

Whitepaper

Confidential Computing Requirement Guidelines for Data Center and Cloud Service Providers

Summary

This document describes the technical requirements to set up a confidential computing execution environment on bare metal machines in any of your environments.

Copyrights

All content, text, and materials in this document are the property of enclaive.

This document may not be copied, reproduced, distributed, or shared in whole or in part without the prior written consent of enclaive.

© 2025 enclaive GmbH. All rights reserved.

Acknowledgement

All product names, logos, brands, and trademarks mentioned herein—including but not limited to AMD, Intel, VMware, Microsoft, Linux, VMware ESXi, and Hyper-V—are the property of their respective owners. Any use of these names is for identification purposes only and does not imply endorsement. All rights, including copyrights and trademarks, remain solely with the corresponding companies.

Table of Contents

1 Introduction	06
1.1 Benefits for Data Center and Cloud Providers	06
1.2 Benefits for the Provider's Customers	06
1.3 New Business Opportunities Through Confidential-Computing-Augmente Services	d 07
2 Hardware Requirements	08
2.1 Intel CPU	08
2.2 AMD CPU	19
2.3 ARM CPU	30
2.4 NVIDIA	30
3 Software Requirements	31
3.1 Linux	31
3.2 Hypervisor/VirtualMachine Managers	32
3.2.1 KVM/QEMU and LibVirt/Proxmox/Openstack support	32
3.2.2 VMware	33
3.2.3 Hyper-V	33
Notices	34

1 Introduction

The rapid expansion of cloud-native workloads, cross-border data flows, and increasingly sophisticated cyber-threats has pushed traditional security architectures to their limits. Data center and cloud service providers are now expected to deliver uncompromising security guarantees, even as infrastructure becomes more distributed, automated, and heterogeneous. In this environment, **Confidential Computing** is emerging as the new industry standard for building, managing, and maintaining compute infrastructure with the highest levels of security and workload isolation.

Confidential Computing introduces a paradigm shift by protecting data not only at rest and in transit—capabilities that have long been standard—but also **during active use**. This third dimension, the encryption of data in use, closes the last major gap in the security model of modern compute platforms. enclaive refers to this unified protection model as **3D Encryption** ("enclaved computation"), ensuring that sensitive data remains cryptographically shielded throughout its full lifecycle.

For the first time, workloads remain encrypted throughout execution in memory, even from privileged system software and infrastructure operators. This capability fundamentally elevates the threat model that data center and cloud providers can defend against. It enables robust protection even in scenarios of infrastructure compromise, malicious insiders, or supply-chain vulnerabilities—risks that traditional methods cannot sufficiently mitigate.

1.1 Benefits for Data Center and Cloud Providers

Confidential Computing delivers strategic and operational advantages for hyperscalers, colocation operators, and cloud service providers:

Stronger Infrastructure Security Posture

Providers can harden their compute stack against insider threats, firmware-level attacks, and hypervisor-level exploits, strengthening trust in multi-tenant environments.

Operational Cost Reductions

By isolating workloads cryptographically at the hardware level, providers can reduce the tooling, auditing, and manual security processes required to maintain compliance and availability.

New High-Assurance Service Offerings

Providers can differentiate with confidential VMs, confidential Kubernetes, secure enclaves, and regulated-data hosting services—opening up new revenue streams in sectors like healthcare, finance, and public administration.

Simplified Compliance

Built-in hardware attestation and verifiable workload isolation ease adherence to regulatory frameworks such as NIS2, C5, BSI Grundschutz, and reduce certification overhead.

1.2 Benefits for the Provider's Customers

End customers—ranging from SaaS vendors to enterprises running sensitive workloads—gain equally transformative advantages:

Maximal Data Protection Across the Full Lifecycle

Workloads remain protected at rest, in transit, and in use, drastically limiting the impact of breaches or infrastructure compromise.

Secure Multi-Cloud and Edge Deployments

Enclaved computation allows applications to run safely across distributed or untrusted environments without changing application logic.

Faster Onboarding of Sensitive Workloads

Customers can migrate regulated or business-critical workloads to the cloud faster, backed by verifiable attestation and hardware-rooted trust.

Reduced Vendor Lock-In

Standardized confidential computing primitives across major hardware vendors and cloud providers allow customers to maintain flexibility in where and how they run workloads.

Built-In Compliance and Auditability

Cryptographically verifiable execution environments simplify audits and accelerate compliance with frameworks like GDPR, NIS2, HIPAA, and financial-sector regulations.

1.3 New Business Opportunities Through Confidential-Computing-Augmented Services

Confidential Computing enables providers to offer entirely new classes of high-assurance, high-margin services that were previously not feasible or not certifiable:

Confidential Virtual Machines

Provide per-tenant or per-workload runtime encryption with hardware-rooted attestation—now a requirement or strong expectation in regulated sectors.

Confidential Kubernetes

Deliver end-to-end encrypted container execution, enabling secure multi-tenant cluster designs and zero-trust orchestration.

Data-in-Use Encrypted Databases

Support high-value customers who must ensure query processing and analytics happen inside attested enclaves.

Confidential AI / Confidential Inference

Enclaved CPU/GPU execution ensures that training data, models, and inference results remain encrypted throughout the entire Al pipeline. This is particularly valuable for **SMEs**, which increasingly rely on Al but cannot expose business-critical data—such as customer records, financial projections, pricing models, or proprietary algorithms—to third-party operators or shared infrastructure. Confidential Al provides the privacy guarantees SMEs need to adopt advanced analytics and Al without risking data leakage, intellectual-property exposure, or compliance violations.

By offering confidential-computing-augmented services, data center providers position themselves as compliant-by-design infrastructure partners, unlocking access to high-value workloads that were historically prohibited from moving to the cloud.

2 Hardware Requirements

2.1 Intel CPU

All CPUs with support of <u>Security Guard Extension</u> (SGX). Intel introduced the extension into XEON 1st-4th gen processors (release: July 2017; code name: Skylake).

All Intel CPUs with support of <u>Trusted Domain Extension</u> (TDX). Intel introduced the extension into <u>XEON 5th gen</u> processors (release: December 14, 2023; code name: emeralds rapids) and <u>XEON 6th gen</u> processors (release: June 14, 2024; code name: sierra forest and granite rapids).

Please check on this site or Intel homepage.

A quick check is to look at the 2nd digit in the CPU encoding xXxx $(X \ge 5: TDX, X < 5 SGX)$. Intel TDX CPUs include support for SGX. TDX remote integrity protection is based on the Intel DCAP framework build upon SGX.

(j) Important Note

Intel CPUs require at least 8 memory DIMMs. This is needed, as TDX requires that the Integrated Memory Controller (IMC) has all his slots populated.

Intel (5th gen)									
Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released	
Xeon Bronze 3508U	Emerald Rapids	8 (8)	2.1 to 2.2 GHz	Socket 4677	Intel 7	22.5 MB	125 W	Q4'23	
Xeon Silver 4509Y	Emerald Rapids	8 (16)	2.6 to 4.1 GHz	Socket 4677	Intel 7	22.5 MB	125 W	Q4'23	
Xeon Silver 4510	Emerald Rapids	12 (24)	2.4 to 4.1 GHz	Socket 4677	Intel 7	30 MB	150 W	Q4'23	

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
Xeon Silver 4510T	Emerald Rapids	12 (24)	2 to 3.7 GHz	Socket 4677	Intel 7	30 MB	115 W	Q4'23
Xeon Silver 4514Y	Emerald Rapids	16 (32)	2 to 3.4 GHz	Socket 4677	Intel 7	30 MB	150 W	Q4'23
Xeon Silver 4516Y+	Emerald Rapids	24 (48)	2.2 to 3.7 GHz	Socket 4677	Intel 7	45 MB	185 W	Q4'23
Xeon Gold 5512U	Emerald Rapids	28 (56)	2.1 to 3.7 GHz	Socket 4677	Intel 7	52.5 MB	185 W	Q4'23
Xeon Gold 5515+	Emerald Rapids	8 (16)	3.2 to 4.1 GHz	Socket 4677	Intel 7	22.5 MB	165 W	Q4'23
Xeon Gold 5520+	Emerald Rapids	28 (56)	2.2 to 4 GHz	Socket 4677	Intel 7	52.5 MB	205 W	Q4'23
Xeon Gold 6526Y	Emerald Rapids	16 (32)	2.8 to 3.9 GHz	Socket 4677	Intel 7	37.5 MB	195 W	Q4'23
Xeon Gold 6530	Emerald Rapids	32 (64)	2.1 to 4 GHz	Socket 4677	Intel 7	160 MB	270 W	Q4'23
Xeon Gold 6534	Emerald Rapids	8 (16)	3.9 to 4.2 GHz	Socket 4677	Intel 7	22.5 MB	195 W	Q4'23
Xeon Gold 6538N	Emerald Rapids	32 (64)	2.1 to 4.1 GHz	Socket 4677	Intel 7	60 MB	205 W	Q4'23

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
Xeon Gold 6538Y+	Emerald Rapids	32 (64)	2.2 to 4 GHz	Socket 4677	Intel 7	60 MB	225 W	Q4'23
Xeon Gold 6542Y	Emerald Rapids	24 (48)	2.9 to 4.1 GHz	Socket 4677	Intel 7	60 MB	250 W	Q4'23
Xeon Gold 6544Y	Emerald Rapids	16 (32)	3.6 to 4.1 GHz	Socket 4677	Intel 7	45 MB	270 W	Q4'23
Xeon Gold 6548N	Emerald Rapids	32 (64)	2.8 to 4.1 GHz	Socket 4677	Intel 7	60 MB	250 W	Q4'23
Xeon Gold 6548Y+	Emerald Rapids	32 (64)	2.5 to 4.1 GHz	Socket 4677	Intel 7	60 MB	250 W	Q4'23
Xeon Gold 6554S	Emerald Rapids	36 (72)	2.2 to 4 GHz	Socket 4677	Intel 7	180 MB	270 W	Q4'23
Xeon Gold 6558Q	Emerald Rapids	32 (64)	3.2 to 4.1 GHz	Socket 4677	Intel 7	60 MB	350 W	Q4'23
Xeon Platinum 8558	Emerald Rapids	48 (96)	2.1 to 4 GHz	Socket 4677	Intel 7	260 MB	330 W	Q4'23
Xeon Platinum 8558P	Emerald Rapids	48 (96)	2.7 to 4 GHz	Socket 4677	Intel 7	260 MB	350 W	Q4'23
Xeon Platinum 8558U	Emerald Rapids	48 (96)	2 to 4 GHz	Socket 4677	Intel 7	260 MB	300 W	Q4'23

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
Xeon Platinum 8562Y+	Emerald Rapids	32 (64)	2.8 to 4.1 GHz	Socket 4677	Intel 7	60 MB	300 W	Q4'23
Xeon Platinum 8568Y+	Emerald Rapids	48 (96)	2.3 to 4 GHz	Socket 4677	Intel 7	300 MB	350 W	Q4'23
Xeon Platinum 8570	Emerald Rapids	56 (112)	2.1 to 4 GHz	Socket 4677	Intel 7	300 MB	350 W	Q4'23
Xeon Platinum 8571N	Emerald Rapids	52 (104)	2.4 to 4 GHz	Socket 4677	Intel 7	300 MB	300 W	Q4'23
Xeon Platinum 8580	Emerald Rapids	60 (120)	2 to 4 GHz	Socket 4677	Intel 7	300 MB	350 W	Q4'23
Xeon Platinum 8581V	Emerald Rapids	60 (120)	2 to 3.9 GHz	Socket 4677	Intel 7	300 MB	270 W	Q4'23
Xeon Platinum 8592+	Emerald Rapids	64 (128)	1.9 to 3.9 GHz	Socket 4677	Intel 7	320 MB	350 W	Q4'23
Xeon Platinum 8592V	Emerald Rapids	64 (128)	2 to 3.9 GHz	Socket 4677	Intel 7	320 MB	330 W	Q4'23
Xeon Platinum 8593Q	Emerald Rapids	64 (128)	2.2 to 3.9 GHz	Socket 4677	Intel 7	320 MB	385 W	Q4'23

			In	tel (6th g	en)			
Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
Xeon 6740E	Sierra Forest	96 (96)	2.4 to 3.2 GHz	Socket 4710	3	96.0 MB	250.0 W	Q2'24
Xeon 6756E	Sierra Forest	128 (128)	1.8 to 2.6 GHz	Socket 4710	3	96.0 MB	225.0 W	Q2'24
Xeon 6780E	Sierra Forest	144 (144)	2.2 to 3 GHz	Socket 4710	3	108.0 MB	330.0 W	Q2'24
Xeon 6710E	Sierra Forest	64 (64)	2.4 to 3.2 GHz	Socket 4710	3	96.0 MB	205.0 W	Q2'24
Xeon 6766E	Sierra Forest	144 (144)	1.9 to 2.7 GHz	Socket 4710	3	108.0 MB	250.0 W	Q2'24
Xeon 6731E	Sierra Forest	96 (96)	2.2 to 3.1 GHz	Socket 4710	3	96.0 MB	250.0 W	Q2'24
Xeon 6746E	Sierra Forest	112 (112)	2 to 2.7 GHz	Socket 4710	3	96.0 MB	250.0 W	Q2'24
Xeon 6960P	Granite Rapids	72 (144)	2.7 to 3.9 GHz	Socket 7529	3	432.0 MB	500.0 W	Q3'24
Xeon 6980P	Granite Rapids	128 (256)	2 to 3.9 GHz	Socket 7529	3	504.0 MB	500.0 W	Q3'24

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
Xeon 6979P	Granite Rapids	120 (240)	2.1 to 3.9 GHz	Socket 7529	3	504.0 MB	500.0 W	Q3'24
Xeon 6966P-C	Granite Rapids	96 (192)	3.1 to 3.9 GHz	Socket 7529	3	432.0 MB	550.0 W	Q2'25
Xeon 6972P	Granite Rapids	96 (192)	2.4 to 3.9 GHz	Socket 7529	3	480.0 MB	500.0 W	Q3'24
Xeon 6357P	Granite Rapids	8 (16)	3 to 5.4 GHz	Socket 1700	3	24.0 MB	80.0 W	Q1'25
Xeon 6952P	Granite Rapids	96 (192)	2.1 to 3.9 GHz	Socket 7529	3	480.0 MB	400.0 W	Q3'24
Xeon 6747P	Granite Rapids	48 (96)	2.7 to 3.9 GHz	Socket 4710	3	288.0 MB	330.0 W	Q1'25
Xeon 6741P	Granite Rapids	48 (96)	2.5 to 3.8 GHz	Socket 4710	3	288.0 MB	300.0 W	Q1'25
Xeon 6730P	Granite Rapids	32 (64)	2.5 to 3.8 GHz	Socket 4710	3	288.0 MB	250.0 W	Q1'25
Xeon 6781P	Granite Rapids	80 (160)	2 to 3.8 GHz	Socket 4710	3	336.0 MB	350.0 W	Q1'25
Xeon 6760P	Granite Rapids	64 (128)	2.2 to 3.8 GHz	Socket 4710	3	320.0 MB	330.0 W	Q1'25

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
Xeon 6788P	Granite Rapids	86 (172)	2 to 3.8 GHz	Socket 4710	3	336.0 MB	350.0 W	Q1'25
Xeon 6740P	Granite Rapids	48 (96)	2.1 to 3.8 GHz	Socket 4710	3	288.0 MB	270.0 W	Q1'25
Xeon 6768P	Granite Rapids	64 (128)	2.4 to 3.9 GHz	Socket 4710	3	336.0 MB	330.0 W	Q1'25
Xeon 6761P	Granite Rapids	64 (128)	2.5 to 3.9 GHz	Socket 4710	3	336.0 MB	350.0 W	Q1'25
Xeon 6787P	Granite Rapids	86 (172)	2 to 3.8 GHz	Socket 4710	3	336.0 MB	350.0 W	Q1'25
Xeon 6767P	Granite Rapids	64 (128)	2.4 to 3.9 GHz	Socket 4710	3	336.0 MB	350.0 W	Q1'25
Xeon 6737P	Granite Rapids	32 (64)	2.9 to 4 GHz	Socket 4710	3	144.0 MB	270.0 W	Q1'25
Xeon 6738P	Granite Rapids	32 (64)	2.9 to 4.2 GHz	Socket 4710	3	144.0 MB	270.0 W	Q1'25
Xeon 6521P	Granite Rapids	24 (48)	2.6 to 4.1 GHz	Socket 4710	3	144.0 MB	225.0 W	Q1'25
Xeon 6731P	Granite Rapids	32 (64)	2.5 to 4.1 GHz	Socket 4710	3	144.0 MB	245.0 W	Q1'25

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
Xeon 6530P	Granite Rapids	32 (64)	2.3 to 4.1 GHz	Socket 4710	3	144.0 MB	225.0 W	Q1'25
Xeon 6748P	Granite Rapids	48 (96)	2.5 to 4.1 GHz	Socket 4710	3	192.0 MB	300.0 W	Q1'25
Xeon 6736P	Granite Rapids	36 (72)	2 to 4.1 GHz	Socket 4710	3	144.0 MB	205.0 W	Q1'25
Xeon 6520P	Granite Rapids	24 (48)	2.4 to 4 GHz	Socket 4710	3	144.0 MB	210.0 W	Q1'25
Xeon 6732P	Granite Rapids	32 (64)	3.8 to 4.3 GHz	Socket 4710	3	144.0 MB	350.0 W	Q2'25
Xeon 6527P	Granite Rapids	24 (48)	3 to 4.2 GHz	Socket 4710	3	144.0 MB	255.0 W	Q1'25
Xeon 6728P	Granite Rapids	24 (48)	2.7 to 4.1 GHz	Socket 4710	3	144.0 MB	210.0 W	Q1'25
Xeon 6517P	Granite Rapids	16 (32)	3.2 to 4.2 GHz	Socket 4710	3	72.0 MB	190.0 W	Q1'25
Xeon 6511P	Granite Rapids	16 (32)	2.3 to 4.2 GHz	Socket 4710	3	72.0 MB	150.0 W	Q1'25
Xeon 6505P	Granite Rapids	12 (24)	2.2 to 4.1 GHz	Socket 4710	3	48.0 MB	150.0 W	Q1'25

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
Xeon 6507P	Granite Rapids	8 (16)	3.5 to 4.3 GHz	Socket 4710	3	48.0 MB	150.0 W	Q1'25
Xeon 6515P	Granite Rapids	16 (32)	2.3 to 3.8 GHz	Socket 4710	3	72.0 MB	150.0 W	Q1'25
Xeon 6724P	Granite Rapids	16 (32)	3.6 to 4.3 GHz	Socket 4710	3	72.0 MB	210.0 W	Q1'25
Xeon 6714P	Granite Rapids	8 (16)	4 to 4.3 GHz	Socket 4710	3	48.0 MB	165.0 W	Q1'25
Xeon 6944P	Granite Rapids	72 (144)	1.8 to 3.9 GHz	Socket 7529	3	432.0 MB	350.0 W	Q1'25
Xeon 6726P-B	Granite Rapids	42 (84)	2.3 to 3.5 GHz	Socket 4368	3	168.0 MB	235.0 W	Q1'25
Xeon 6503P-B	Granite Rapids	12 (24)	2 to 3.5 GHz	Socket 4368	3	48.0 MB	110.0 W	Q1'25
Xeon 6516P-B	Granite Rapids	20 (40)	2.3 to 3.5 GHz	Socket 4368	3	80.0 MB	145.0 W	Q1'25
Xeon 6533P-B	Granite Rapids	32 (64)	2.2 to 3.9 GHz	Socket 4368	3	128.0 MB	205.0 W	Q1'25
Xeon 6523P-B	Granite Rapids	24 (48)	2.5 to 3.9 GHz	Socket 4368	3	96.0 MB	175.0 W	Q1'25

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
Xeon 6546P-B	Granite Rapids	32 (64)	2.3 to 3.5 GHz	Socket 4368	3	128.0 MB	195.0 W	Q1'25
Xeon 6543P-B	Granite Rapids	32 (64)	2 to 3.3 GHz	Socket 4368	3	128.0 MB	160.0 W	Q1'25
Xeon 6553P-B	Granite Rapids	36 (72)	2.6 to 4 GHz	Socket 4368	3	144.0 MB	235.0 W	Q1'25
Xeon 6706P-B	Granite Rapids	40 (80)	2.5 to 3.5 GHz	Socket 4368	3	160.0 MB	235.0 W	Q1'25
Xeon 6563P-B	Granite Rapids	38 (76)	2.4 to 4 GHz	Socket 4368	3	152.0 MB	235.0 W	Q1'25
Xeon 6556P-B	Granite Rapids	36 (72)	2.3 to 3.5 GHz	Socket 4368	3	144.0 MB	215.0 W	Q1'25
Xeon 6716P-B	Granite Rapids	40 (80)	2.5 to 3.5 GHz	Socket 4368	3	160.0 MB	235.0 W	Q2'25
Xeon 6513P-B	Granite Rapids	20 (40)	2 to 3.3 GHz	Socket 4368	3	80.0 MB	130.0 W	Q1'25
Xeon 6745P	Granite Rapids	32 (64)	3.1 to 4.3 GHz	Socket 4710	3	336.0 MB	300.0 W	Q1'25
Xeon 6776P	Granite Rapids	64 (128)	2.3 to 3.9 GHz	Socket 4710	3	336.0 MB	350.0 W	Q2'25

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
Xeon 6774P	Granite Rapids	64 (128)	2.5 to 3.9 GHz	Socket 4710	3	336.0 MB	350.0 W	Q2'25
Xeon 6532P-B	Granite Rapids	32 (64)	2.2 to 3.9 GHz	Socket 4368	3	128.0 MB	205.0 W	Q3'25
Xeon 6962P	Granite Rapids	72 (144)	2.7 to 3.9 GHz	Socket 7529	3	432.0 MB	500.0 W	Q3'25
Xeon 6978P	Granite Rapids	120 (240)	2.1 to 3.9 GHz	Socket 7529	3	504.0 MB	500.0 W	Q3'25
Xeon 6725P	Granite Rapids	16 (32)	3.7 to 4.8 GHz	Socket 4710	3	192.0 MB	235.0 W	Q3'25
Xeon 6776P-B	Granite Rapids	72 (144)	2.3 to 3.5 GHz		3	288.0 MB	325.0 W	Q4'25
Xeon 6766P-B	Granite Rapids	64 (128)	2.3 to 3.5 GHz		3	256.0 MB	305.0 W	Q4'25
Xeon 6756P-B	Granite Rapids	64 (128)	2.2 to 3.5 GHz		3	256.0 MB	325.0 W	Q4'25
Xeon 6762P	Granite Rapids	64 (128)	2.9 to 3.9 GHz	Socket 4710	3	320.0 MB	350.0 W	Q3'25
Xeon 6768P-B	Granite Rapids	64 (128)	2.2 to 3.5 GHz		3	256.0 MB	325.0 W	Q4'25

2.2 AMD CPU

All AMD CPUs with support of Secure Encrypted Virtualization (SEV). AMD introduced the extension into EPYC processors. While SEV is generally available from EPYC 1st gen, we recommend our clients the 4th gen (release: May 16, 2023; codename: Genoa) or later, the 3rd gen (release: March 15, 2021; codename: Rome), and the 2nd gen (release: August 7, 2019, codename: Rome).

Please check on this site, if your CPU supports SEV.

(j) Hint

A quick check is to look at the 4th digit in the CPU encoding xxxX ($X \ge 2$). AMD CPUs with a 4 at the first digit Xxxx generally do not support SEV even though the 4th digit encoding might hint at it.

AMD (5th gen)										
Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released		
EPYC 9015	Turin	8 / 16	3.6 to 4.1 GHz	Socket SP5	4 nm	64 MB	125 W	Oct 2024		
EPYC 9115	Turin	16 / 32	2.6 to 4.1 GHz	Socket SP5	4 nm	64 MB	125 W	Oct 2024		
EPYC 9135	Turin	16 / 32	3.65 to 4.3 GHz	Socket SP5	4 nm	64 MB	200 W	Oct 2024		
EPYC 9175F	Turin	16 / 32	4.2 to 5 GHz	Socket SP5	4 nm	512 MB	320 W	Oct 2024		
EPYC 9255	Turin	24 / 48	3.25 to 4.8 GHz	Socket SP5	4 nm	128 MB	200 W	Oct 2024		

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
EPYC 9275F	Turin	24 / 48	4.1 to 4.8 GHz	Socket SP5	4 nm	256 MB	320 W	Oct 2024
EPYC 9335	Turin	32/64	3 to 4.4 GHz	Socket SP5	4 nm	128 MB	210 W	Oct 2024
EPYC 9355	Turin	32/64	3.55 to 4.4 GHz	Socket SP5	4 nm	256 MB	280 W	Oct 2024
EPYC 9355P	Turin	32 / 64	3.55 to 4.4 GHz	Socket SP5	4 nm	256 MB	280 W	Oct 2024
EPYC 9365	Turin	36 / 72	3.4 to 4.3 GHz	Socket SP5	4 nm	192 MB	300 W	Oct 2024
EPYC 9375F	Turin	32/64	3.85 to 4.8 GHz	Socket SP5	4 nm	256 MB	320 W	Oct 2024
EPYC 9455	Turin	48 / 96	3.15 to 4.4 GHz	Socket SP5	4 nm	256 MB	300 W	Oct 2024
EPYC 9455P	Turin	48 / 96	3.15 to 4.4 GHz	Socket SP5	4 nm	256 MB	300 W	Oct 2024
EPYC 9475F	Turin	48 / 96	3.65 to 4.8 GHz	Socket SP5	4 nm	256 MB	400 W	Oct 2024
EPYC 9535	Turin	64 / 128	2.4 to 4.3 GHz	Socket SP5	4 nm	256 MB	300 W	Oct 2024

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
EPYC 9555	Turin	64 / 128	3.2 to 4.4 GHz	Socket SP5	4 nm	256 MB	360 W	Oct 2024
EPYC 9555P	Turin	64 / 128	3.2 to 4.4 GHz	Socket SP5	4 nm	256 MB	360 W	Oct 2024
EPYC 9565	Turin	72 / 144	3.15 to 4.3 GHz	Socket SP5	4 nm	384 MB	400 W	Oct 2024
EPYC 9575F	Turin	64 / 128	3.3 to 5 GHz	Socket SP5	4 nm	256 MB	400 W	Oct 2024
EPYC 9645	Turin	96 / 192	2.3 to 3.7 GHz	Socket SP5	3 nm	256 MB	320 W	Oct 2024
EPYC 9655	Turin	96 / 192	2.6 to 4.5 GHz	Socket SP5	4 nm	384 MB	400 W	Oct 2024
EPYC 9655P	Turin	96 / 192	2.6 to 4.5 GHz	Socket SP5	4 nm	384 MB	400 W	Oct 2024
EPYC 9745	Turin	128 / 256	2.4 to 3.7 GHz	Socket SP5	3 nm	256 MB	400 W	Oct 2024
EPYC 9755	Turin	128 / 256	2.7 to 4.1 GHz	Socket SP5	4 nm	512 MB	500 W	Oct 2024
EPYC 9825	Turin	144 / 288	2.2 to 3.7 GHz	Socket SP5	3 nm	384 MB	390 W	Oct 2024

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
EPYC 9845	Turin	160 / 320	2.1 to 3.7 GHz	Socket SP5	3 nm	320 MB	390 W	Oct 2024
EPYC 9965	Turin	192 / 384	2.25 to 3.7 GHz	Socket SP5	3 nm	384 MB	500 W	Oct 2024

AMD (4th gen)										
Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released		
EPYC 9124	Genoa	16 / 32	3 to 3.7 GHz	Socket SP5	5 nm	64 MB	200 W	Nov 10th, 2022		
EPYC 9174F	Genoa	16 / 32	4.1 to 4.4 GHz	Socket SP5	5 nm	256 MB	320 W	Nov 10th, 2022		
EPYC 9224	Genoa	24 / 48	2.5 to 3.7 GHz	Socket SP5	5 nm	64 MB	200 W	Nov 10th, 2022		
EPYC. 9254	Genoa	24 / 48	2.9 to 4.15 GHz	Socket SP5	5 nm	128 MB	200 W	Nov 10th, 2022		
EPYC 9274F	Genoa	24 / 48	4.05 to 4.3 GHz	Socket SP5	5 nm	256 MB	320 W	Nov 10th, 2022		
EPYC 9334	Genoa	32/64	2.7 to 3.9 GHz	Socket SP5	5 nm	128 MB	210 W	Nov 10th, 2022		

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
EPYC 9354	Genoa	32 / 64	3.25 to 3.8 GHz	Socket SP5	5 nm	256 MB	280 W	Nov 10th, 2022
EPYC 9354P	Genoa	32 / 64	3.25 to 3.8 GHz	Socket SP5	5 nm	256 MB	280 W	Nov 10th, 2022
EPYC 9374F	Genoa	32 / 64	3.85 to 4.3 GHz	Socket SP5	5 nm	256 MB	320 W	Nov 10th, 2022
EPYC 9454	Genoa	48 / 96	2.75 to 3.8 GHz	Socket SP5	5 nm	256 MB	290 W	Nov 10th, 2022
EPYC 9454P	Genoa	48 / 96	2.75 to 3.8 GHz	Socket SP5	5 nm	256 MB	290 W	Nov 10th, 2022
EPYC 9474F	Genoa	48 / 96	3.6 to 4.1 GHz	Socket SP5	5 nm	256 MB	360 W	Nov 10th, 2022
EPYC 9534	Genoa	64 / 128	2.45 to 3.7 GHz	Socket SP5	5 nm	256 MB	280 W	Nov 10th, 2022
EPYC 9554	Genoa	64 / 128	3.1 to 3.75 GHz	Socket SP5	5 nm	256 MB	360 W	Nov 10th, 2022
EPYC 9554P	Genoa	64 / 128	3.1 to 3.75 GHz	Socket SP5	5 nm	256 MB	360 W	Nov 10th, 2022
EPYC 9634	Genoa	84 / 168	2.25 to 3.7 GHz	Socket SP5	5 nm	384 MB	290 W	Nov 10th, 2022

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
EPYC 9654	Genoa	96 / 192	2.4 to 3.7 GHz	Socket SP5	5 nm	384 MB	360 W	Nov 10th, 2022
EPYC 9654P	Genoa	96 / 192	2.4 to 3.7 GHz	Socket SP5	5 nm	384 MB	360 W	Nov 10th, 2022
EPYC Embedded 9124	Genoa	16 / 32	3 to 3.7 GHz	Socket SP5	5 nm	64 MB	200 W	Mar 14th, 2023
EPYC Embedded 9254	Genoa	24 / 48	2.9 to 4.15 GHz	Socket SP5	5 nm	128 MB	200 W	Mar 14th, 2023
EPYC Embedded 9354	Genoa	32 / 64	3.25 to 3.8 GHz	Socket SP5	5 nm	256 MB	280 W	Mar 14th, 2023
EPYC Embedded 9354P	Genoa	32 / 64	3.25 to 3.8 GHz	Socket SP5	5 nm	256 MB	280 W	Mar 14th, 2023
EPYC Embedded 9454	Genoa	48 / 96	2.75 to 3.8 GHz	Socket SP5	5 nm	256 MB	290 W	Mar 14th, 2023
EPYC Embedded 9454P	Genoa	48 / 96	2.75 to 3.8 GHz	Socket SP5	5 nm	256 MB	290 W	Mar 14th, 2023
EPYC Embedded 9554	Genoa	64 / 128	3.1 to 3.75 GHz	Socket SP5	5 nm	256 MB	360 W	Mar 14th, 2023
EPYC Embedded 9554P	Genoa	64 / 128	3.1 to 3.75 GHz	Socket SP5	5 nm	256 MB	360 W	Mar 14th, 2023

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
EPYC Embedded 9654	Genoa	96 / 192	2.4 to 3.7 GHz	Socket SP5	5 nm	384 MB	360 W	Mar 14th, 2023
EPYC Embedded 9654P	Genoa	96 / 192	2.4 to 3.7 GHz	Socket SP5	5 nm	384 MB	360 W	Mar 14th, 2023

AMD (3rd gen)											
Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released			
EPYC 7203	Milan	8 / 16	2.8 to 3.4 GHz	Socket SP3	7 nm	64 MB	120 W	Sep 5th, 2023			
EPYC. 7203P	Milan	8 / 16	2.8 to 3.4 GHz	Socket SP3	7 nm	64 MB	120 W	Sep 5th, 2023			
EPYC 72F3	Milan	8 / 16	3.7 to 4.1 GHz	Socket SP3	7 nm	256 MB	180 W	Mar 15th, 2021			
EPYC 7303	Milan	16 / 32	2.4 to 3.4 GHz	Socket SP3	7 nm	64 MB	130 W	Sep 5th, 2023			
EPYC 7303P	Milan	16 / 32	2.4 to 3.4 GHz	Socket SP3	7 nm	64 MB	130 W	Sep 5th, 2023			
EPYC 7313	Milan	16 / 32	3 to 3.7 GHz	Socket SP3	7 nm	128 MB	155 W	Mar 15th, 2021			

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
EPYC 7313P	Milan	16 / 32	3 to 3.7 GHz	Socket SP3	7 nm	128 MB	155 W	Mar 15th, 2021
EPYC 7343	Milan	16 / 32	3.2 to 3.9 GHz	Socket SP3	7 nm	128 MB	190 W	Mar 15th, 2021
EPYC. 73F3	Milan	16 / 32	3.5 to 4 GHz	Socket SP3	7 nm	256 MB	240 W	Mar 15th, 2021
EPYC 7413	Milan	24 / 48	2.65 to 3.6 GHz	Socket SP3	7 nm	128 MB	180 W	Mar 15th, 2021
EPYC 7443	Milan	24 / 48	2.85 to 4 GHz	Socket SP3	7 nm	128 MB	200 W	Mar 15th, 2021
EPYC 7443P	Milan	24 / 48	2.85 to 4 GHz	Socket SP3	7 nm	128 MB	200 W	Mar 15th, 2021
EPYC 7453	Milan	28 / 56	2.75 to 3.45 GHz	Socket SP3	7 nm	64 MB	225 W	Mar 15th, 2021
EPYC 74F3	Milan	24 / 48	2.8 to 4 GHz	Socket SP3	7 nm	256 MB	240 W	Mar 15th, 2021
EPYC. 7513	Milan	32/64	2.6 to 3.65 GHz	Socket SP3	7 nm	128 MB	200 W	Mar 15th, 2021
EPYC 7543	Milan	32/64	2.8 to 3.7 GHz	Socket SP3	7 nm	256 MB	225 W	Mar 15th, 2021

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
EPYC 7543P	Milan	32 / 64	2.8 to 3.7 GHz	Socket SP3	7 nm	256 MB	225 W	Mar 15th, 2021
EPYC 75F3	Milan	32/64	2.95 to 4 GHz	Socket SP3	7 nm	256 MB	280 W	Mar 15th, 2021
EPYC 7643	Milan	48 / 96	2.3 to 3.6 GHz	Socket SP3	7 nm	256 MB	225 W	Mar 15th, 2021
EPYC 7643P	Milan	48 / 96	2.3 to 3.6 GHz	Socket SP3	7 nm	256 MB	225 W	Sep 5th, 2023
EPYC 7663	Milan	56 / 112	2 to 3.5 GHz	Socket SP3	7 nm	256 MB	240 W	Mar 15th, 2021
EPYC 7663P	Milan	56 / 112	2 to 3.5 GHz	Socket SP3	7 nm	256 MB	240 W	Sep 5th, 2023
EPYC 7713	Milan	64 / 128	2 to 3.675 GHz	Socket SP3	7 nm	256 MB	225 W	Mar 15th, 2021
EPYC 7713P	Milan	64 / 128	2 to 3.675 GHz	Socket SP3	7 nm	256 MB	225 W	Mar 15th, 2021
EPYC 7763	Milan	64 / 128	2.45 to 3.5 GHz	Socket SP3	7 nm	256 MB	280 W	Mar 15th, 2021

AMD (2nd gen)										
Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released		
EPYC 7232P	Rome	8 / 16	3.1 to 3.2 GHz	Socket SP3	7 nm	32 MB	120 W	Aug 7th, 2019		
EPYC 7252	Rome	8 / 16	2.8 to 3.2 GHz	Socket SP3	7 nm	64 MB	120 W	Aug 7th, 2019		
EPYC 7262	Rome	8 / 16	3.1 to 3.3 GHz	Socket SP3	7 nm	128 MB	155 W	Aug 7th, 2019		
EPYC 7272	Rome	12 / 24	2.6 to 3.2 GHz	Socket SP3	7 nm	64 MB	120 W	Aug 7th, 2019		
EPYC 7282	Rome	16 / 32	2.8 to 3.2 GHz	Socket SP3	7 nm	64 MB	120 W	Aug 7th, 2019		
EPYC 7302	Rome	16 / 32	3 to 3.3 GHz	Socket SP3	7 nm	128 MB	155 W	Aug 7th, 2019		
EPYC 7302P	Rome	16 / 32	3 to 3.3 GHz	Socket SP3	7 nm	128 MB	155 W	Aug 7th, 2019		
EPYC 7352	Rome	24 / 48	2.4 to 3.3 GHz	Socket SP3	7 nm	128 MB	155 W	Aug 7th, 2019		
EPYC 7402	Rome	24 / 48	2.8 to 3.35 GHz	Socket SP3	7 nm	128 MB	180 W	Aug 7th, 2019		

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
EPYC 7402P	Rome	24 / 48	2.8 to 3.35 GHz	Socket SP3	7 nm	128 MB	180 W	Aug 7th, 2019
EPYC 7452	Rome	32/64	2.2 to 3.35 GHz	Socket SP3	7 nm	128 MB	155 W	Aug 7th, 2019
EPYC 7502	Rome	32 / 64	2.5 to 3.35 GHz	Socket SP3	7 nm	128 MB	180 W	Aug 7th, 2019
EPYC 7502P	Rome	32 / 64	2.5 to 3.35 GHz	Socket SP3	7 nm	128 MB	180 W	Aug 7th, 2019
EPYC 7542	Rome	32/64	2.9 to 3.4 GHz	Socket SP3	7 nm	128 MB	225 W	Aug 7th, 2019
EPYC 7552	Rome	48 / 96	2.2 to 3.35 GHz	Socket SP3	7 nm	192 MB	200 W	Aug 7th, 2019
EPYC 7642	Rome	48 / 96	2.4 to 3.4 GHz	Socket SP3	7 nm	256 MB	225 W	Aug 7th, 2019
EPYC 7702	Rome	64 / 128	2 to 3.35 GHz	Socket SP3	7 nm	256 MB	200 W	Aug 7th, 2019
EPYC 7702P	Rome	64 / 128	2 to 3.35 GHz	Socket SP3	7 nm	256 MB	200 W	Aug 7th, 2019
EPYC. 7742	Rome	64 / 128	2.25 to 3.4 GHz	Socket SP3	7 nm	256 MB	225 W	Aug 7th, 2019

Name	Codename	Cores	Clock	Socket	Process	L3 Cache	TDP	Released
EPYC 7F32	Rome	8 / 16	3.7 to 3.9 GHz	Socket SP3	7 nm	128 MB	180 W	Apr 14th, 2020
EPYC 7F52	Rome	16 / 32	3.5 to 3.9 GHz	Socket SP3	7 nm	256 MB	155 W	Apr 14th, 2020
EPYC 7F72	Rome	24 / 48	3.2 to 3.7 GHz	Socket SP3	7 nm	192 MB	240 W	Apr 14th, 2020
EPYC 7H12	Rome	64 / 128	2.6 to 3.3 GHz	Socket SP3	7 nm	256 MB	280 W	Sep 18th, 2019

2.3 ARM CPU

All ARM CPUs with support of <u>Confidential Computing Architecture</u> (CCA). ARM is going to introduce the extension into Cortex A9 processors. While CCA is generally specified, first CPUs are expected in Q1/26.

2.4 NVIDIA

All NVIDIA processors with support of <u>Confidential Computing</u> (CC). This extension is available in GPUs with <u>Hopper</u> architecture. As of June 21, 2024, there's only one NVIDIA GPU that supports the Hopper architecture: the NVIDIA H100 Tensor Core GPU.

3 Software Requirements

3.1 Linux

Any Linux distribution with a mainline kernel. The kernel includes the necessary modifications to support the security extensions.

	SEV-ES	SEV-SNP	Intel TDX
Kernel Version	5.19	6.11	6.16

(j) Remark

In the case of Intel TDX, it is necessary to install additional software, including Intel TDX module, SEAM firmware files and DCAP tooling for remote attestation. See Intel guidelines for additional information.

As of 19th November 2025, the following enterprise distributions with Linux long-term support exist. Please contact your Linux distribution partner for updated information and/or backports.

Distribution	Latest/Upcoming Stable Version/ Release	Default Kernel Series	Support for Kernel 6.11	Support for Kernel 6.16
Debian	Debian 13 (Trixie)	6.12 (Fixed LTS kernel)	Yes (Very close to the 6.12 LTS base)	No (Will not be the default in stable. Was available in Debian Unstable before 6.12 was chosen.)
SUSE Enterprise (SLES)	SLES 16	6.12 (Fixed LTS kernel)	Yes (Very close to the 6.12 LTS base)	No (The fixed SLES kernel will be the 6.12 LTS branch.)
Ubuntu	Ubuntu 26.04 LTS (Resolute Raccoon)	6.17 or 6.18 (Newest LTS kernel)	Yes, via HWE	Yes

Distribution	Latest/Upcoming Stable Version/ Release	Default Kernel Series	Support for Kernel 6.11	Support for Kernel 6.16
Fedora	Fedora 43	Latest mainline (e.g., 6.17+)	Yes	Yes (Often the default or immediately succeeded by the current mainline kernel.)
RHEL	RHEL10	6.12 (Fixed LTS kernel)	Yes (Close to the fixed 6.12 LTS base)	No
Oracle Linux	Oracle Linux 10	UEK 8.1 (Based on 6.12 LTS) & RHCK	Yes (Close to the fixed 6.12 LTS base)	No

3.2 Hypervisor/VirtualMachine Managers

3.2.1 KVM/QEMU and LibVirt/Proxmox/Openstack support

KVM/QEMU require the right kernel or the patches to be installed (see Section 3.1).

This enables the support of VMMs listed in the table below.

	SEV-ES	SEV-SNP	Intel TDX
Qemu	6.0	9.1	10.1
LibVirt	8.10.0	10.5.0	Under Development
Proxmox	8.3	8.4	None
Cloud Hypervisor	N/A	Under Development	Under Development
Kubevirt	N/A	1.7.0	Under Development
Openstack	Nova 32.0.0	Under Development	Under Development

3.2.2 VMware

VMware supports AMD SEV-ES (Secure Encrypted Virtualization-Encrypted State) technology starting from vSphere 7.0 Update 1. This technology helps enhance the security of virtual machines running on AMD EPYC 2nd gem (Rome) processors.

vSphere supports SEV-SNP (Milan or newer) and TDX (Emeralds Rapids or newer) with VMware Cloud Foundation 9.0.

	SEV-ES	SEV-SNP	Intel TDX
VMware	7.0 Update 1	9.0	9.0

3.2.3 Hyper-V

Microsoft continues improving the Hyper-V support within the Linux kernel for benefiting Linux guest VMs running within this hypervisor on Windows. With Linux 6.6 the Hyper-V code adds support for SEV-SNP secure guests on the AMD EPYC side while over on the Intel Xeon Scalable Sapphire Rapids side is initial support for Trust Domain Extensions (TDX) protected guests. Running guests with Hyper-V as the hypervisor however remains limited to Azure, as the binaries for Hyper-V are not freely distributed. Under the paravisor model Windows 11 24H2 supports running confidential guests using the OpenHCL paravisor.

Notices

Customers are responsible for making their own independent assessment of the information in this document. This document: (a) is for informational purposes only, (b) may represent or impact current enclaive product offerings and practices, which are subject to change without notice, and © does not create any commitments or assurances from enclaive and its affiliates, suppliers, or licensors. enclaive products or services are provided "as is" without warranties, representations, or conditions of any kind, whether express or implied. The responsibilities and liabilities of enclaive to its customers are governed by enclaive agreements, and this document is not part of, nor does it modify, any agreement between enclaive and its customers.

Copyright © 2025 enclaive GmbH. All rights reserved.