…”, 

“…Unit #2 was found at fault and issued a citation for fail to yield to a pedestrian in a 

crosswalk…”, another narrative states“…Unit 2 was traveling west on Walnut Street failing to 

yield striking the pedestrian. Unit 2 was found at fault in the crash…”, from these narratives, we 

observe that the vehicles not equipped with the PAEB system were not capable of detecting from 

a distance the pedestrian who was interacting with the roadway leading to the vehicle (motorists) 

failing to yield on time before striking a pedestrian. Another observation shows that most of the 

pedestrian crashes involving vehicles not equipped with the PAEB system occur mostly in the 

intersection areas as suggested in the following narrative “… unit # 2 entered the intersection 

continuing south across watt st. unit #1 made a right hand turn onto watt st striking unit #2 causing 

injuries…”, “Unit 2 proceeded through the intersection of Dewey Ave and Wheeling Ave; heading 

eastbound; when struck crossing Unit 1…” and another narrative “…As Unit #2 approached the 

intersection; under a green light; Unit #1 ran into the traffic lane; out of the crosswalk; and was 

struck by unit #2…”. The PAEB system helps drivers to brake abruptly when a pedestrian is 
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unexpectedly detected on the roadway. Therefore, vehicles that are not equipped with PAEB were 

not able to detect and prevent these types of crashes hence resulting in pedestrian crashes.   

 

 

 
Figure 16: Term frequency and relevant terms for topic_9 

 

The outcomes of these crashes are observed to cause fatal and serious injuries to the 

pedestrian involved as suggested by the following narratives “…This is completed to indicate the 

crash has resulted in fatal injuries to Unit #4.…”, “The pedestrian suffered serious injuries as a 

result of the crash and was transported to the Fisher-Titus Medical Center by North Central EMS 

and later flown by LifeFlight to University of Toledo Medical Center…” and another narrative 

“…Unit 2 received injuries to her head and leg…”. The finding suggests that vehicles that are not 

equipped with the PAEB system increase the vulnerability of pedestrians in the roadway. This is 

consistent with previous research conducted by Gajera et al., (2023). Although the LDA results 

have substantiated that vehicles equipped with the PAEB system led to low-severity injuries to the 

pedestrian. In the next section, we present the results of the Bayesian network analysis to 

understand variables associated with the probability of incapacitating or non-incapacitating 

injuries. 

 

Bayesian Network Results 

Figure 17 and Figure 18 are Bayesian Networks for the trained and optimal network, 

respectively, which aim to identify the variation in the injury severity level for pedestrians involved 

in vehicle-pedestrian crashes. The analysis is focused on the ADAS technology equipped in the 

vehicle, specifically the PAEB.  
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Figure 17: Trained a network for the pedestrian crashes 

 

The response variable is the injury severity, which has three categories: no injury, non-

incapacitating injuries, and incapacitating injuries. The BN structure was selected as the trained 

network (Figure 17) assessed in this study was characterized by having the lowest value of the 

score function. Thus, the initially trained network of pedestrian crashes, as shown in Figure 17, is 

obtained from the AIC search algorithm scoring function. The interconnection shown by the arcs 

in Figure 17 between the variables (both explanatory and response variables) shows the influence 

of one variable on another. Nevertheless, when there is no connection between the variables, there 

is an implication that there is insufficient information within the data to initiate or define the 

interdependency between these variables. However, it should be considered that the scoring 

algorithm initiated by the interdependency observed in Figure 17 reflects the scenarios learned 

from the data and does not imply the actual scenarios. Therefore, expert knowledge and the 

findings from previous studies are used to redefine the interconnection between the variables to 

obtain an optimal BN structure that has logical connections aligned with the study objective and 

can be formed, as shown in Figure 18.  
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Figure 18: Optimal network for pedestrian crashes 

 

The connections shown in Figure 18 are constructed by reversing, setting, and deleting the 

arc relations defined through data training. The optimal network shows that the response variable, 

injury severity is a child variable for  12 explanatory variables, which are weather, lighting 

conditions, Presence of PAEB in the vehicle, the age group for the driver, vehicle type, driving 

under the influence, gender, speeding related, posted speed limit, road conditions, location of the 

collision, and lastly traffic control involved. Figure 18 shows the direct and indirect 

interdependencies evaluated to obtain the predicted probabilities of the hypothesis variables. These 

probabilities highlight the estimation of the effects of individual evidence on the likelihood that a 

pedestrian can either sustain non-incapacitating or incapacitating injuries when involved in a crash 

with a vehicle. A sensitivity analysis involving all the hypothesis variables was conducted. 

The study includes both individual evidence and combined evidence analysis. An 

individual evidence analysis analyzed the likelihood that a pedestrian can either sustain non-

incapacitating or incapacitating injuries using individual variable evidence. Combination analysis 

examined the likelihood of a vehicle not equipped with PAEB technology being involved in a 

crash and further assessed the likelihood of the pedestrian either sustaining non-incapacitating or 

incapacitating injuries concerning the hypothesis variables. The results of the individual evidence 

analysis are shown in Table 10. Also, the results of the combination analysis are presented in Table 

11. 
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Individual Evidence Analysis for Hypothesis Variables 

Model results presented in Table 10 are obtained by considering injury severity as the 

targeted variable for prediction. Interpretation performed for this model is based on the predicted 

probability and the sensitivity analysis results. The analysis and interpretation focused on 

responding to the research question: what level of injury severity is a pedestrian likely to sustain 

when involved in a crash with a PAEB-equipped vehicle? The reference category used in Table 10 

was selected based on the criteria that it has the least likelihood of occurring or leading to less 

severe outcomes.   

 
Table 10: Predicted Probability and Sensitivity Analysis Scores 

Variable/Category 

Non-Incapacitating Injury Incapacitating Injury 

Predict 

Probability 

Overall Sensitivity 

Score 

Predict 

Probability 

Overall Sensitivity 

Score 

Age Group 

Under 25 44.27%  34.27%  

25 - 64 37.32% -6.95% 40.30% 6.03% 

65+ 29.30% -14.97% 57.83% 23.55% 

Gender 

Male 37.20%  42.06%  

Female  41.86% 4.66% 36.77% -5.29% 

Unit Type 

Passenger cars 35.70%  44.86%  

Non-passenger cars 40.67% 4.97% 37.25% -7.61% 

Posted Speed Limit 

< 35 mph 44.43%  24.63%  

35 - 45 mph 44.46% 0.04% 42.26% 17.63% 

> 45 mph 29.13% -15.30% 59.45% 34.82% 

Traffic Control 

Yes 59.24%  12.00%  

No 35.41% -23.83% 44.72% 32.73% 

Intersection Related 

No 38.35%  41.35%  

Yes 39.38% 1.04% 36.28% -5.08% 

Weather 

Clear 38.44%  41.39%  

Adverse condition 39.13% 0.69% 35.46% -5.92% 

Road Condition 

Dry 38.37%  40.98%  

Wet/Snow/Ice 40.70% 2.33% 35.10% -5.88% 

Light Condition 

Daylight 39.88%  37.89%  

Dark  36.42% -3.47% 44.31% 6.42% 

Speed Related 

No 38.89%  39.65%  

Yes 23.72% -15.16% 72.34% 32.69% 

Under Influence 

No 38.80%  40.19%  
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Variable/Category 

Non-Incapacitating Injury Incapacitating Injury 

Predict 

Probability 

Overall Sensitivity 

Score 

Predict 

Probability 

Overall Sensitivity 

Score 

Yes 29.45% -9.35% 53.62% 13.43% 

Presence PAEB 

Equipped 42.82%  32.03%  

Not Equipped 34.63% -8.19% 48.38% 16.34% 

 

The findings of individual evidence analysis are based on analyzing the pedestrian crash 

dataset. As shown in Table 10, there was a 4.97% increase in the probability of the non-passenger 

car causing non-incapacitating injuries to a pedestrian, while there was a 7.61% decrease in the 

probability of the same unit type causing incapacitating injuries to pedestrians compared to the 

passenger cars. On roads with a posted speed limit of more than 35 mph, pedestrians have a higher 

probability of enduring incapacitating injuries. For instance, the likelihood of a pedestrian 

sustaining an incapacitating injury is increased by 17.63% when involved in a crash with a vehicle 

while traversing roads with posted speed limits ranging between 35mph and 45mph. Furthermore, 

the probability was increased by 34.82% while traversing a road with a posted speed limit greater 

than 45 mph. Consistently, the likelihood of the pedestrian sustaining an incapacitating injury 

increased by 32.69% while the likelihood of the pedestrian sustaining a non-incapacitating injury 

decreased by 15.16% when the vehicle involved was speeding. Furthermore, the likelihood of a 

pedestrian sustaining an incapacitating injury is increased by 32.73% when a crash occurs on roads 

without traffic control. However, the result indicates that pedestrians are more likely to sustain a 

non-incapacitating injury (likelihood is increased by 1.04%) than an incapacitating injury when 

the crash is intersection-related. 

The results suggest that the probability of pedestrians sustaining non-incapacitating injury 

during dark conditions is decreased by 3.47% but the probability of sustaining incapacitating 

injuries increases by 6.42% during dark conditions. Jumaa et al., (2019) found that the performance 

of ADAS technology is hindered by darkness. Also, the results indicate that a pedestrian is more 

likely to sustain an incapacitating injury (likelihood is increased by 13.43%) than to sustain a non-

incapacitating injury (likelihood is decreased by 9.35%) when the driver is under the influence of 

alcohol or drugs; thus, it is difficult to maintain road stability and concentration during driving 

(Alonso et al., 2015). 

The results indicate that pedestrians aged greater than 25 years are more likely to sustain 

an incapacitating injury than a non-incapacitating injury when involved in a crash. The results 

show that the probability of adult pedestrians (aged between 25 and 64 years old) sustaining an 

incapacitating injury is increased by 6.03% and for senior pedestrians (aged 65 years and older), 

the likelihood of sustaining an incapacitating injury is increased by 23.55%. In comparison, the 

likelihood of adults (aged between 25 and 64 years old) and senior pedestrians (aged 65 years) 

sustaining non-incapacitating injury when involved in vehicle-pedestrian crashes decreased by 

6.95% and 14.97% respectively. Furthermore, the result indicates that the probability of female 

pedestrians sustaining a non-incapacitating injury is increased by 4.66% while the likelihood of 

the same gender pedestrians sustaining an incapacitating injury is decreased by 5.29% compared 

to male pedestrians when involved in a vehicle-pedestrian crash. The findings from the analysis 

indicate that vehicles not equipped with the PAEB technology are more likely to cause 

incapacitating injuries to a pedestrian (likelihood increased by 16.34%) than to cause non-

incapacitating injuries (likelihood is lowered by 8.19%). The results imply that vehicles that are 
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not equipped with PAEB technology are mostly involved in crashes that have fatal or serious injury 

outcomes for the pedestrian. 

However, when considering the influence of weather implying the presence of adverse 

weather conditions that directly led to having wet, snowy, or ice road conditions, the probability 

of a pedestrian sustaining an incapacitating injury is decreased by 5.92% while the likelihood of 

the pedestrian to sustain a non-incapacitating injury is increased by 0.69% during adverse weather 

conditions compared to the clear weather conditions. This suggests that during adverse weather 

conditions, there are few pedestrians, and most vehicles travel at low speed, thus causing the 

outcome of the crashes to be less severe. Finally, the results indicate that a driver under the 

influence of either drug or alcohol is more likely to be involved in a crash that inflicts 

incapacitating injuries on a pedestrian (likelihood is increased by 13.43%) than a crash that inflicts 

non-incapacitating injuries (likelihood is decreased by 9.35%).  

 

Combination Analysis for the Hypothesis Variables 

Table 11 presents the predicted probabilities and associated sensitivity scores for the 

various combinations of variables. Based on the results in Table 11, each hypothesis variable 

displayed a trend when vehicle technology (specifically PAEB technology) was kept as evidence 

for the combination analysis. The results of the combination analysis show that pedestrians aged 

25 years old and older are likely to endure an incapacitating injury when involved in a crash with 

a vehicle that is not a PAEB-equipped vehicle. The results show that there is an increase of 0.97% 

likelihood for pedestrians aged between 25 and 64 years old, and there is an increase of 23.76% 

for pedestrians aged above 65 years old to endure an incapacitating injury when a vehicle. 

 
Table 11: Predicted Probabilities and Sensitivity Score for the Combined Evidence Analysis 

Variable Category 

Non-Incapacitating Injury Incapacitating Injury 

Predict 

Probability 

Sensitivity Scores 
Predict 

Probability 

Sensitivity Scores 

PAEB 

Equipped 

No PAEB 

Equipped 

PAEB 

Equipped 

No PAEB 

Equipped 

Age Group 

PAEB 

Equipped 

Under 25 49.04%   22.03%   

25 - 64 39.45% -9.59%  34.06% 12.04%  

65+ 43.59% -5.45%  44.96% -4.08%  

No PAEB 

Equipped 

Under 25 40.40%   44.92%   

25 - 64 35.34%  -5.07% 45.89%  0.97% 

65+ 16.59%  -23.81% 68.68%  23.76% 

Gender 

PAEB 

Equipped 

Male 41.17%   33.52%   

Female  47.59% 6.42%  27.27% -13.90%  

No PAEB 

Equipped 

Male 33.20%   49.79%   

Female  37.80%  4.61% 44.22%  -5.57% 

Unit Type 

PAEB 

Equipped 

PC** 44.48%   32.09%   

NPC* 41.11% -3.36%  31.58% -12.90%  

No PAEB 

Equipped 

PC** 27.86%   56.25%   

NPC* 39.72%  11.86% 41.72%  -14.53% 

Posted Speed Limit 

< 35 mph 48.64%   16.41%   
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Variable Category 

Non-Incapacitating Injury Incapacitating Injury 

Predict 

Probability 

Sensitivity Scores 
Predict 

Probability 

Sensitivity Scores 

PAEB 

Equipped 

No PAEB 

Equipped 

PAEB 

Equipped 

No PAEB 

Equipped 

PAEB 

Equipped 

35 - 45 mph 56.67% 8.04%  29.18% -19.46%  

> 45 mph 31.19% -17.45%  53.25% 4.61%  

No PAEB 

Equipped 

< 35 mph 41.19%   32.54%   

35 - 45 mph 35.04%  -6.15% 53.10%  20.56% 

> 45 mph 27.34%  -13.85% 64.30%  31.76% 

Traffic Control 

PAEB 

Equipped 

Yes 61.11%   7.81%   

No 39.78% -21.33%  35.94% -25.17%  

No PAEB 

Equipped 

Yes 57.52%   17.26%   

No 31.77%  -25.76% 51.89%  34.62% 

Intersection Related 

PAEB 

Equipped 

No 43.25%   32.34%   

Yes 40.36% -2.89%  23.63% -19.62%  

No PAEB 

Equipped 

No 33.74%   49.03%   

Yes 38.18%  4.43% 44.96%  -4.07% 

Weather 

PAEB 

Equipped 

Clear 43.75%   31.51%   

Adverse 

condition 
39.40% -4.35%  33.44% -10.31%  

No PAEB 

Equipped 

Clear 33.66%   50.73%   

Adverse 

condition 
38.37%  4.71% 37.15%  -13.58% 

Road Condition 

PAEB 

Equipped 

Dry 42.79%   31.53%   

Wet/Snow/Ice 44.43% 1.65%  31.67% -11.11%  

No PAEB 

Equipped 

Dry 33.99%   49.58%   

Wet/Snow/Ice 39.13%  5.14% 36.60%  -12.98% 

Light Condition 

PAEB 

Equipped 

Daylight 44.71%   26.25%   

Dark  40.32% -4.39%  39.58% -5.12%  

No PAEB 

Equipped 

Daylight 35.75%   47.99%   

Dark  32.61%  -3.14% 48.70%  0.71% 

Speed Related 

PAEB 

Equipped 

No 43.39%   30.53%   

Yes 26.74% -16.64%  71.08% 27.69%  

No PAEB 

Equipped 

No 34.74%   47.99%   

Yes 18.67%  -16.07% 76.74%  28.75% 

Under Influence 

PAEB 

Equipped 

No 43.08%   31.03%   

Yes 40.08% -3.00%  50.85% 7.77%  

No PAEB 

Equipped 

No 35.05%   47.99%   

Yes 17.53%  -17.52% 54.42%  6.43% 

NOTE: * non-passenger cars;**Passenger cars 
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The results indicate that vehicles with no PAEB technology are more likely to inflict 

incapacitating injuries on pedestrians when crashes occur in roadways with a posted speed limit 

greater than 35 mph. The results indicate that the likelihood of pedestrians sustaining 

incapacitating injuries when struck by a vehicle that is not equipped with PAEB technology 

increased by 20.56% and 31.76% for roadways with posted speed limits of 35-45 mph and greater 

than 45 mph, respectively. On the other hand, the likelihood of pedestrians sustaining 

incapacitating injuries when struck by a vehicle equipped with PAEB technology is decreased by 

19.46% for roadways with posted speed limits ranging between 35 and 45 mph. The findings 

suggest that pedestrians are more likely to sustain incapacitating injuries (likelihood increased by 

34.62%) when struck by a vehicle not equipped with PAEB technology in an area that has no 

traffic control. However, the likelihood of sustaining incapacitating injuries is lowered (likelihood 

decreased by 25.17%) when the pedestrian is struck vehicle equipped with PAEB.  

The study’s findings indicate that regardless of vehicle is equipped or not equipped with 

PAEB technology, the likelihood of the pedestrian sustaining incapacitating injuries is increased 

when the vehicle is speeding. The likelihood of pedestrians sustaining incapacitating injuries is 

increased by 27.69% when struck by a vehicle equipped with PAEB. Furthermore, the likelihood 

of the pedestrian sustaining incapacitating injuries is increased by 28.75% for vehicles not 

equipped with PAEB. Similarly to pedestrian crashes that involve a speeding vehicle, the study’s 

findings indicate that regardless of vehicle is equipped or not equipped with PAEB technology, 

the likelihood of the pedestrian sustaining incapacitating injuries is increased when the driver is 

under the influence of either drugs or alcohol. The likelihood of pedestrians sustaining 

incapacitating injuries increased by 7.77% when a driver under the influence (drugs or alcohol) 

was using a vehicle equipped with PAEB. Furthermore, the likelihood of the pedestrian sustaining 

incapacitating injuries increased by 6.43% when the driver under the influence (drugs or alcohol) 

was using a vehicle not equipped with PAEB.  

  

6 CONCLUSION 

 The research project focused on road safety in rural areas, exploring challenges that 

contribute to high fatality rates in these areas. The research project employed different state-of-

the-art methodologies that assisted in examining pedestrian, rear-end, and sideswipe crashes 

involving conventional (non-ADAS-equipped) vehicles and those with ADAS technology, 

utilizing crash data from forty-nine rural counties in Ohio from 2017 to 2023. One of the 

methodologies implemented was a probabilistic graphical modeling approach that assessed the 

likelihood of severe crash involvement for ADAS-equipped vehicles, considering factors such as 

driver demographics, ADAS operation mode, automation level, traffic control, road and weather 

conditions, speeding, and driving under the influence. The findings offer valuable insights into the 

role of ADAS in enhancing road safety. For instance, in rear-end crashes, the results indicate that 

when an ADAS-equipped vehicle is at fault, the probability of a severe crash outcome is lower 

than with conventional vehicles. Moreover, operating vehicles under ADAS mode significantly 

reduces the likelihood of rear-end collisions, particularly in adverse weather conditions, where 

ADAS systems assist drivers by detecting surrounding conditions and activating braking systems 

to prevent severe crashes. However, ADAS does not mitigate the risk of severe crashes caused by 

speeding or driving under the influence of highlighting the continued need for strict enforcement 

of traffic laws. Additionally, the study found that effective traffic control reduces the likelihood of 

severe rear-end crashes in rural areas, regardless of ADAS engagement. 
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Similarly, for sideswipe crashes, the analysis revealed that ADAS-equipped vehicles are 

less likely to be at fault, reinforcing the technology’s potential to improve road safety. The data 

also highlighted a lower prevalence of ADAS-equipped vehicles in rural areas, emphasizing the 

need for broader adoption of these technologies. Vehicles with operational ADAS systems or 

automation levels greater than one exhibited a significantly lower probability of severe crash 

outcomes. However, like in rear-end crashes, ADAS technology did not reduce crash severity when 

drivers were intoxicated or speeding, further stressing the importance of robust enforcement 

measures, such as speed regulations and DUI laws. In addition to vehicle-related crashes, this study 

also explored the effectiveness of PAEB systems in reducing pedestrian fatalities in rural areas. 

Using Topic Modeling and Bayesian Network Analysis, the findings indicate that vehicles 

equipped with PAEB were involved in fewer severe crashes, with most resulting in minor or no 

injuries to pedestrians. In contrast, vehicles lacking PAEB were frequently involved in high-

severity crashes, especially at intersections where failure to yield was a common contributing 

factor. These results highlight the potential of PAEB technology in improving pedestrian safety in 

rural areas. However, the effectiveness of ADAS can be undermined by poor driver behavior, 

reinforcing the need for awareness campaigns and policy initiatives to complement technological 

advancements. 

Overall, this study underscores the importance of promoting ADAS-equipped vehicles in 

rural areas to reduce crash severity and improve road safety. However, a key limitation lies in the 

assumption that each crash outcome was independent. Additionally, the study lacked detailed 

information on the specific ADAS technology operating at the time of each crash. Future research 

should explore crash dynamics involving multiple vehicles and investigate driver behavior in 

relation to PAEB and other ADAS technologies. Developing predictive models based on these 

insights could further enhance the strategic deployment of ADAS in high-risk areas, ultimately 

improving road safety outcomes. 
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