Al SAST

Combining Agents, Program Analysis, and
Rules for High-Confidence Code Security

Robert Haynes

Principal Technical Marketing Engineer

+

ENDORLABS

N DOR |_ A B) © 2025 Endor Labs
o Allrights reserved.

Table of Contents

IR 0 oo [T 1T o 1
II. An Open Source Engine with a Production-Ready Ruleset...........ccccccciiiiiiiiiiiniiiiiiiiiiiiiiiiiienns 2
[1l. Agentic Al to Refine @nd Triage.ccciiiiiiiiiiiie e 2

Establishing Reachability: Remove everything that’s not exploitable...................................... 2

Triage: Contextual Analysis and Continuous Learning............occuuueiiiieiiiiiiiiiiieeee e 3
IV. Efficient ReEmMediation........ ... 5
V. Scaling with Policy and AutomMation.............cooeiiiiiiiiiiii, 6
AV (T TR D =] = T (o 10 | G 7o) o1 (o) F T 6

AV | I O T T3 [V 1110] o DU PR 8

N DOR |_ A B) © 2025 Endor Labs
o Allrights reserved.

l. Introduction

For an industry perspective, background, and value proposition of Endor Labs' Al-native static
application security testing (SAST) tool, please read the excellent announcement blog. There

you’ll find an overview, along with compelling reasons to choose Endor Labs as your security

testing and remediation partner.

If, however, you're interested in getting more details on the ‘how’, either because you’'ve been
convinced by the ‘why’ or because you don’t believe anything a vendor says without the
technical details (my brothers and sisters in arms!), then please read on.

As a recap, Endor Labs is launching a significantly upgraded Al SAST engine. It combines
accurate and tested managed rules with Al detection and triage to deliver precise,
high-confidence vulnerability findings prioritized by real risk. This multi-stage approach cuts
through the noise, providing AppSec teams and developers with a clear path to action.

In this whitepaper, we’ll aim to dive deeper into each component, explain what’'s happening, and
why it works in sufficient detail to allow you to decide to take the next steps.

Figure 1: The Endor Labs Al SAST Engine

TRIGGER DETECT TRIAGE

RULES SCAN

€ e serven

cl/CD

6 onemanp

Al FALSE POSITIVE
REDUCTION

ACCURATE
RESULTS

@ AGENTIC Al SCAN

.....QUSTOMPROMPTSFOR . .
AGENT TUNING RELEVANT
RESULTS

VERSION
CONTROL

REVIEW REMEDIATE EXPLORE

@ SUGGEST FIX = VISUALIZE

e HUMAN REVIEW

Al CHAT

€ review paton

€) A cone ReviEw
FILTER

INTEGRATIONS

|

CREATE PR

wor L 8,
.." Qjenklns °

/& Azure

ALERT

Published November 19, 2025 1

http://www.endorlabs.com/learn/introducing-ai-sast-that-thinks-like-a-security-engineer

N DOR |_ A B) © 2025 Endor Labs
o Allrights reserved.

Il. An Open Source Engine with a Production-Ready Ruleset

At the heart of a SAST offering is the engine that finds potential flaws in source code.
Deterministic (rule-based) checks are excellent at catching specific patterns with near-zero
runtime cost. For example, a rule can quickly flag the use of an outdated encryption algorithm or
the absence of input validation on a critical APl endpoint.

In 2024, Endor Labs, along with other industry organizations, announced OpenGrep, an
open-source fork of Semgrep. We set out on a mission to build the most advanced static
analysis engine—and to make it fully open source.

OpenGrep is a key component of Endor Labs’ Al SAST service. It's the engine that analyzes
source code for flaws, but uses an enhanced ruleset maintained by the Endor Labs security
research team. Endor Labs’ rules leverage our team’s experience and the latest research to
recognize these red flags in code. But unlike generic linters, the rules are tuned for accuracy in
an enterprise codebase setting.

Each rule is tested against real-world code to verify that it finds the intended weakness and
minimizes false positives. In effect, the engine’s rule layer acts as a high-precision net, instantly
capturing obvious security bugs, including many that default open-source rule sets would not
catch, without inundating developers with trivial or irrelevant warnings.

In addition to enhanced detection rules, Endor Labs has augmented the rule findings with
additional context and remediation information, making findings not only more accurate but also
more useful. It also comes with additional benefits for enterprise-scale Al triage, namely,
reducing the tokens needed to parse a code base.

Combining the speed and simplicity of OpenGrep with a managed (yet also customer-editable)
production-ready ruleset is the best of both worlds, expanding OpenGrep’s capabilities. This
engine provides the ‘raw material’ for the eventual list of high-priority flaws. Because no matter
how good your ruleset is, finding pieces of code with security flaws is just the start of creating
actionable findings.

lll. Agentic Al to Refine and Triage

Establishing Reachability: Remove everything that’s not exploitable

When asked about the process of sculpting his famous statue of David, Michelangelo reportedly
said, “Remove everything that is not David”.

Removing (or at least de-prioritizing) the flaw findings that are not exploitable helps reveal the
flaws that pose a real threat because their input or output is accessible to an attacker. A SQL
statement built using variables supplied by a user is more vulnerable to exploitation, compared
to one that accepts, say, a fixed range of flags from another internal function. To identify
exploitable vulnerabilities, we must trace all inputs back to their source.

Published November 19, 2025 2

N D OR |_ A B ; © 2025 Endor Labs.
e Allrights reserved.

Endor Labs uses Al agents that can analyse the data flow through the code in the tested source
file to perform a taint analysis, tracing input from sources to sinks. If a dangerous function or
vulnerable API is never reachable via any source of untrusted input, it's likely not exploitable
from the outside. In those cases, we can deprioritize or even suppress the finding. Conversely,
when there is a clear path from an external entry point all the way to a dangerous operation, we
have strong evidence of an exploitable vulnerability. Those are the issues that deserve
immediate attention.

Let’s take a real-world example: Suppose a rule flags the usage of a vulnerable encryption
function in two different places in the code. One occurrence is in a utility that processes
user-uploaded data (i.e., external input); analysis reveals that an attacker could reach this code
path with carefully crafted input. The other occurrence is in an offline admin report tool that only
ever reads internal data. The analysis shows that no external data can flow into this path. With
this knowledge, the engine can mark the first finding as a high-priority, likely exploitable
vulnerability, and perhaps lower the priority of the second or tag it as requiring no immediate fix.
This “reachability” filtering can significantly reduce the volume of issues that security teams
must manually triage. In our prior work on dependency security, reachability analysis was able
to cut alert noise by over 90%. We are seeing similar noise reduction for code vulnerabilities by
focusing on what'’s actually reachable.

This evidence-based style of static analysis ensures that when we alert you to a vulnerability, we
can also show you the path an attacker could take to exploit it, which builds developer
confidence in the finding. It's not just “this line of code is dangerous” — it's “here’s how this could
be exploited in your application’s context,” turning hypothetical issues into actionable

knowledge.

Triage: Contextual Analysis and Continuous Learning

After applying the first two functions (rules and analysis), we’ve typically narrowed the field to a
set of potential vulnerabilities that are likely relevant; static analysis has discovered a security
weakness, and it appears exploitable.

But is it really a high-priority finding?

A rules-only scanner might flag a potential vulnerability in a file without understanding what
other compensating controls might be in place. Consider a scenario where a rule triggers on a
function constructing a SQL query using string concatenation, and the function processes
user-supplied data. By itself, that appears to be an exploitable SQL injection flaw. But what if
earlier in the call flow, a utility class sanitizes all the inputs to that function? A file-limited SAST
tool wouldn’t know about that sanitization and would report a vulnerability, a classic false
positive. This lack of cross-file awareness is a significant reason why legacy SAST alerts so
often waste developers’ time. It’s also why simply adding more and more rules can backfire;
more patterns yield more findings, but without context, many of those findings will be of low

Published November 19, 2025 3

N D OR |_ A B ; © 2025 Endor Labs.
e Allrights reserved.

quality. As one study highlights, dealing with a high volume of SAST alerts can consume weeks
of effort, much of it spent sifting out noise.

So, the final—and arguably most powerful—layer of analysis is agentic Al-based triage. Endor
Labs Al agents review the findings in the context of the entire codebase and any additional
metadata, much like a human security expert would, to make final determinations and
prioritizations. Even with reachability filtering, some findings still lack the full context necessary
to assess their impact or validity. Static analysis may not be aware of specific runtime
configurations, the relationships between components, or the nuances of business logic that
could mitigate a vulnerability. An agentic Al system can interpret the findings in a broader
context, essentially adding a layer of reasoning on top of the deterministic analysis.

Taking the example above, an Al agent can be prompted to look at configuration files, related
classes, or even documentation to determine if a mitigating control exists. If it finds a separate
sanitizing class or a comment indicating the endpoint is for internal use only, it can flag that
context. This doesn’t necessarily mean the issue is a false positive, but it might downgrade the
severity or add a note that exploitation requires breaching another layer of defense.

In essence, the Al triage behaves like a diligent security analyst: correlating information across
files and systems to paint a fuller picture of each finding. This agent brings a holistic
perspective. It knows the list of vulnerabilities from the static analysis, and it can traverse your
repository, reading code, comments, and even design docs or tickets if provided, to see what
might contextualize those vulnerabilities. The outcome is a further refined set of results, where
truly high-risk issues are separated from those that are theoretically vulnerable but effectively
mitigated by design.

Another advantage of using an Al layer is the ability to learn from developer feedback
continuously. Endor Labs’ agentic Al doesn’t operate in a vacuum; it learns from the decisions
your team makes. When a developer marks a finding as a false positive or adds a suppression
comment with a rationale (e.g., “Not an issue — this input is validated by Service X”), the Al
absorbs that information. The next time it encounters a similar pattern, it will recall the prior
context and can automatically suppress or de-prioritize the issue if the same mitigating
conditions are present. Over time, this means the engine gets customized to your codebase.
Recurring safe patterns will no longer trigger alerts, and new findings will come pre-triaged with
knowledge of past resolutions. This feedback loop turns static analysis from a one-way report
into an evolving conversation between the tool and your team’s expertise.

Importantly, we do not use this Al agent as a generic code reviewer on every pull request (that’s
a separate capability, outside the scope of this discussion). Instead, here the Al is focused on
triaging static analysis results at scale. It acts as an automated security analyst that can handle
thousands of findings, filter out the ones you’ve deemed acceptable, and escalate the ones that
truly need attention. This agent-based triage incorporates policies and past learnings, which
brings us to another key point: scaling the triage process through policy.

Published November 19, 2025 4

© 2025 Endor Labs

ENDORLABS

Allrights reserved

IV. Efficient Remediation

Finally, all findings from this engine come with actionability built in. Each result includes a
description of the issue, the exact evidence of the problem (such as the call trace showing how
data flows to a vulnerability), and remediation guidance or code-fix suggestions. Agentic chat,
for instance, can provide specific code snippets to resolve the identified issue. The aim is not
only to inform you of the problem, but also to provide guidance on where it is located and how to
resolve it. For example, a finding for a dangerous deserialization might include a
recommendation to switch to a safe serialization library or implement an allowlist of classes. By
providing this level of detail, we further reduce the cognitive load on developers. Instead of
spending time diagnosing the issue, they can move straight to fixing it correctly. It also helps
build trust: when developers see that a vulnerability alert comes with clear proof and guidance,
they recognize it as a serious and legitimate concern, not a vague linter gripe.

Figure 2: Resolving security flaws from Endor Labs Agentic Chat

@ Detected Path Traversal Vulnerability (java-serviet-path-traversal): ID #414a93 <> RawData | © AskAl < EndorAlChat ®
Info Detected Path Traversal Vulnerability (java-serviet-path-

traversal): ID #414293

CONFIDENCE IMPACT FIRST INTRODUCED

((High] (Hign] 4moago

E— — Given the snippet of vulnerable code and the CWE of
this finding provide a potential code change that can
address the issue

Detalls

PROJECT

©) OWASP-Benchmark/BenchmarkJava

LocATION
https://github.com/owasp-b t kitest riTest
RULEID
java-servlet-path-traversal
DESCRIPTION
https:/fe / ji /mai KTes100953 javaL79
[ra i
76 // new java.io.File(org.owasp.benchmark.helpers.Utils. TESTFILES_DIR + bar).createNewFile();
8 java.io.FileOutputStream fos =
9 new java.io.FileQutputStream(new java.io.FileInputStream(fileName).getFD(});) {
80 response.getiriter ()
81 «printin(
82 "Now ready to write to file: "

EXPLANATION

The application builds a file path from potentially untrusted data, which can lead to a path traversal vulnerability. This can result in:

- Unautherized access to sensitive files (e.g., configuration files, user data)

- Creation or overwriting of files outside intended directories

- Potential system compromise of data breach

REMEDIATION

- Validate and sanitize all input used to create file path references

- Enforce strict file access controls

- Use least privilege principles for file access in public-facing applications

- Consider using utility methods like "org.apache.commons.io.FilenameUtils.getName(...)" te extract only the file name from paths
- Implement a whitelist of allowed files or directories

- Use secure file APIs that prevent path traversal by design

Metadata
CWEID CWE-22

Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal)
LANGUAGES Java
CUSTOM TAGS AD1:2021 Broken-Access-Control OWASP-Top-10 SANS-Top-25
RULE VERSION v1.0.0
LIKELIHOOD MEDIUM

Published November 19, 2025

This finding describes a Path Traversal vulnerability (CWE-22)
where the applicatien builds a file path using untrusted data.
This can lead to unautharized access to files outside the
intended directory.

A potential code change to address this issue is to validate
and sanitize the input used to create file paths. For example,
use a utility method like Apache Commans 10's
FilenameUtils.getName(...) to extract only the filename part
from the user input, thus eliminating directory traversal
attempts

Example safer code snippet in Java:

import org.apache. commons. io.FilenameUtils;
import java.io.File;

public void safeFileAccess(String userInput) {
/¢ Extract only the file name to prevent directory t
String safeFileName = FilenameUtils.getName(userInpu
J/ Use a fixed safe directory prefix
File file = new File("/safe/directory/" + safeFileNa
// Proceed with file operations using 'file’

¥

Additional remediation steps include validating and sanitizing
all input, enforcing strict file access controls, using least
privilege principles, implementing a whitelist of allowed files
or directories, and using secure file APIs that prevent path
traversal by design.

B

OpenAl GPT-4.1 mini

N D OR |_ A B ; © 2025 Endor Labs.
e Allrights reserved.

V. Scaling with Policy and Automation

One of the ultimate benefits of this multi-modal SAST approach is how it enables policy-driven,
large-scale triage of security findings. High-velocity teams simply do not have the bandwidth to
click through each alert in a huge SAST report manually, nor should they have to. Because our
engine attaches rich context, risk metadata, and confidence levels to each finding, you can
define policies to handle them in bulk. For example, you might set a policy that any finding with
low severity or low exploitability is automatically placed in a deferred queue or marked as
“‘informational”. Conversely, a policy could say that any critical finding with high confidence (as
determined by the Al triage) should immediately create a JIRA ticket or page the on-call security
engineer. The multi-stage analysis makes these kinds of distinctions reliable, so you can trust
the automation to do the initial sorting.

In practice, this means an AppSec lead can manage by exception rather than poring over every
issue. If your organization has compliance requirements, you can map the SAST findings to
those and have the system automatically flag any violations of a specific standard. The
combination of call graph evidence and Al context also provides the “why” behind each
vulnerability, which is crucial for governance. Security managers can, for instance, not only view
which vulnerabilities were found, but why the tool believes they are important (e.g., “user data
flows into this function which then executes a shell command”). Having this level of
explainability and assurance is key to getting developer buy-in as well. Developers are far more
likely to fix an issue when the tool shows a clear exploit path or a concrete example of the
problem.

Because the entire analysis runs quickly (our architecture parallelizes rule scanning and uses
efficient graph algorithms, so scans remain fast even on large codebases), it can be integrated
into the development workflow at various stages.

VI. Your Data, Your Control

As more and more engineers adopt Al coding assistants, moving scans from human-centric IDE
plugins to Al-native MCP servers means that you can instruct your assistant to run a scan,
present filtered findings, and even fix problems using natural language. You can instruct your
assistant to run scans when specific events occur (such as updating a manifest file or when you
commit code).

When it’s time to merge code into your mainline, triggering scans with a more restrictive policy
as part of your CI/CD process means security operations teams can be sure that they are in
control of the risk levels in deployed applications, and that critical vulnerabilities in first-party
code, dependencies, or container images don’t get into production.

Of course, every environment is different, and not all applications are created equal; therefore,
flexible, template-based policies can be easily configured to suit your security posture needs.

Published November 19, 2025 6

N DOR |_ A B) © 2025 Endor Labs.
o Allrights reserved.

We know trust is earned, especially when Al enters the picture. That's why Al SAST was built
with a clear and minimal data usage model, focused on security and privacy from day one.

Here’s exactly what we do (and don’t) do:

e Scope-limited analysis: We only analyze the code snippets with an SAST rule match,
with 50 lines before and after the match. We do not scan the full codebase of a project or
entire files.

e No code retention: The complete code diff is not stored by Endor Labs. To support the
dashboard experience, we may store context such as file or function names, or a brief
shippet of the relevant code. We provide an option to opt out of displaying the code
snippet as well. In that case, we only store and display the code location.

e Your data is never used for training: None of your data is used to train Al models, now
or in the future.

Al SAST uses Google Gemini and Azure OpenAl for the LLM models, and is hosted within a
dedicated Endor Labs VPC to ensure data is never sent to shared environments or public
endpoints.

Published November 19, 2025 7

N DOR |_ A B) © 2025 Endor Labs.
o Allrights reserved.

VIl. Conclusion

The upgraded multi-modal SAST engine from Endor Labs represents a new generation of static
analysis, one built for the realities of Al-fueled, fast-paced development. By combining managed
rules (for broad but precise detection of known issues), reachability (to assess real exploitability
across the codebase), and agentic Al-based triage (to apply human-like context analysis and
learning), we deliver findings that are both high-signal and high-priority. This multi-layered
approach drastically reduces false positives and noisy findings (addressing the top complaint
about SAST tools today) while also uncovering complex vulnerabilities that single-mode
scanners would overlook. The result for security teams is fewer alerts to chase, and those that
do appear come with rich context and evidence. Developers, in turn, receive timely, relevant,
and actionable security feedback, allowing them to fix issues quickly without losing momentum.

In summary, a multi-modal SAST engine that “understands” your code through rules, graphs,
and Al offers a powerful way to stay ahead of vulnerabilities without being overwhelmed by
alerts. Early adopters have reported significant noise reduction and faster remediation times,
validating the approach. By cutting alert fatigue and enabling policy-driven automation, we help
security teams achieve effective triage at scale. And by providing deep code insight with
evidence, we give developers and security engineers the confidence to act decisively on the
findings. It's SAST built for the era of complex, rapidly changing, Al-generated code, offering
both speed and accuracy to meet the demands of modern AppSec.

To learn more about how Endor Labs can help you detect security design flaws and architecture
changes, request a demo at endorlabs.com/demo-request.

Published November 19, 2025 8

https://endorlabs.com/demo-request

	​​​AI SAST
	 Combining Agents, Program Analysis, and Rules for High-Confidence Code Security
	Table of Contents
	I. Introduction
	II. An Open Source Engine with a Production-Ready Ruleset
	III. Agentic AI to Refine and Triage
	Establishing Reachability: Remove everything that’s not exploitable
	Triage: Contextual Analysis and Continuous Learning

	IV. Efficient Remediation
	V. Scaling with Policy and Automation
	VI. Your Data, Your Control
	
	VII. Conclusion

