Endor Patchesj

Reduce Risk
and Accelerate
Remediation

e
—

g

i

ENDORLABS

ENDORLABS

Contents

+

Introduction 01
What are Endor Patches? 02
Using Endor Patches 03
Prerequisites 03
Configuring a single project 03
Selecting the patch version 06
Using automatic patching 08
Integrating with your artifact repository 09
Reporting in your software bill of 11
materials (SBOM)

Build, testing, and licensing practices 11
Testing for security and compatibility 11
Requesting new patches 12
Defining service level objectives 13
Understanding licensing 13
Leaving Endor Labs 13
Conclusion 14

Introduction

If you're running an AppSec program, you're familiar
with this workflow: you scan your applications,
identify the packages you're using, and try to figure
out which vulnerabilities need fixing. And, inevitably,
there’s a critical vulnerability. Or two. Or ten. Or if
you're a typical enterprise, you're struggling with
more than a million code security alerts each year. !

Of course, maybe you're even using reachability
analysis to identify which vulnerabilities are false
positives so you can better prioritize your remediation
efforts. But at the end of the day, you're still left with a
list of security issues in your dependencies that need
to be resolved—and resolving them isn't
straightforward. In fact, it comes with a lot of risk.

As your developers will tell you: upgrading is
frustrating and disruptive. In fact, many organizations
are paying a productivity tax of $28,000 per year per
developer ! to address security issues—and they still
aren't meeting their SLAs for remediation. So what
makes upgrading dependencies so hard?

Upgrading is hard because of how the open source
community handles security fixes. Imagine this: a
developer makes a mistake in version 1.1.0 of a
library, but no one notices for months or years.

Endor Labs provides a better way

Eventually, a security researcher identifies the
problem, reports it, and the library maintainers
release a fix. But by then, the library has moved far
ahead—Ilet's say to version 1.9.1—so the fix is
included in version 1.9.2.

Between versions 1.1.0 and 1.9.2, a lot may have
changed. It's not just the security patch; new features,
updates, and breaking changes could have been
introduced. Fixing a vulnerability by upgrading to
1.9.2 means adopting all those changes, which often
break how your application works. This forces
developers to apply the upgrade and also rewrite,
test, and debug parts of their own code—a time-
consuming and complex process.

Things get even messier if the vulnerability hides in
a transitive dependency (that’s a dependency of a
dependency). In that case, you're stuck figuring out
which direct dependencies to update or how to
override that nested transitive one. This adds more
time, more complexity, and more headaches.

And just when you think you've finally finished —

a new vulnerability pops up, and the whole cycle
starts again.

Updating open source libraries to patch vulnerabilities shouldn't be a constant disruption. With Endor Labs you can use
upgrade impact analysis to evaluate and prioritize upgrades by complexity and impact. And when upgrading is too risky,
complex, or time consuming due to regressions, breaking changes, or new bugs, you can use Endor Patches to stay safe

now while still meeting your SLA requirements.

1|DC, The Hidden Caost of DevSecOps, 2024

ENDORLABS

What are
Endor Patches?

Endor Patches take the security fix from the latest version of the open source project and apply it directly to the older
version you're already using. Each patch is built to ensure:

Minimal changes: Provide only what’s necessary to fix the vulnerability.
» Maximum compatibility: Avoiding breaking changes that disrupt workflows.

Focus on security: No attempts to fix non-security bugs or other functionality.

When creating a patch, we use the security solution that has already been vetted, approved, and implemented by the
open source maintainers. These are typically released in the latest version of the open source software. That means
there may be several versions between the version used in your code and the version with the security fix.

Vulnerability introduced Other breaking code changes added Vulnerability patched
| |
| 1 1 |
Version 1.1 — Version 1.2 — Version 1.3 — || Version 1.4

Open source maintainers could (and sometimes do) go through all of the affected versions and apply the same patch.
This process is known as backporting. But because that's a time-consuming and complex process, most maintainers
choose not to backport patches.

When Endor Labs backports a security patch, we apply the same security fix, with as few changes as necessary to
keep it functional, to every affected version. This way you can use vetted security solutions without introducing
complexity from other code changes. Your software engineering teams can upgrade to the latest version of the open
source package when they're ready.

Vulnerability introduced Other breaking code changes added Vulnerability patched
l 1 ! |
Version 1.1 — Version1.2 |[— Vversion13 | —| [~] Version1.4
|
| Endor Patch T
— Version1.1 —— Patchnow, and upgrade when you're ready

ENDORLABS

Using
Endor Patches

You can usually get started with

Endor Patches in a few simple

steps. You can choose to apply Manual Patching Automatic Patching
the patched upgrades manually,

or automatically apply them

; Scope Applied case-by-case Automatically overrides
whenever they are available. We in every place a any vulnerable version with
refer to these methods as manual dependency is used the secure Endor Patch
patching or automatic patching.

Deployment Can roll out incrementally Automatically applied
T.he chart compares the across projects on next build
different approaches:

Engagement Requires developers to No code changes required

review and implement Endor to apply patches
Patches in their projects

We recommend starting with Versions You can either pin a version Automatically apply the

; ; or use the latest version of latest secure version of
mall"nual patching for a single ariEndor Patch an Endor Patoh
project so you can

(see patch versions below)
understand how it works
before scaling it out further.

Prerequisites

To get started, you will need access to the following:

Abuildable software artifact to test
Access to Endor Labs with optionally the ability to run a scan
An Endor Labs license to use the Endor Labs Patch Repository

Access to your artifact repository (optional)

Depending on your organization, you may need a small team to get up and running. In some cases one person
might have all the skills and access to make it work! Or you'll need at least one security engineer who can
configure Endor Labs and run scans and someone who can build software (e.g. a developer). If you want to
configure Endor Patches to work with your internal artifact repository, you'll need an administrator for that system.

ENDORLABS

Configuring a single project

This is the easiest way to try out Endor Patches on a small scale before rolling them out more widely in your
organization. In this example we're going to use the project’'s package manager to integrate with the Endor Labs Patch
Factory. In most production environments you will most likely want to integrate with your artifact repository for the most
streamlined experience.

You can get up and running in three easy steps:

Create (2 Configure your (3 specify the
an API key package manager Endor Patch
to use Endor Patches you want to use

You must generate an API key to access the Endor Labs Patch Factory.
You can do this in a few steps within the Endor Labs Dashboard.

(01 Create
an API key

To start, from Access Control, navigate to APl keys. From here you can
generate a key, give it a name (“Endor Labs Patch Factory”), and set
permissions (Read-Only) and an expiration date.

Generate an APl Key

Generate AP Key

ENDORLABS 4

You can configure either Gradle or Maven to work with Endor Patches. In
this example we'll use Gradle as the package manager for our project. We
need to configure a connection to the Endor Labs Patch Factory.

(02 Configure your
package manager
to use Endor Patches

Openthe build.gradle inyour projectand add the Endor Labs Patch
Factory to the repositories section. In the example we have added the
Endor Labs API Key and API Secret as environment variables in our
project.

200

repositories {
mavenCentral()
maven {
url "https://factory.endorlabs.com/vl/namespaces/<namespace>/maven2"
credentials {
username "$ENDOR_API_CREDENTIALS_KEY"
password "$ENDOR_API_CREDENTIALS_SECRET"

}
}
(03 Specify the Finally, include the Endor Labs patch version you'd like to use
Endor Patch in your dependencies. The example below uses Gradle.
you want to use
And that’s it! If you scan the project with Endor Labs,
the vulnerability should be resolved.
o000

dependencies {
implementation("com.fasterxml. jackson.core: jackson-databind:2.9.10.3-endor-2024-09-25")

}

ENDORLABS

Selecting the patch version

In addition to the initial patch, Endor Labs also releases new patches if additional vulnerabilities are discovered in an
open source library in the future. You can control how your software interacts with these versions. When you specify
which Endor Patch to use, you have the option to choose between three different versions of each patch:

@®) Pinned 3 Latest 5 Auto
A version associated with a Aversion with the latest A version matching the
specific patch date for build patched version of a library, upstream open-source
reproducibility. The patch is incorporating all current version, allowing users to
pinned at the date you specify. patches. This can be used by use the patched version
appending -endor-latest without code changes.
to a package version.
For instance: For instance: For instance:
v2.9.10.3- v2.9.10.3-endor-latest v2.9.10.3
endor-2024-07-11 See use auto patching for more

information on how to automatically
use an Endor

You can read more about the advantages and disadvantages of each version below.

Use a pinned version

Using an Endor Patch with a specific date makes it easier to ensure the reproducibility of a build in the future. Your
application will only use that specific version of the patch, even if Endor Labs releases a new version in the future.
This gives you the most control over the build of your application, and ensures you can repeat the process in the future.

It does come with limitations, however. To start, you will need to implement and update the patch in every repository
that uses the vulnerable library or package. You will also have to return to each project in the future to introduce a new
pinned version if a new vulnerability is identified.

Here's an example of a pinned version in a Gradle project:

dependencies {
implementation("com. fasterxml. jackson.core: jackson-databind:2.9.10.3-endor-2024-09-25")

}

ENDORLABS

Use the latest version

Alternatively, you can choose to always use the latest version of an Endor Patch by appending -endor-latest toa
particular library or package. Although you still have to manually configure it the first time, once implemented your project
will always be updated with the latest version of the patch from Endor Labs.

This approach sacrifices control over future builds of your application. A new version of the patch may alter the build
process or the resulting binaries in unpredictable ways, potentially affecting build reproducibility.

Here's an example of the latest version used in a Gradle project

dependencies {

implementation("com. fasterxml. jackson.core: jackson-databind:2.9.10.3-endor-latest")

}

Use automatic patching

Automatic Patching allows you to fix security vulnerabilities during each software build, minimizing the effort required to
maintain a secure codebase. Unlike the other approaches outlined above, no code changes are required. Instead, once a
projectis configured, the patches are applied at build time.

While automatic patching greatly simplifies security, there are trade-offs. Automated patching might affect build
reproducibility because patches can introduce unpredictable changes.However, Endor Labs mitigates this by applying
only the minimum necessary security patch, keeping disruptions to a minimum.

Here’s an example of auto patching used in a Gradle project, where you can see there are no code changes to the
original application:

dependencies {

implementation(“com.fasterxml. jackson.core: jackson-databind:2.9.10.

We'll explore automatic patching in more depth in the next section.

ENDORLABS 7

Using automatic patching

If you work in an organization with dozens or hundreds of repositories, a single open source library or package might be
used hundreds, thousands, or even tens of thousands of times in both direct and transitive dependencies. Managing
patching across multiple repositories typically means opening pull requests, finding the right people to approve them, and
ensuring everything passes the tests. This is hard to accomplish with any scale.

Using Endor Patches isn't just convenient, it’s also scalable with automatic patching. Whether you're managing a few
repositories or thousands, you can patch vulnerabilities consistently and automatically, without causing friction for
development teams. Instead of manually creating pull requests and tracking down approvals from developers, patches are
applied automatically during the build process. This reduces the back-and-forth, cuts out delays, and lets teams focus on
development rather than paperwork.

Addressing transitive dependencies

Fixing transitive dependencies is especially tricky. While most package managers do have a way for you to force an update
of a transitive dependency on its own, it's often a very bad idea. Not only are you taking a risk of breaking something else in
your dependency graph — because updates are not risk-free — but you're adding a new maintenance challenge. When
you override the dependency choices your direct dependencies make, you also run the risk of future updates to the direct
dependency not working with the transitive version you chose.

Automatic patching simplifies the complexity of upgrading both direct and transitive dependencies. Endor Patches are
designed to be minimal and specific, which means they only address the security issue without causing broader changes.

This means developers don't have to manually sift through dependency trees or worry about breaking changes. And your
code stays secure without the usual risk of destabilizing the entire application.

Configuring automatic patching

You can set up automatic patching in a few simple steps:

(01 Configure your ()2 Enable auto patching (03 Rescan your
project or artifact in Endor Labs projects
repository
Configure your You can configure automatic patching to work either in an artifact repository (like
react oFarifact JFrog or Nexus) or directly in the settings of your manifest file (like pom.xml,
II?epjo sitory build.gradle or settings.xml).
m— To start, you'll need to create an API key. Then you'll need to set the Endor Labs

Patch Factory as the top priority package repository in your package manager
(see using Endor Patches with a single project above) or artifact repository
(see integrating with your artifact repository below).

ENDORLABS 8

Enable auto Once you have configured your package manager or artifact repository, you can

patching in enable auto patching in the Endor Labs dashboard. Within your tenant, navigate

Endor Labs to Settings > System Settings > Endor Patches. Click Enable Auto Patching
and then click Save Settings.

It may take up to 10 minutes for enabling or disabling auto patching to take
effect. During this period, changes to your patch settings might not be
immediately applied.

£ namesp. demo v

Settings

SYSTEM SETTINGS

Endor Patches Settings

Policy & Rule

I
(@]
&
=

[Enavée Auro Patching
SBOM

Save Paich Settings

Rescan your Rescan the project to update the inventory and associate the findings with Endor
projects Patches. The patches will be applied the next time the projectis built.

Integrating with your artifact repository

If your organization has thousands of repositories, you may not be able to configure the package manager for each one
to work with the Endor Labs patches. Instead, you can integrate the Endor Labs Patch Factory with your internal artifact
repository like JFrog or Nexus. This ensures that Endor Patches are correctly applied during the build process. This is

the simplest, one-time setup option. This approach works also well with the automatic patching method described
above and takes just a few steps:

. Create aremote repository - Follow instructions in the docs to add the Endor Labs Patch Factor as a remote
repository in JErog or Nexus.

- Prioritize Endor Patches - Ensure the Endor Labs Patch Factory is the highest priority repository so it can replace
vulnerable versions.

> Enable automatic patching - Following the instructions above to configure automatic patching within the Endor
Labs dashboard.

Once implemented, you can automatically apply a patch from the Endor Labs dashboard and the patch will be applied
on the next application build. If you scan project again the vulnerability will be resolved.

ENDORLABS

Reporting in your
software bill of
materials (SBOM)

Endor Patches are reported in your software bill of materials (SBOM) so you can show that the vulnerabilities have
been resolved. We always show the following in your SBOM:

» The lineage of the patch is indicated in the pedigree section and shows the open source package
that was patched (e.g. jackson-databind@2.9.10. 3).

The version follows your manifest file and will show either -endor-latest or
the pinned version (e.g. jackson-databind@2.9.10.3-endor-2024-07-10)

The resolved vulnerabilities are indicated in the resolves section.
» The license of the patch is reported and follows the upstream open source project.

The content of the patch itself is added in base64 encoding.

ENDORLABS 10

Build, testing, and
licensing practices

In security, trust is crucial. Therefore, the build details of each Endor Patch are fully transparent. You can audit the
exact code changes, builds, build steps, and logs. All builds of Endor Patches are hermetic and reproducible:

< Ahermetic build is when all transitive build steps, sources, and dependencies were fully declared up front with
immutable references, and the build steps ran with no network access.

<4 Areproducible build is when re-running the build steps with identical input artifacts results in bit-for-bit
identical output.

You can find details about each patch in the Endor Labs dashboard, or via the CLI, including the code changes in the
patch, vulnerabilities addressed, the code source to reproduce the build and the build, test, and deployment
commands and logs.

2 x
V com. jackson.coresj ®
Patch 29103 & 2.6103-endor-2024-09-25

£ namespace: demo v 5) enderlabs/vuln-spring-boot > @ LF main ~

: View Details
() endorlabs/vuln-spring-boot S 6 Rawbata
wtivizs [l 10 @08 (D20 D)6 - Sceoned By 3. CLI + Repusitury nitps/igitht.com/andonatalyuin-stiing-toot [it POTENT|AL BAEAKING
BYERVEY PRYCHES CONFLICTS CHANGES
GVEAVIEW FINDINGS 188 PACKAGES 2 DEPENDENCIES 18 TOOLS o REMEDIATIONS 2 PR AUNS B SETTINGE VR
27
UPETREAM COMMITS (B ENDOR COMMITE (T
Show Only Reachable Remodigtion Risk ~ (D All Time + 26 1
2 Gras » Last Anahycod, Decenbat 11 2024 12 012 S0
Evpand A Cobapze Al *739 135 smmE
Dependency Allected Package Caarrent Endor Paich Fixed Vidnerabilithes
Version Avadabie
A +523 135 EEEE s
v org.springf b - ¥ hooct ot app -
" 9-5p Pring ZXI3.RELE.. x t e
boot-starter-web - i - s W m dObjectDeseriakzes jsva
v] i
& V' com.fasterxml jackson.corejackso cumxm'lww 28103 7 .S 'H diff —git a/src/pain/ java/com/ fasteroml/jackson/databind/s
n-databind 3o index 67he23847..e28e2614c 100644
4 Risvmved (N e import java.util.e;
apert com, Msltrﬂl Jackson.core.s;
et Sanrer baun.darabing . BranEroperr
femsdiation Options :; oy i Find Findings - - =
Pateh Low @: @]
< 2.9103-4n00r-2024-08-25
O R onahObg
BUBIT ComTastereml, {3EHY0, atoning, o)
lmrt com. fasterxal. jackson.databind. inmunnn Jacksons
Upgrade 3 2172 g B O m inport com.fasterxal,jackson.databind. deser, Contextualbes:
import com.fasterxal. jackson.databind.deser.ResolvableDes:
A Recommwnded

import com. fasterxzal.jackson.databind. jsontype. TypeDeserdi

import com, fasterxnl,jackson.databind. type. TypeFactary;:
% import com,fasterxal.]IIKI\SM databind. util.ClassUtil;
Upgrade & 2173 impBrt com, fasterxal, jacks wtil :
o -202,9 «198,11 @@ public class untvpnmh.pnnnr t-lur
& gerClass|) == UntypedObjectDeseérializi

Uooride -5 [2000 ' return Yanilla. instance(preventMerge) ;

Af |preventMerge != _nonMerging) {

Testing for security and compatibility

Endor Patches consumers need to verify that patches fix the vulnerability without introducing any regressions or breaking
changes into their application. We meet this requirement by running a comprehensive test suite (including the unit tests
and integration tests of the dependencies being fixed) before shipping a patch, including both manual and automated

quality gates.

When possible, we adopt and run the unit and integration tests from the upstream open source project for all patches.
If no such tests are available, or if we had to develop a custom fix, we decide on a case-by-case basis whether to develop
a custom test case. This decision is primarily driven by the complexity of the patch, and whether it deviates from the

original fix.

The actual patch, build and test commands, as well as other process input and output, are made available to customers.
You not only get visibility into the patch, build, and tests performed by Endor Labs - but can reproduce and re-run the very

same steps yourself.

How we test to prevent breaking changes

Whenever you upgrade a software library from one
version to another—say from version 1 to version 2—
the first concern is that changes in the new version
could cause parts of your application to stop working
as expected. After we identify the security fix we plan
to backport, we use upgrade impact analysis to
identify potential problem areas by comparing the
public interfaces of the two versions and flagging the
differences.

These differences are what we call breaking change
candidates. They are changes in the new version that
could cause your application to malfunction. From a
business perspective, the risk here is clear:

Requesting new patches

if the upgrade breaks a critical part of your system,
it could lead to downtime, security vulnerabilities, or
lost productivity.

When we patch a library we identify and review
breaking change candidates between the original
vulnerable version of a library and the patched one.
We then manually review each breaking change
candidate to make sure it doesn't introduce any API
incompatibilities or other behavioral changes that
could impact your application. If any issues are found,
these must be reviewed and addressed before the
patch is created.

Our research indicates that a small number of open source packages disproportionately impact most customers, and
we've prioritized building patches for these open source projects first. We similarly prioritize patches for critical or high-
severity vulnerabilities in common open source packages.

If you need a new patch to address a vulnerability in your software, you can ask Endor Labs to create a new patch for you.
To request a new patch, you can email support@endor.ai or request a patch directly from the Endor Labs dashboard.

ENDORLABS 12

Defining service level objectives

At this time we do not provide a service level agreement (SLA) for Endor Patches. We do, however, seek to be responsive to
new requests and emerging vulnerabilities. We provide a service level objective for the following situations:

Request a patch - You request a new patch for a library or package not previously covered by Endor Patches.

New vulnerability - A new vulnerability is identified in an open source package or library that we have already patched

In both cases our target service level objective (SLO) to deliver a new patch is two weeks. Actual delivery times can
vary, however, depending on the complexity of the changes.

Understanding licensing

Endor Patches inherit the same license as the upstream open source projects they patch. For example, the
Spring open source project uses the Apache License 2.0. If you used an Endor Patch for it, the patch would also use the
Apache License 2.0. This way you can use Endor Patches without worrying about license changes within your project.

L eaving Endor Labs

You may choose to leave Endor Labs at some point in the future. You should understand how that might impact any
applications using Endor Patches. Most importantly, your applications will continue working even if your contract with
Endor Labs expires. Any changes will occur on the next build of your application:

t';" A Ej
If you are using If you are using endor-latest or a pinned
automatic patching: version in your manifest file:
= You will revert back to the original = You will need to update your manifest file
open source version. to remove Endor Patches.
= Patched vulnerabilities will return = |f you don't update your manifestfile, the
and will need to be fixed. next build will fail.
= Patched vulnerabilities will return and will
need to be fixed.

In both situations there should be no regressions at the application level because Endor Patches backport security
fixes in a way that minimizes the introduction of breaking changes. Your engineering teams, however, will need to plan
work to remediate vulnerabilities that are no longer patched.

ENDORLABS 13

Conclusion

Addressing risk in open source software is a balancing act between staying up to date with security patches
and ensuring your applications continue to function with interruption. Endor Labs helps you strike the right
balance using upgrade impact analysis to identify easy-to-fix updates developers can apply now, and Endor
Patches to avoid time-intensive upgrades.

This streamlined approach allows developers to focus on building and delivering value without the added
burden of complex upgrades. In fact, customers using Endor Labs typically experience a 70-80% reduction
in their remediation workloads and can remediate vulnerabilities 6.2X faster.

One financial services customer found they could remediate 35,000 critical and high vulnerabilities using
Endor Patches. In most organizations, a few open-source packages account for the majority of
vulnerabilities—and this case was no different. By applying just nine Endor Patches, they could achieve
98.35% coverage of all critical and high vulnerabilities.

Patch Count vs Cumulative Critical and High Vulnerability Coverage

100% /,_&
75%
[
=
©
T 50%
=
=
O
25%
,J 10 20 30 40 50
Patch Count
Secure everything To learn more about how Endor Patches
* can support your security efforts, request a
omm YOUr code depends on. demo at endorlabs.com/demo-request.

