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We are Strix

We are pushing boundaries in
digital commerce
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Let’s clean up

Introducing Standards

X  One foundation for all projects
X A base set of tools and helpers
X  Easy to use in daily project life

X  Maintainable and upgradable
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Docker

Dockware as the Standard

X  All projects run on dockware
X  Quick and consistent setup
X  Added preconfigured environment files

X  Also used in github workflows for integration tests

Docker
(Infrastructure)
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Database

Using the Client database for local development

X  Database dumps are created daily or on demand
X  Data anonymized automatically by gdpr-dump

X  Proxy server for database downloads

Docker
(Infrastructure)

Database
(Products etc.)
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Database

Proxy Server
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Technical Documentation

Writerside

X  Unified technical documentation in one tool
X  Documentation templates can be used
X  Automatic deployment of documentation

X  Encourage knowledge exchange

Docker
(Infrastructure)

Datenbank
(Products etc.)

Writerside
(Documentation)
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Quality Assurance

Containerized QA

X  Decided on a base set of QA tools
X  Defined standard configuration

X  Running inside docker container

Docker
(Infrastructure)

Database
(Products etc.)

Writerside
(Documentation)

phpstan, php...
(Code Quality)
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Package Management

Component based development

X  Introduced private packagist

X  Development helpers now come pre installed

X  Automatic configuration with symfony/flex

X  Requires mindset shift in development
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symfony/flex

How it works

Private Packagist
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symfony/flex

How it works
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symfony/flex

How it works
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symfony/flex

How it works
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Shopware Project Skeleton

That's it, right?

X  Adding some scripts to start the setup
X  Skeleton Template combines all standards
X  New projects are created from github template

X  Existing projects need to be migrated once
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Projects evolve
individually
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Projects evolve individually

We need an upgrade path!

X  Custom Config & Code is added
X  Setups are adjusted to project needs
X  Currently: Manual Upgrade Path

X  How to prevent falling into old patterns?
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Modularity

Configuration based on flex recipes

X  Split up the skeleton into components
X  Based on composer meta packages
X  Created flex recipes for all components

X  Updates via composer recipes:update

Docker
(Infrastructure)

Database
(Products etc..)

Writerside
(Documentation)

phpstan, php...

(Code Quality)

Composer
(Packages)

Custom
(Client specific)
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{

"name": "strix/skeleton-dev-ops-shopware”,

"type": "metapackage’,

"require”: {
"php™: ">=8.1",
"phpmd/phpmd": "A2.15",
"phpstan/phpstan”; "A2.1.2",
"symfony/dependency-injection”: "A7.0.10",
"phpstan/phpstan-doctrine™ "A2.0.1",
"phpstan/extension-installer": "A1.4.3",
"squizlabs/php _codesniffer": "A3.8",
"slevomat/coding-standard": "A8.14.1",
"gossmic/deptrac-shim": "A1.0.2",
"rector/rector": "A2.0.7", 3
"frosh/shopware-rector": "A0.5.1",
"boxblinkracer/phpunuhi”: "A1.21"

i
"conflict™: {
"shopware/core": "*" PR
} —_—
© o

N

Q
©

Q

2

XN ONEPX IO



{

"copy-from-recipe”: {

"github/": ".github/",
"src/": "src/"

I
"docker-compose™: {

"docker-compose.yml”: {
"services": [
‘qa’,
" build:",
context: dev-ops/docker/qa’,
args:’,
- PHP_VERSION=${PHP_VERSION:-8.4}",
" tty: true”,
" working_dir: [app/",
" volumes:",
-"[:[app/"

}
I

"composer-commands”: {

"auto-config-validate": "./tools/auto-config-validate”,
"deptrac™: ".[tools/deptrac”,
"phpcs”: ".[tools/phpcs”,

"qa”: ["@deptrac’, "@phpcs’, "@phpmd’, "@phpstan”, "@phpunuhi”, "@rector"],
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"qa-integration”: ["@qa’, "@auto-config-validate”, ‘@phpunit’, "@twig@t"] o
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Applying Recipe Updates

Comparing versions

composer recipes.update

Skeleton Update Version Client

— —

Database
(Products etc..)
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Applying recipe updates

Merging changes

Skeleton Update

o}

Version Client
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Applying recipe updates

Update applied

git commit

Skeleton Update Version Client
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Wrap Up

What did we achieve?

X  Stable foundation for new and existing projects
X  Switching between projects made easy
X  Component based and upgradable

X  Allows developers to focus on what really matters
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