

Strix.

Why Standards Matter

How We Unified our Setups to Save Time
and Foster Growth

] André Varelmann
‘} = { Head of Solution Architecture
N\ andre.varelmann@strix.net

We are Strix

We are pushing boundaries in
digital commerce

3

Shopware

Shopware Infrastructure

Code Quality
Tools

Shopware Infrastructure

Strix. | sco

NEW

Project

Code Quality

Tools

Shopware

Infrastructure

Strix. | sco

Let’s clean up

Introducing Standards

X One foundation for all projects
X A base set of tools and helpers
X Easy to use in daily project life

X Maintainable and upgradable

Strix. | sco

Docker

Dockware as the Standard

X All projects run on dockware
X Quick and consistent setup
X Added preconfigured environment files

X Also used in github workflows for integration tests

Docker
(Infrastructure)

Strix. | sco

Database

Using the Client database for local development

X Database dumps are created daily or on demand
X Data anonymized automatically by gdpr-dump

X Proxy server for database downloads

Docker
(Infrastructure)

Database
(Products etc.)

Strix. | sco

Database

Proxy Server

o
M
™~
1
o
‘o

\

/

e N
—
Docker
(Infrastructure)
3\
—o
Y,
Database
(Products etc.)
J

Strix. | sco

Technical Documentation

Writerside

X Unified technical documentation in one tool
X Documentation templates can be used
X Automatic deployment of documentation

X Encourage knowledge exchange

Docker
(Infrastructure)

Datenbank
(Products etc.)

Writerside
(Documentation)

Strix. | sco

Quality Assurance

Containerized QA

X Decided on a base set of QA tools
X Defined standard configuration

X Running inside docker container

Docker
(Infrastructure)

Database
(Products etc.)

Writerside
(Documentation)

phpstan, php...
(Code Quality)

Strix. | sco

-
° ' N\
Quality Assurance = =
Containerized QA Docker Database
(Infrastructure) (Products etc.)
. N
phpstan Writerside
phpmd © (Documentation)
deptrac : 9 - /
rector /'

I:::l* ()
/ phpunit

D phpunuhi phpstan, php... =

= Multiple linters (Code Quaility)
PHP CodesSniffer

Strix. | sco

Package Management

Component based development

X Introduced private packagist

X Development helpers now come pre installed

X Automatic configuration with symfony/flex

X Requires mindset shift in development

4)
— —O
Docker Datenbank
(Infrastructure) (Products etc.)
(— —
Writerside phpstan, php...
(Documentation) (Code Quality)
r 1
 c—
_J
Composer e
(Packages)
J

Strix. | sco

symfony/flex

How it works

Private Packagist

)

Symfony

Recipes

-
(c—) c—)
Docker Database
(Infrastructure) (Products etc.)
(c—) c—)
Writerside phpstan, php...
(Documentation) (Code Quality)
A
—o
Composer e
(Packages)
J

Strix. | sco

symfony/flex

How it works

| .

N —

Private Packagist

)

Symfony

Recipes

-
(— —
Docker Database
(Infrastructure) (Products etc.)
(— —
Writerside phpstan, php...
(Documentation) (Code Quality)
3\
—>
Composer e
(Packages)
J

Strix. | sco

symfony/flex

How it works

i

Private Packagist

)

Symfony

Recipes

/4

-
(c—) c—)
Docker Database
(Infrastructure) (Products etc.)
(c—) c—)
Writerside phpstan, php...
(Documentation) (Code Quality)
A
—o
Composer e
(Packages)
J

20

Strix. | sco

symfony/flex

How it works

i

Private Packagist

)

Symfony

/

Recipes

-
(c—) c—)
Docker Database
(Infrastructure) (Produkte usw.)
(c—) c—)
Writerside phpstan, php...
(Documentation) (Code Quality)
A
—o
Composer e
(Packages)
J

21

Strix. | sco

Shopware Project Skeleton

That's it, right?

X Adding some scripts to start the setup
X Skeleton Template combines all standards
X New projects are created from github template

X Existing projects need to be migrated once

(")\
{ 3\
(c— —
Docker Database
(Infrastructure) (Products etc.)
\
{
(c— —
Writerside phpstan, php...
(Documentation) (Code Quality)
\
{
(c—
Composer
(Packages)
\
_ J
— —

22

Projects evolve
individually

23

Strix. | sco

Projects evolve individually

We need an upgrade path!

X Custom Config & Code is added
X Setups are adjusted to project needs
X Currently: Manual Upgrade Path

X How to prevent falling into old patterns?

f 2
(e— [@—

Docker Database
(Infrastructure) (Products etc..)
(e— —

Writerside phpstan, php..
(Documentation) (Code Quality)
(e— | E—]
Composer Custom
(Packages) (Client specific)
_ J

| —

| S—)

24

Strix. | sco

Modularity

Configuration based on flex recipes

X Split up the skeleton into components
X Based on composer meta packages
X Created flex recipes for all components

X Updates via composer recipes:update

Docker
(Infrastructure)

Database
(Products etc..)

Writerside
(Documentation)

phpstan, php...

(Code Quality)

Composer
(Packages)

Custom
(Client specific)

25

{

"name": "strix/skeleton-dev-ops-shopware”,

"type": "metapackage’,

"require”: {
"php™: ">=8.1",
"phpmd/phpmd": "A2.15",
"phpstan/phpstan”; "A2.1.2",
"symfony/dependency-injection”: "A7.0.10",
"phpstan/phpstan-doctrine™ "A2.0.1",
"phpstan/extension-installer": "A1.4.3",
"squizlabs/php _codesniffer": "A3.8",
"slevomat/coding-standard": "A8.14.1",
"gossmic/deptrac-shim": "A1.0.2",
"rector/rector": "A2.0.7", 3
"frosh/shopware-rector": "A0.5.1",
"boxblinkracer/phpunuhi”: "A1.21"

i
"conflict™: {
"shopware/core": "*" PR
} —_—
© o

N

Q
©

Q

2

XN ONEPX IO

{

"copy-from-recipe”: {

"github/": ".github/",
"src/": "src/"

I
"docker-compose™: {

"docker-compose.yml”: {
"services": [
‘qa’,
" build:",
context: dev-ops/docker/qa’,
args:’,
- PHP_VERSION=${PHP_VERSION:-8.4}",
" tty: true”,
" working_dir: [app/",
" volumes:",
-"[:[app/"

}
I

"composer-commands”: {

"auto-config-validate": "./tools/auto-config-validate”,
"deptrac™: ".[tools/deptrac”,
"phpcs”: ".[tools/phpcs”,

"qa”: ["@deptrac’, "@phpcs’, "@phpmd’, "@phpstan”, "@phpunuhi”, "@rector"],

Vo)
(¥

NG

"qa-integration”: ["@qa’, "@auto-config-validate”, ‘@phpunit’, "@twig@t"] o

¢

©

Q

o

27

Strix. | sco

Applying Recipe Updates

Comparing versions

composer recipes.update

Skeleton Update Version Client

— —

Database
(Products etc..)

Writerside
(Documentation)

phpstan, php...

(Code Quality)

\.

Composer
(Packages)

Custom
(Client specific)

;-

-

28

Strix. | sco

Applying recipe updates

Merging changes

Skeleton Update

o}

Version Client

Database
(Products etc..)

Writerside
(Documentation)

phpstan, php...
(Code Quality)

\.

Composer
(Packages)

Custom
(Client specific)

;-

-_‘)

29

Strix. | sco

Applying recipe updates

Update applied

git commit

Skeleton Update Version Client

I
©

I ”

Database
(Products etc..)

Writerside
(Documentation)

phpstan, php...
(Code Quality)

\.

Composer
(Packages)

Custom
(Client specific)

;-

-_‘)

Strix. | sco

Wrap Up

What did we achieve?

X Stable foundation for new and existing projects
X Switching between projects made easy
X Component based and upgradable

X Allows developers to focus on what really matters

(e— [@—
Docker Database
fmfrostructure) (Products etc.)
(e— —
Writerside phpstan, php..
(Documemtation) (Code Quality)
(e— | E—]
Composer Custom
(Packages) (Client specific)

31

Strix.

Let’s talk

£a André Varelmann
\ ;'/ Head of Solution Architecture
— andre.varelmann@strix.net

-

