

Why Standards Matter
How We Unified our Setups to Save Time
and Foster Growth

André Varelmann
Head of Solution Architecture
andre.varelmann@strix.net

We are Strix
We are pushing boundaries in
digital commerce

33

Project

SCD

4

Project

SCD

5

Shopware

Project

SCD

6

Shopware Infrastructure

Project

SCD

7

Code Quality
Tools

Shopware Infrastructure

Project

SCD

8

Code Quality
Tools

Shopware Infrastructure

Let’s clean up

SCD

10

Introducing Standards

One foundation for all projects

A base set of tools and helpers

Easy to use in daily project life

Maintainable and upgradable

Docker

SCD

11

Dockware as the Standard

All projects run on dockware 💛

Quick and consistent setup

Added preconfigured environment files

Also used in github workflows for integration tests Docker
(Infrastructure)

Database

SCD

12

Using the Client database for local development Docker
(Infrastructure)

Database
(Products etc.)

Database dumps are created daily or on demand

Data anonymized automatically by gdpr-dump

Proxy server for database downloads

Database

SCD

13

Proxy Server Docker
(Infrastructure)

Database
(Products etc.)

Technical Documentation

SCD

14

Writerside Docker
(Infrastructure)

Datenbank
(Products etc.)

Unified technical documentation in one tool

Documentation templates can be used

Automatic deployment of documentation

Encourage knowledge exchange Writerside
(Documentation)

Quality Assurance

SCD

15

Containerized QA Docker
(Infrastructure)

Database
(Products etc.)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Decided on a base set of QA tools

Defined standard configuration

Running inside docker container

Quality Assurance

SCD

16

Containerized QA Docker
(Infrastructure)

Database
(Products etc.)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

phpstan
phpmd
deptrac

rector

phpunit
phpunuhi

Multiple linters
PHP CodeSniffer

Package Management

SCD

17

Component based development Docker
(Infrastructure)

Datenbank
(Products etc.)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Introduced private packagist

Development helpers now come pre installed

Automatic configuration with symfony/flex

Composer
(Packages)

Requires mindset shift in development

symfony/flex

SCD

18

How it works Docker
(Infrastructure)

Database
(Products etc.)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Composer
(Packages)

Private Packagist

Recipes

symfony/flex

SCD

19

How it works Docker
(Infrastructure)

Database
(Products etc.)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Composer
(Packages)

Private Packagist

Recipes

symfony/flex

SCD

20

How it works Docker
(Infrastructure)

Database
(Products etc.)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Composer
(Packages)

Private Packagist

Recipes

symfony/flex

SCD

21

How it works Docker
(Infrastructure)

Database
(Produkte usw.)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Composer
(Packages)

Private Packagist

Recipes

Shopware Project Skeleton

SCD

22

That’s it, right? Docker
(Infrastructure)

Database
(Products etc.)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Composer
(Packages)

Adding some scripts to start the setup

Skeleton Template combines all standards

New projects are created from github template

Existing projects need to be migrated once

Projects evolve
individually

23

Projects evolve individually

SCD

24

We need an upgrade path!

Docker
(Infrastructure)

Database
(Products etc..)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Custom
(Client specific)

Composer
(Packages)

Custom Config & Code is added

Setups are adjusted to project needs

Currently: Manual Upgrade Path

How to prevent falling into old patterns?

Modularity

SCD

25

Configuration based on flex recipes

Split up the skeleton into components

Based on composer meta packages

Created flex recipes for all components

Updates via composer recipes:update

!

Docker
(Infrastructure)

Database
(Products etc..)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Custom
(Client specific)

Composer
(Packages)

{
 "name": "strix/skeleton-dev-ops-shopware",
 "type": "metapackage",
 "require": {
 "php": ">=8.1",
 "phpmd/phpmd": "^2.15",
 "phpstan/phpstan": "^2.1.2",
 "symfony/dependency-injection": "^7.0.10",
 "phpstan/phpstan-doctrine": "^2.0.1",
 "phpstan/extension-installer": "^1.4.3",
 "squizlabs/php_codesniffer": "^3.8",
 "slevomat/coding-standard": "^8.14.1",
 "qossmic/deptrac-shim": "^1.0.2",
 "rector/rector": "^2.0.7",
 "frosh/shopware-rector": "^0.5.1",
 "boxblinkracer/phpunuhi": "^1.21"
 },
 "conflict": {
 "shopware/core": "*"
 }
}

26

{
 "copy-from-recipe": {
 "github/": ".github/",
 "src/": "src/"
 },
 "docker-compose": {
 "docker-compose.yml": {
 "services": [
 "qa:",
 " build:",
 " context: dev-ops/docker/qa",
 " args:",
 " - PHP_VERSION=${PHP_VERSION:-8.4}",
 " tty: true",
 " working_dir: /app/",
 " volumes:",
 " - './:/app/'"
]
 }
 },
 "composer-commands": {
 "auto-config-validate": "./tools/auto-config-validate",
 "deptrac": "./tools/deptrac",
 "phpcs": "./tools/phpcs",
 "qa": ["@deptrac", "@phpcs", "@phpmd", "@phpstan", "@phpunuhi", "@rector"],
 "qa-integration": ["@qa", "@auto-config-validate", "@phpunit", "@twiglint"]
 }
}

27

Applying Recipe Updates

SCD

28

Comparing versions

Database
(Products etc.)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Custom
(Kundenspezifisch)

Composer
(Konfiguration)

Skeleton Update Version Client

Database
(Products etc..)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Custom
(Client specific)

Composer
(Packages)

composer recipes:update

Applying recipe updates

SCD

29

Merging changes

Skeleton Update Version Client

Database
(Products etc.)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Custom
(Kundenspezifisch)

Composer
(Konfiguration)

Database
(Products etc..)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Custom
(Client specific)

Composer
(Packages)

Applying recipe updates

SCD

30

Update applied

Skeleton Update Version Client

Database
(Products etc.)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Custom
(Kundenspezifisch)

Composer
(Konfiguration)

Database
(Products etc..)

Writerside
(Documentation)

phpstan, php…
(Code Quality)

Custom
(Client specific)

Composer
(Packages)

git commit

Wrap Up

SCD

31

What did we achieve?

Docker
(Infrastructure)

Database
(Products etc.)

Writerside
(Documemtation)

phpstan, php…
(Code Quality)

Custom
(Client specific)

Composer
(Packages)

Stable foundation for new and existing projects

Switching between projects made easy

Component based and upgradable

Allows developers to focus on what really matters

Let’s talk
André Varelmann
Head of Solution Architecture
andre.varelmann@strix.net

