

​
​
​
Invisible Threats and ​
the Blind Spots of Security ​
How GlassWorm Exploited Unicode ​
Shadows in VS Code Supply Chains

Table of Contents

I. Introduction...1
II. What makes GlassWorm different... 1
III. High-level execution flow..2

Stage 1: Payload Decoding... 2
Stage 2: C2 discovery and payload retrieval... 6
Stage 3: Stealer: Credential Harvesting and Exfiltration..8
Stage 4 (Final Stage): ZOMBI: End-to-End Remote Access & Control................................. 10

IV. Final Thoughts..17

I. Introduction

In October 2025, researchers at KOI Security uncovered a malware campaign that targeted the
Open VSX Registry. Nicknamed “GlassWorm” by the KOI Security team, the malware campaign
published multiple malicious VS Code extensions that together were downloaded more than
35,000 times. The compromised packages shared several notable traits for stealthy payload
delivery, including an unconventional Unicode-based obfuscation technique that remained
invisible within IDEs.

This research was motivated by the 2021 Trojan Source research, which showed how carefully
chosen Unicode control characters can change how code is displayed or interpreted. That work
forced platforms and IDEs, including GitHub and many editors, to surface warnings for
suspicious Unicode sequences. The campaign we analyzed, however, uses a different and
under-observed class of characters (variation selectors) that remain largely invisible to common
tooling.

While the earlier reports surfaced the campaign and its broad implications, our follow-up
research dives deeper into the technical underpinnings of GlassWorm’s obfuscation and
propagation mechanisms. We conducted a detailed reverse engineering of the malicious VSIX
extensions, deconstructed the encoded payloads. This post dissects GlassWorm’s design and
capabilities, explains why conventional tooling missed it, and outlines defensive steps defenders
and developers should adopt.

II. What makes GlassWorm different

GlassWorm is notable for how it blends multiple evasion and resilience techniques into a single
campaign:

1.​ Invisible Unicode obfuscation. The payload is embedded as long runs of invisible
Unicode characters (Variation Selectors / Private Use Area code points). Those
characters do not display in most editors and are therefore difficult for casual human
review to notice. The malware maps these code points to bytes and reconstructs a
Base64 blob that decodes to executable JavaScript.

2.​ Decentralized, resilient C2 channels. Rather than relying on a single server,
GlassWorm uses multiple fallback channels:

a.​ Transaction memos on the Solana blockchain as an immutable,
censorship‑resistant command-and-control (C2) channel.

b.​ Direct HTTP(S) endpoints hosted at attacker IPs.
c.​ Encoded Google Calendar event titles as an additional fallback communication

vector.
3.​ Credential and token harvesting. Once active, the malware searches the host for

developer credentials (GitHub, NPM, OpenVSX tokens, crypto wallets), enabling further
compromise of repositories and package uploads.

Published November 4, 2025 1

https://www.koi.ai/blog/glassworm-first-self-propagating-worm-using-invisible-code-hits-openvsx-marketplace
https://en.wikipedia.org/wiki/Trojan_Sourceahttps://en.wikipedia.org/wiki/Trojan_Source

4.​ Repurposing developer machines. Infected hosts are converted into covert
infrastructure: SOCKS proxies, hidden VNC (HVNC) servers, and remote execution
nodes (via WebRTC or spawned Node.js processes). That gives attackers anonymized
network access into corporate and personal networks and a platform to propagate
further.

5.​ Bundled, multi‑platform payloads. The final payload is a single large bundled artifact
containing many standard modules and native decoders for different OSes. This reduces
dependency visibility and eases execution across platforms.

III. High-level execution flow

Stage 1: Payload Decoding

1. Extension activation

The extension’s package.json registers an activation event that immediately loads ./extension.js.
extension.js enforces rate-limited activation, a helper routine runs on first activation and then
only after a configured cooldown (~2 days), persisting timestamps to context.globalState so it
survives restarts. An in‑session flag prevents multiple invocations per process lifetime.​

​
Image of initial execution hook package,json​

Observed behavior:

a.​ First run: helper() executes and the activation timestamp is recorded.
b.​ Subsequent runs (within 2 days): no action is taken, helper() is not called.
c.​ After 2 days: helper() runs once more and the timestamp is updated.
d.​ Within one process lifetime: isActivated ensures helper() cannot be invoked more than

once.

Published November 4, 2025 2

​
Image of time based execution

2. Payload entry and decoding
The helper() function launches index.js (or an OS‑specific entrypoint). index.js contains the
invisible Unicode string payload. Based on the host OS it selects a decoder:

✦​ Windows x86: index_win32_ia32.node (native)
✦​ Windows x64: index_win32_x64.node (native)
✦​ Linux: index_linux.node (native)
✦​ macOS: decode.js (JavaScript)

These native binaries were first uploaded to VirusTotal on 2025-03-23 and remained completely
undetected with 0 detections until the attack on 2025-10-22. This suggests that the binaries
were likely off-the-shelf tools reused from previous campaigns or public sources, rather than
newly developed components.

Links to Virustotal

✦​ https://www.virustotal.com/gui/file/d9edd707df3689a2915929362f59cc5fb67f95f6a65718
9e5825d6fc6547cfb6/details

✦​ https://www.virustotal.com/gui/file/dc050dfb01afc9f74b81e1eb807f1f16b55a5b27cf1c942
9caaee49956833c3f

✦​ https://www.virustotal.com/gui/file/6c22b695934356f54213159d31160fb8d60cc66f32698
0f29358f04c68b0a1a8

Published November 4, 2025 3

https://www.virustotal.com/gui/file/d9edd707df3689a2915929362f59cc5fb67f95f6a657189e5825d6fc6547cfb6/details
https://www.virustotal.com/gui/file/d9edd707df3689a2915929362f59cc5fb67f95f6a657189e5825d6fc6547cfb6/details
https://www.virustotal.com/gui/file/dc050dfb01afc9f74b81e1eb807f1f16b55a5b27cf1c9429caaee49956833c3f
https://www.virustotal.com/gui/file/dc050dfb01afc9f74b81e1eb807f1f16b55a5b27cf1c9429caaee49956833c3f
https://www.virustotal.com/gui/file/6c22b695934356f54213159d31160fb8d60cc66f326980f29358f04c68b0a1a8
https://www.virustotal.com/gui/file/6c22b695934356f54213159d31160fb8d60cc66f326980f29358f04c68b0a1a8

Image of decoder selection based on OS

3. The invisible‑Unicode technique

The decoder maps each invisible Unicode code point to a byte value (using a simple offset
arithmetic) to reconstruct a Base64-encoded blob. That Base64 decodes into JavaScript which
is then executed.

The comparison below shows the payload file opened in both the IDE and a hex editor. While
the payload appears invisible in the IDE, its underlying byte values are clearly visible in the hex
editor.

Image of comparison between HexEditor and VS Code

Published November 4, 2025 4

Before we dive into the technique, let's understand: ​

1. Code Points​
Code Points, the foundation of Unicode: A code point is a number that uniquely identifies a
character in Unicode. Think of it as an address or ID for a character:

✦​ The letter “A” = code point U+0041 (decimal 65)
✦​ The letter “€” = code point U+20AC (decimal 8364)

Every character you can type, letters, symbols, emojis, or even invisible formatting characters,
has a unique code point number. The malware exploits this by using invisible characters whose
code points can be mathematically converted into byte values (0-255)..

2. Unicode Variation Selectors (VS)​
Unicode Variation Selectors are special invisible characters used to select different visual
representations of the same character. There are two ranges:

✦​ VS1-VS16: U+FE00 to U+FE0F (code points 65024-65039, 16 selectors)
✦​ VS17-VS256: U+E0100 to U+E01EF (code points 917760-918015, 240 selectors)

These characters don't render in most text editors making it invisible and has 256 possible
values = 256 byte values (0-255)

The real decoding of invisible characters from decode.js

Image of decoder functions from decode.js

Published November 4, 2025 5

http://decode.js

Here's the exact conversion of the first 10 invisible payloads from `index.js` that results in a
Base64 string "dmFyIF9fY3". ​
The math is simple arithmetic: codepoint - base_offset +16 = byte_value

Character-by-character decoding:

1.​ U+E0154 → 0xE0154 - 0xE0100 + 16 = 100 (0x64) = 'd'

2.​ U+E015D → 0xE015D - 0xE0100 + 16 = 109 (0x6D) = 'm'

3.​ U+E0136 → 0xE0136 - 0xE0100 + 16 = 70 (0x46) = 'F'

4.​ U+E0169 → 0xE0169 - 0xE0100 + 16 = 121 (0x79) = 'y'

5.​ U+E0139 → 0xE0139 - 0xE0100 + 16 = 73 (0x49) = 'I'

6.​ U+E0136 → 0xE0136 - 0xE0100 + 16 = 70 (0x46) = 'F'

7.​ U+E0129 → 0xE0129 - 0xE0100 + 16 = 57 (0x39) = '9'

8.​ U+E0156 → 0xE0156 - 0xE0100 + 16 = 102 (0x66) = 'f'

9.​ U+E0149 → 0xE0149 - 0xE0100 + 16 = 89 (0x59) = 'Y'

10.​U+E0123 → 0xE0123 - 0xE0100 + 16 = 51 (0x33) = '3'

The invisible string consists of 6,492 Unicode characters, it is decoded to Base64, then
Base64-decoded into a JavaScript source file which is executed via eval().

​
Image of decoded payload

Published November 4, 2025 6

Stage 2: C2 discovery and payload retrieval
The decoded invisible string is converted into JavaScript, which contains the attackers’
command-and-control (C2) URLs.

Image of decoded payload from invisible chars

Published November 4, 2025 7

1.​ The reconstructed script continuously polls the Solana blockchain (every ~10s) looking
for transactions sent to a specific wallet
“28PKnu7RzizxBzFPoLp69HLXp9bJL3JFtT2s5QzHsEA2”. It extracts the transaction
memo field, interprets it as Base64/JSON, and obtains C2 IP addresses 217.69.3[.]21

​
Image of Solana transactions’ memo

2.​ The malware contacts the C2 URL to retrieve an encrypted STAGE 3 payload. HTTP
headers carry an iv and an encryption key, the response contains Base64 data which
is then decrypted (AES‑based) to obtain the next‑stage code and executed via eval().

​
Image of HTTP response from 217.69.3[.]218

Stage 3: Stealer: Credential Harvesting and Exfiltration
The work of this decoded payload is to hunt for credentials, it searches for:

1.​ Cryptocurrency wallets: more than 70 hardcoded cryptocurrencies wallets are queried.
2.​ Github Tokens: used to compromise other repositories maintained by the developer
3.​ NPM tokens: used to carry out supply-chain attacks against downstream packages.
4.​ OpenVSX credentials: used to inject malicious code into additional extensions hosted on

OpenVSX

Published November 4, 2025 8

Image of crypto wallets targeted

​
Image of Github Token retrieval

Interestingly, for the next-stage payload, the malware queries a Google Calendar entry at
`https://calendar.app.google/M2ZCvM8ULL56PD1d6`, the calendar item's title is a Base64 string
(aHR0cDovLzIxNy42OS4zLjIxOC9nZXRfem9tYmlfcGF5bG9hZC9xUUQlMkZKb2kzV0NXU2s4Z
2dHSGlUdg==), which decodes to the next stage payload
http://217.69.3.218/get_zombi_payload/qQD%2FJoi3WCWSk8ggGHiTdg%3D%3D.
This functions as a secondary C2 channel, if communications via Solana or the direct IP are
blocked, the Google Calendar lookup provides a backup path to obtain the payload.

Published November 4, 2025 9

Image of Google Calendar invite

Stage 4 (Final Stage): ZOMBI: End-to-End Remote Access & Control

Similar to the previous step, querying the Google Calendar URL returns a Base64-encoded
payload that is AES-encrypted, with the IV and secret key supplied in the HTTP response
headers.

Image of response from Google Calendar mentioned IP

The payload is a bundled application, official npm modules (e.g., `adm-zip`, `socket.io-client`,
`bittorrent-dht`, etc.) are compiled into a single standalone file so it can run without external
dependencies. That increases the bundle size significantly, it contains over 147 packages which
aids deployment and complicates analysis. Below is a screenshot of the code and grep results
showing several of the bundled modules.

Published November 4, 2025 10

Image of grep showing the bundled modules

Published November 4, 2025 11

The bundled files include multiple packages that implement attacker functionality and
persistence mechanisms, few important packages to observe:​

✦​ Network & Communication
○​ socket.io-client - Real-time C2 communication
○​ engine.io-client - WebSocket transport
○​ xmlhttprequest-ssl - HTTP requests

✦​ BitTorrent DHT Stack
○​ bittorrent-dht - P2P network for decentralized C2
○​ k-bucket, k-rpc - DHT routing
○​ bencode - BitTorrent encoding

✦​ Cryptography
○​ sodium-javascript - Complete NaCl crypto
○​ blake2b, sha256-wasm, sha512-wasm - Hashing
○​ chacha20-universal, xsalsa20 - Encryption

✦​ File Operations
○​ adm-zip, yauzl - ZIP handling for payloads

ZOMBI Behaviour and Capabilities
Let's unpack the capabilities of the ZOMBI payload and examine how it earned its name.

1.​ BitTorrent DHT - Decentralized C2 Communication
a.​ A Distributed Hash Table (DHT) is a decentralized system that lets computers in

a network share and find information without needing a central server.
b.​ Instead of connecting to a fixed domain, it queries the decentralized DHT network

using a public key to find its C2 server details, Glassworm uses BitTorrent DHT
network to retrieve C2 server configuration without hardcoded domains. And this
technique has also been used by some malware in the past to hide their
command-and-control servers.

c.​ DHT Retrieval Function: Uses public key

`858d53e806734c539b50f15ca72580437ce47ba9` to query DHT, Retries every 5
minutes on failure, Retrieves JSON with base64-encoded C2 IP address, Uses
cryptographic signature verification

Published November 4, 2025 12

Image of function that queries DHT

2. WebSocket C2 Communication

a.​ C2 communication uses a persistent, bidirectional connection between an
infected machine and the attacker’s server.

b.​ Once established, the channel lets the attacker send commands and receive
data in real time without repeated HTTP requests, commands are explained in
the next section.

c.​ Because WebSockets can run over TLS (wss://), traffic often looks like normal
encrypted web traffic, making it harder to spot.

d.​ Malware using WebSockets commonly implements reconnection and keepalive
logic so the link stays up reliably.

Published November 4, 2025 13

Image of function that connects attacker's server​

3. Command handler
a.​ A command handler is the routine that receives instructions from the C2 server

and turns them into actions on the infected machine.
b.​ It typically parses the incoming command, validates parameters, and then

executes the below mentioned action
c.​ Commands supported:

✦​ start_hvnc - Start Hidden VNC
✦​ stop_hvnc - Stop Hidden VNC
✦​ start_socks - Start SOCKS proxy
✦​ stop_socks - Stop SOCKS proxy
✦​ command - Execute arbitrary JavaScript code

Published November 4, 2025 14

Image of function that connects attacker's server

4. SOCKS Proxy

a.​ A SOCKS proxy is a network relay that forwards a device’s traffic through
another host, allowing that host to act as an intermediary for connections.

b.​ This technique has been used by attackers to hide activity and move laterally
within compromised networks.

c.​ Once running, the attacker can route the victim’s outbound traffic through the
proxy to browse anonymously or reach internal network resources.

d.​ Routes victim's network traffic through SOCKS proxy for anonymity or to access
victim's internal network.

✦​ Fetches proxy script from C2 server
✦​ Spawns child Node.js process to run proxy
✦​ State tracking with context["socks_proxy"]​

Image of SOCKS proxy connection

Published November 4, 2025 15

5. Hidden VNC (HVNC)

a.​ A Hidden VNC (HVNC) is a remote desktop setup that creates a virtual display
on the infected machine that the attacker can see and control, but the desktop is
hidden from the local user.

b.​ The attacker connects to the hidden virtual desktop using VNC or similar
remote-display protocols, giving full GUI access without interrupting or alerting
the user.

c.​ Because the session is invisible locally, HVNC is ideal for stealthy credential
harvesting, interactive control, or manual post-exploitation activities.

Image of HVNC setup

d.​ Downloads encrypted ASAR archive from C2. An encrypted ASAR archive is a

package containing code or native modules that the malware will run.
e.​ The malware verifies the archive’s hash first to ensure it wasn’t tampered with

before proceeding.
f.​ For compatibility with older or 32-bit native modules, it spawns a 32-bit (x86)

Node.js process to run the decrypted code.
g.​ On Windows the loader often uses start /B to run the Node process in the

background without opening a visible window.

Published November 4, 2025 16

6. Encrypted Communications (AES-128-CBC)

a.​ All communications and payloads are encrypted using AES-128-CBC so the
malware’s traffic and files are hard to inspect.

b.​ Encryption keys (and the per-payload random IV) are sent dynamically from the
C2, often carried in HTTP headers like “iv” and “secret” as seen in the above
examples.

c.​ Native modules and payloads are stored encrypted on disk, and only decrypted
in memory after the keys are retrieved.

d.​ This design helps attackers evade network/endpoint detection and makes static
analysis of on-disk artifacts much harder.

Image of Encrypted communication routine

Published November 4, 2025 17

IV. Final Thoughts

The recent GlassWorm incident underscores how threat actors continue to find creative, if not
entirely novel, ways to hide malicious code. Using invisible Unicode characters to embed
payloads within open-source software is clever in its subtlety, but not unprecedented. What
GlassWorm illustrates is less about breakthrough tactics and more about the steady refinement
of evasion techniques that can bypass traditional code reviews and automated scanning.

Looking forward, we can expect such tactics to evolve further, potentially combining invisible
code with obfuscated behavior, decentralized command-and-control, and legitimate service
misuse to complicate detection. This incremental sophistication calls for a defensive mindset
that prioritizes understanding context and behavior over relying solely on signature or syntactic
detection.

At a practical level, developers can mitigate risk by adopting minimal but effective practices like
enforcing consistent code formatting rules that reveal invisible or unexpected characters,
integrating automated checks for Unicode anomalies, maintaining stricter dependency vetting
processes, and employing runtime monitoring tools that flag unusual activities even from trusted
packages. Cultivating a culture of vigilance, transparency, and collaboration within the software
community remains key to staying ahead of subtle supply chain threats like GlassWorm.

Published November 4, 2025 18

	​​​Invisible Threats and ​the Blind Spots of Security ​How GlassWorm Exploited Unicode ​Shadows in VS Code Supply Chains
	
	
	Table of Contents
	I. Introduction
	II. What makes GlassWorm different
	III. High-level execution flow
	Stage 1: Payload Decoding
	1. Extension activation
	2. Payload entry and decoding
	3. The invisible‑Unicode technique

	Stage 2: C2 discovery and payload retrieval
	Stage 3: Stealer: Credential Harvesting and Exfiltration
	
	Stage 4 (Final Stage): ZOMBI: End-to-End Remote Access & Control
	ZOMBI Behaviour and Capabilities

	IV. Final Thoughts

