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Introduction

Autoimmune diseases occur when the immune system, our body’s defense system, mistakenly attacks
healthy cells. These diseases a!ect 50M people in the United States, with rates rising globally.
Inflammatory bowel disease (IBD) is one of the most common types of autoimmune disease. IBD
occurs when the barrier between our gut and the microbes living there breaks down, leading to the
activation of the immune system in response to this barrier disruption and the invasion of microbes
into the gut mucosa. The immune system is unable to resolve this tissue insult and promote tissue
healing, resulting in persistent activation and chronic inflammation, with cycles of flares and remission
that increase the risk of developing cancer. Before modern 20th century treatments, mortality was
often greater than 50%. IBD remains a multifaceted disease that severely impacts patients’ lives,
with complex pathogenic pathways that make it challenging to treat.

Common symptoms of IBD include abdominal pain, diarrhea, and weight loss. A gastroenterologist
can notice these clinical symptoms, but the diagnosis of IBD relies on performing an endoscopy
(extracting a piece of tissue from a patient’s gut) and analyzing images of the gut tissue in consultation
with a highly-trained pathologist. These pathology images are essential for patient treatment as they
guide not just the diagnosis of IBD, but also the choice of drugs that are best suited for the patient,
and may help predict whether the patient is likely to develop colorectal cancer. Notably, the risk of
colorectal cancer can be up to two-fold higher in IBD patients, but this cancer is highly treatable if
detected during early screening.

Worldwide, pathologists have collected millions of gut tissue images across hospitals, making these
images a treasure trove of data, and an enormous opportunity for machine learning to impact patient
health.

Complementing these images collected by pathologists, the revolution in genomics over the past
twenty years has enabled us to measure the activity of genes directly within these gut tissues,
uncovering details a pathologist cannot identify from the images alone and providing an opportunity
to unveil the pathways underlying the disease. Spatial genomics measurements will enable the next
generation of IBD treatments by revealing which cells in the gut are working together to promote
the disease. However, such measurements are very expensive and time-intensive to obtain.
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What if we could use machine learning to connect the tissue images routinely collected by pathologists
with higher-resolution but expensive, and therefore rarer, spatial genomics measurements? The
resulting high-resolution and large-scale view of IBD could improve patient diagnosis, better guide
the choice of drug treatment, and help identify and treat colorectal cancer earlier.

This is where you come in. We need computational approaches to connect pathology images and
spatial genomics measurements. You will develop algorithms that use the images of a tissue collected
by a pathologist to infer the high-resolution view of tissue visible in spatial genomics: the cells
and genes driving disease. We will use your models to predict genes that are markers of potential
cancerous regions in the gut, and we will then perform experiments to test these predicted genes in
patient samples.

Overview of challenges

The algorithms you develop in Crunches 1 and 2 will enable researchers to gain high-resolution
spatial genomics information from routine tissue pathology images. In Crunch 3, we will put your
algorithms to the real test: can they discover genes, using just the routine pathology images, that
identify cells important in the early steps of developing colorectal cancer?

• Crunch 1: Inpainting and translating held-out spatial transcriptomics data from matched
pathology images.

• Crunch 2: Predicting never seen held-out genes in spatial transcriptomics from matched
pathology images and single-cell transcriptomics data.

• Crunch 3: Predicting which genes mark pathologist-annotated dysplasia (i.e., pre-cancerous)
regions in pathology images.
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Crunch 1: Predicting spatial transcriptomics data using pathol-
ogy images

Worldwide, pathologists across hospitals have collected millions of tissue pathology images from
the gut to study inflammatory bowel disease (IBD), making these H&E images a treasure trove of
data, and an enormous opportunity for machine learning to impact patient health. Hematoxylin
and eosin (H&E) is the most widely used stain in medical diagnosis and has been in use since the
19th century. A pathologist uses these stains to di!erentiate between di!erent parts of a cell. Each
cell is surrounded by a cell membrane, which separates the interior of the cell, called the cytoplasm,
from the outside environment. Inside the cell is the nucleus that contains the cell’s genome, made of
DNA, which holds its genetic information. Hematoxylin stains the cell nucleus a purplish blue, and
eosin stains the extracellular matrix and cytoplasm pink, with other structures taking on di!erent
shades and combinations of these colors. By analyzing the overall appearance and organization of
cells within a tissue, a pathologist can make a clinical diagnosis. An H&E image can be seen as a
standard 3-channel RGB image. An example H&E image is provided below (Fig.1, left panel).

While H&E images guide clinical diagnosis and treatment, they do not reveal the underlying
mechanisms behind disease or suggest novel treatments. Measuring gene expression in cells and in
tissues is far more informative in this regard. Thanks to the ongoing revolution in genomics over the
past twenty years, it is now possible to measure the expression levels of genes directly within tissues,
showing us functional details a pathologist cannot see and providing an opportunity to uncover
the pathways driving disease. For example, the Xenium technology (10x Genomics) can measure
the expression levels of hundreds of genes directly in individual cells in their spatial tissue context.
The resulting spatial transcriptomics data can be seen as an image with hundreds of channels, each
measuring the activity of one gene in the spatial tissue context. An H&E image can be collected
from this same tissue, resulting in matched datasets. An example of an H&E image (left) and the
matched Xenium image for two genes (EPCAM, a gene that marks epithelial cells - middle; ACTA2,
a gene that marks muscle cells - right) is provided in Fig. 1.

These novel spatial transcriptomics measurements are critical for the next generation of IBD treat-
ments, but they are very expensive, time-intensive to obtain, and require extensive technical expertise.
What if we could connect the tissue H&E images routinely collected by pathologists with these

Figure 1: H&E and Xenium spatial transcriptomics data. Example images acquired on a
small crop of mucosa and muscularis mucosae from an Ulcerative Colitis (UC) sample. On the left is
an H&E stained image. The middle and right panels are spatial transcriptomic images (Xenium)
showing EPCAM transcripts as red dots and ACTA2 transcripts as green dots, respectively.
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less-available spatial transcriptomics measurements?

In this Crunch, we will explore how well we can predict gene expression (i.e., the activity of a gene)
in a tissue from a matched H&E image (Fig. 2). Specifically, we will use matched H&E images
and Xenium spatial transcriptomic profiles of eight colon tissue samples, including inflamed (I) and
non-inflamed (NI) tissue from human donors with ulcerative colitis (UC), the most common type
of IBD, which a!ects the colon. We also profiled colon tissue from two patients with diverticulitis
(DC), typically a milder form of colon inflammation that does not disrupt the spatial organization of
the colon. This is a good reference when understanding the changes that happen during the chronic
inflammation in UC, and gives your models a chance to learn the spectrum of possible colon tissue
spatial organizations, from normal to diseased. The diverticulitis samples are named DC1 and DC5,
and the ulcerative colitis samples are named UC1 I and UC1 NI (same patient), UC6 I and UC6 NI
(same patient), UC7 I, and UC9 I.

Next, we explain an important technical aspect of how these datasets were collected. For each section
of colon tissue, we generated a Xenium spatial transcriptomic dataset in which 480 genes (out of
a total of around 20,000 protein-coding genes in the human genome) were profiled. After this, we
prepared an H&E stain from the same tissue. Both the Xenium dataset and the H&E dataset are
collected by imaging the same tissue under di!erent microscopes. However because the colon tissue
morphology may become slightly perturbed between collection of the Xenium data and preparation
and acquisition of the H&E image, the images from both modalities are not perfectly aligned. Images
of the same cell, collected by Xenium and by H&E, may only partially overlap.

To translate from the H&E modality (called ‘HE original’ in our dataset) to the Xenium spatial
transcriptomic modality, we must first align the images from both modalities in a common coordinate
framework. Here, we use an image of nuclei from a DAPI stain of the Xenium profiled tissue (‘DAPI’)
to align Xenium to an image of nuclei from the H&E. Note that Xenium itself is not a traditional
image and it is easier to align these two modalities through the auxililary DAPI image, as outlined in
the next paragraph with further background. To anchor and align these two modalities, we provide
the nuclear segmentation masks for the H&E (using the hematoxylin stain, ‘HE nuc original’)
and Xenium modalities (using the DAPI stain, ‘DAPI nuc’). These masks outline the boundaries
of the individual nuclei. Importantly, we have already aligned the modalities for you,

using nuclear segmentation masks for the H&E and Xenium data as the anchor with

which modalities are translated (see section on Dataset for details). This alignment
maps H&E images from the original spatial coordinates (→ original) to registered coordinates
(→ registered that match those in the DAPI images. Accordingly, you can use the registered H&E
image (‘HE registered’) and the registered H&E segmentation mask (‘HE nuc registered’) to
map between the H&E and Xenium data (represented by DAPI).

Here, we provide additional details on this segmentation: For the H&E, hematoxylin specifically
stains the nuclei blue, and in the Xenium data, an applied DAPI stain makes the nuclei appear
blue under fluorescent excitation. By aligning the nuclei of cells in the Xenium data and the nuclei
of the same cells in the H&E data, the two modalities become aligned and the tissue coordinates
in the H&E image map accurately to the gene transcripts measured by Xenium in the exact same
tissue area. No alignment is perfect but in general, the images are well aligned. Furthermore, all
validation and test set regions have high-quality alignments between Xenium and H&E data. It

is your decision whether you use our provided alignments for training your models or

work on improving the alignment of the two nucleus segmentation masks. Note that while
nuclei can be identified in the H&E and Xenium images, cellular segmentation masks, which delineate
the boundaries of the individual cells, are not readily available from this data and would need to be
learned building o! the nucleus segmentation masks. This is another path you could consider to
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Cell A: <g1, g2, g3...g460>

Cell B: <g1, g2, g3...g460>

Cell C: <g1, g2, g3...g460> 

Cell D: <g1, g2, g3...g460>

Cell E: <g1, g2, g3...g460>

Cell F: <g1, g2, g3...g460> 

Predict gene expression of each cell
in tissue patch

Cell A: <g1, g2, g3...g460>

Cell B: <g1, g2, g3...g460>

Cell C: <g1, g2, g3...g460>

Cell E: <g1, g2, g3...g460>

Cell F: <g1, g2, g3...g460>

Cell D: <g1, g2, g3...g460>

Spatial transcriptomics (460 genes)

Paired H&E image of the 
same colon tissue

Grey box: 
held-out data

Figure 2: Predicting spatial transcriptomics data from an H&E image (Crunch 1). For
each tissue, we provide spatial transcriptomics data (right), which includes the gene expression of 460
genes in each cell and a segmentation mask, paired with an H&E image. Within each tissue, we hold
out patches of spatial transcriptomics data (grey box) and ask you to predict the expression of those
460 genes in held out cells (lower left) using the paired H&E image and the spatial transcriptomic
data from the surrounding tissue.

better leverage this data, as you design and train your models. However, evaluation will be performed
based on predictions for the nuclear-segmented regions only. The object cell_id-group described
in Dataset below, as well as all files containing segmentation masks, are filtered to contain exactly
the same cells.

In this crunch, we will hold out tissue patches of Xenium spatial transcriptomic data with di!erent
sizes, and you will predict the gene expression profile for each nucleus in these held-out patches using
H&E images of the whole tissue slide and Xenium data of the surrounding tissue (e!ectively holding
out patches of spatial transcriptomics information). The larger tissue patches will sample all colon
tissue layers, while the smaller tissue patches will sample tissue-specific cellular structures (Fig.3).
This inpainting task will help us predict gene expression from expensive spatial transcriptomics
experiments using much cheaper H&E images.

Crunch 1 presents an in-distribution prediction task with respect to the 460 genes studied (Fig. 2).
In Crunch 2 we will consider the out-of-distribution task of predicting the expression of genes that
are not provided as measurements in the Xenium spatial transcriptomic training data (Fig.4).
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Figure 3: Spatial transcriptomics of held-out tissue patch regions. Examples of spatial
transcriptomics held out regions, on the left, for the UC1 I sample, and on the right for the UC7 I
sample (UC: ulcerative colitis; I: inflamed). We have designed the validation (yellow boxes) and test
(blue boxes) regions to evaluate your model’s performance on both global and local spatial prediction
problems. For the UC7 I sample the held-out tissue patches are not immediately adjacent to tissue
regions with measured Xenium spatial transcriptomic data, with the green box indicating this much
larger tissue area with no available transcriptomics data, named No transcript-train.

Dataset:

For each colon tissue section, we provide you with the Xenium spatial transcriptomic data, paired
H&E image, nucleus segmentation masks, DAPI image, and registered H&E images as a SpatialData
object stored in a zarr file. You can read more about the SpatialData object here, and the structure
of a SpatialData object is shown below. Note that all references to spatial coordinates in the
following files are in a common coordinate system, except for the original H&E images, which are
measured in their own pixel coordinate system. The image registration process is described after
the data format specifications. In addition, we provide you with a jupyter notebook through the
Crunch website that includes code for loading these objects, interacting with the data, visualizing the
transcriptomic data and H&E image, and the scoring function used for evaluation of your model’s
predictions.

SpatialData object structure

Images

‘DAPI’: DAPI image (validation and test tissue patches are removed)

‘DAPI_nuc’: DAPI nucleus segmentation

‘HE_nuc_original’: H&E nucleus segmentation on original image

‘HE_nuc_registered’: H&E nucleus segmentation on registered image (registered to DAPI image)

‘HE_original’: H&E original image

‘HE_registered’: H&E registered image

‘group’: Defining train(0)/validation(1)/test(2), No_transcript-train(4) tissue patches

‘group_HEspace’: Defining train(0)/validation(1)/test(2), No_transcript-train(4)

tissue patches on the H&E image

Points

‘transcripts’: DataFrame for each transcript (containing x,y,tissue patch,z_location,

feature_name,transcript_id,qv,cell_id columns)

Tables
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‘anucleus’: AnnData contains .X, .layers[‘counts’], .obsm[‘spatial’]

‘cell_id-group’: AnnData only contains .obs DataFrame for mapping of cell_id

to region.

with coordinate systems:

‘global’, with elements:

DAPI (Images), DAPI_nuc (Images), HE_nuc_original (Images), HE_nuc_registered

(Images), HE_original (Images), HE_registered (Images), group (Images),

group_HEspace (Images), transcripts (Points)

‘scale_um_to_px’, with elements:

transcripts (Points)

1. Original, full-sized H&E image (1̃0mm ↑ 22mm) with 3 channels provided under the key
HE original. These images are not registered to the coordinate system in the Xenium spatial
transcriptomic data. Also note that the original H&E image actually consists of two separate
tissue sections that were placed on the same slide and profiled together by Xenium. If you
decide to work with the original H&E image, be sure to choose the correct tissue section.

2. Spatial transcriptomics data of 460 genes (channels); 20 genes are held-out and used for out-
of-distribution predictions in Crunch 2. In accordance with the file structure of transcripts
from

https://cf.10xgenomics.com/supp/xenium/xenium_documentation.html,

this transcript-level data is supplied as a table under the key transcripts indexed by individual
transcripts with the following columns:

(a) transcript id: unique ID of transcript

(b) cell id: unique ID of cell/nucleus, as also referenced in cell id-group. Transcripts that
do not lie within a nuclear segment are labeled as ”0”.

(c) feature name: gene name (out of the 460 channels).

(d) x: X location (unit: µm, pixel size: 0.2125 µm/px). You need to convert to px unit to find
exact pixels in the Xenium coordinate system, e.g the DAPI and DAPI nuc image, etc..

(e) y: Y location (unit: µm).

(f) z location: Z location (unit: µm).

(g) qv: Phred-scaled quality value estimating the probability of incorrect call for each tran-
script.

(h) Tissue patch region: Always 0. You are only provided transcripts from the regions meant
to be used in training your models.

Transcripts that correspond to held-out validation (1) and test (2) regions are not included in
this file, and you will provide them as predictions.

3. Segmentation masks of nuclei from H&E images; non-zero integers represent pixels inside of the
nuclei where each nucleus segment corresponds to one integer (numbering starts at 1), while 0s
represent pixels outside of the nuclei, provided with key HE nuc original.

4. We provide a simpler form of the transcripts data introduced above under the anucleus

key. For each nucleus, transcripts for each gene (measured by spatial transcriptomics) are
summed and provided as a table in the anndata format. Read about this format and the
scanpy API here. In this table (anucleus.X), every observation (cell id) is a segmented nucleus
and the features are the summed gene expression of each of the 460 genes detected in the
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nucleus. Only cell ids belonging to the training set are stored, as your task is to predict the
gene expression in the validation and test sets. The spatial coordinates of the center of the
nucleus are provided in (anucleus.obsm["spatial"], namely the x and y coordinates based
on the registered images (DAPI), and the cell id is provided in (anucleus.obs["cell id"]).
The gene expression data (anucleus.X) is log1p-normalized, which means that the original
gene expression counts per nucleus are divided by the total counts in the nucleus, multiplied by
100, and then log1p transformed. Specifically, the scanpy code for doing the normalization is:
sc.pp.normalize total(anucleus, inplace=True, target sum=100) and sc.pp.log1p(adata). The
raw aggregated gene counts are stored in a separate slot in the object and can be accessed
under anucleus.layers["counts"]. Held-out nuclei are listed under the key cell id-group

obs dataframe with group validation(1)/test(2). Note that anucleus.X could be computed
from the raw spatial transcriptomics data, adata.layers[’counts’], and the segmentation
masks with key DAPI nuc. We provide the gene-expression table anucleus.X for simplicity.

5. DAPI image (1 channel), in Xenium coordinate system, provided under the key DAPI.

6. Segmentation mask of nuclei from DAPI image, provided under the key DAPI nuc.

7. Registered H&E image (3 channels), in Xenium coordinate system, provided under the key
HE registered.

8. Segmentation mask of nuclei from registered H&E image, provided under the keyHE nuc registered.

9. Each pixel in group is assigned an integer value representing train(0) / validation(1) / test(2)
/ No transcript-train(4), based on the registered coordinate system. No transcript-train(4)
covers a much larger area of the H&E image, where no transcripts are provided in training, but
within this area there are validation and test regions.

10. Each pixel in group HEspace is assigned an integer value representing train(0) / validation(1)
/ test(2) / No transcript-train(4), based on the original H&E coordinate system.

11. cell id-group contains a table showing the mapping of cell id to a string representing train /
validation / test / No transcript-train. Cell IDs start at 1.

Description of the image registration process: We performed two steps of registration to match
the original H&E image to the Xenium coordinate system (i.e. DAPI image). In the first step, we
found matched nuclei as landmarks in both H&E and DAPI images, and an a”ne transformation
was used to transform the H&E image. After this, we used nucleus segmentation from registered
H&E and DAPI images to find local shifts at the 1024px*1024px patch level. A displacement field
was generated using all the local shifts to transform the H&E image further. Applying this two-step
strategy produced the final registered H&E image and matched cell id in all nucleus segmentations
provided. Remember, we provide this registration for your convenience, but it is not perfect and you
have the option to modify it if you think this will improve training of your model.

Participant output:

For each of the eight tissue samples, provide gene expression predictions for each held-out nucleus
("group == ’test’ or group == ’validation’") as a table rounded to 2 decimal points as a
csv file with nucleus IDs as row names and 460 gene features as column names. Make sure your
predictions for each nucleus are log1p-normalized as in anucleus.X. Also, make sure your file can be
read in using the pandas command pd.read_csv(FILENAME, header=0, index_col=0). We also
provide example output files for each tissue sample in validation-test-example-crunch1.zip.
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Evaluation:

You will have multiple opportunities to evaluate your model’s predictive performance on a validation
dataset, before submission of your test dataset predictions. There will be two validation checkpoints,
occurring on November 30th (Eastern Time 17:59) and December 30th (Eastern Time 17:59), before
you submit your final test dataset predictions on January 31st (Eastern Time 17:59). output all
the held-out data for the checkpoints(both test and validation groups, as indicated above) and we’ll
subset the outputs to evaluate your model on the validation group. We have designed the validation
and test datasets to evaluate your model’s performance on both global and local spatial prediction
problems. The global hold-out is a rectangular ”core” tissue patch, extending from the innermost
layer of the colon (mucosa) to its outermost layers (muscle and serosa). This tests your model’s
ability to recognize the overall spatial organization of the colon and how it changes from normal to
inflamed disease. The local hold-outs are much smaller tissue patches that represent specific cellular
organizations and interactions within the colon layers including: the colon mucosal layer, lymphoid
aggregates (large groups of immune cells), and the myenteric plexus (neurons controlling colon muscle
movement). Each of the eight tissue sections will have roughly the same number of global (1) and
local (2) tissue patches across both the validation and test datasets, as shown in Fig. 3 left.

We want to highlight validation and test datasets that we expect to be the most challenging for
your predictions, and are also very important if you are (hopefully) planning to complete Crunch
3. For tissue section (UC7 I), the held-out tissue patches are not immediately adjacent to tissue
regions with measured Xenium spatial transcriptomic data (Fig. 3 right). For tissue section (DC1),
no spatial transcriptomic data is provided. While the other inpainting predictions you make can be
considered interpolation, these are more di”cult tests of how well your model can extrapolate to
tissue regions where Xenium transcriptomic data is not spatially adjacent. Furthermore, you will
encounter a similar situation in Crunch 3, where we will provide you the H&E image and Xenium
data for one half of the tissue section with noncancerous mucosa, and ask you to make predictions in
the other half of the tissue section, where only H&E image data is available. These tissue areas are
labeled No transcript-train(4), as no transcripts are provided here, however the H&E images can
still be used in training your models.

Your predictions X̂ will be evaluated based on the mean squared error to the log1p-normalized
validation/test data X:

L =
1

Nnuclei

∑

i→nuclei

1

Ngenes

∑

j→genes

(X̂ij ↓Xij)
2

This score reflects the output of the scoring function in the example notebook. Note that we will
compute this score separately (i) for each of the global and local hold out tissue patch regions (ii)
within each of the eight tissue sections. We will take a mean score over all nuclei in the cells of each
given tissue patch region. Tissue sections do not necessarily contain equal representation of all tissue
patch regions, thus necessitating a weighting step to avoid over-representation of commonly occurring
cell types and regions in the final score. We will then compute a weighted aggregate of these separate
global and local scores that corrects for sizes of di!erent tissue regions. You do not have access to
this weighting but you will be able to validate model fits at the checkpoints. Finally, we will take the
mean of the scores in the global and the local tasks to generate the final score.
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External resources:

The application of external resources (e.g., external gene expression datasets including the dataset
provided in Crunch 2, external H&E images or pretrained embeddings, etc.) is allowed; however, all
external resources must be published or in the public domain and properly credited. In addition, you
can optionally use the Foundry computing environment, which provides $10 USD of GPU time and a
python environment. Depending on the Foundry market, we estimate this may be about 10 hours of
runtime on an instance with an A5000 GPU.

10

https://mlfoundry.com/


Crunch 2: Predicting unmeasured genes in spatial transcrip-
tomics from matched pathology images and single-cell tran-
scriptomics data

It is very challenging and expensive to spatially measure the gene expression of all protein-coding genes
in the genome with high resolution in intact tissues. However, we can measure the expression of all
genes in single cells dissociated from intact tissues cells using single-cell transcriptomics technologies.
In the spatial transcriptomics data that we consider here, 480 genes (out of all possible protein-coding
genes) were selected based on prior biological knowledge that they mark di!erent cell types, are
genetically associated with IBD, or are involved in signaling between cells. However, for many cell
states of interest, such as early cancer states, informative marker genes are unknown and need to be
identified, which will be the subject of Crunch 3.

In this Crunch, you will predict the spatial expression of 2,000 protein-coding genes that are not in the
Xenium spatial transcriptomic training data (Fig. 4). To enable this prediction, we provide separate
single-cell transcriptomics (scRNA-Seq) data that is matched to Xenium data. The scRNA-Seq
data comprise the expression of 18,615 protein-coding genes including the 460 genes from Crunch 1
and the 2,000 genes that need to be predicted. The set of 2,000 genes also includes the 20 genes
previously measured by Xenium but held-out from the Spatial Data object, which will be used
for evaluation. Because scRNA-Seq measures many more genes than a Xenium measurement, the
resulting transcriptional profiles for every single cell are more informative, and by clustering cells
based on these profiles, we can identify all cell types that make up the colon tissue. This approach
has been used extensively over the past decade to comprehensively identify and describe cell types
found in human tissues. As an example, visit the Human Cell Atlas, where tissues from all human
organs, including the colon, have been profiled by scRNA-Seq.

Both Xenium and scRNA-Seq were used to measure similar pieces of colon tissue, so with both
modalities, we are detecting the same cell types with similar gene expression profiles. Because
the same cell types are measured by both technologies, the much larger set of genes measured by
scRNA-Seq can help fill in the genes not measured by Xenium. Although scRNA-Seq detects many
more genes in each cell, the spatial resolution is lost because scRNA-Seq requires dissociating the
tissue into single cells and encapsulating each cell into a droplet in order to perform high-throughput
RNA sequencing. Still, one can leverage the scRNA-Seq data to learn how the unmeasured genes
co-vary with the 460 genes that are measured in the Xenium spatial transcriptomics training data.
We will evaluate your predictions based on Spearman’s rank correlation coe”cient. There will not be
any opportunities for validation in Crunch 2.

Dataset:

Note that all references to spatial coordinates in the following files are in the same coordinate system.
For all but the original H&E images, they are measured in the Xenium coordinate system, the H&E
images are registered with this coordinate system and presented here as transformed coordinates.

1. Xenium SpatialData object in .zarr format, as described in Crunch 1.

2. Single-cell RNA-seq (scRNA-Seq) data of colon tissue samples similar to the samples profiled
by Xenium spatial transcriptomics, with the expression of the protein-coding genes that need
to be predicted (N=18,615), which include the 460 genes in the Xenium data. We have collated
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Single-cell transcriptomics (19K genes)
Spatial transcriptomics (460 genes)
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same colon tissue

Cell A: <g1, g2,....g2K> 

Cell B: <g1, g2,....g2K> 

Cell C: <g1, g2,....g2K> 

Cell D: <g1, g2,....g2K> 
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Predict unmeasured genes

Grey box: 
held-out data

Figure 4: Predicting unmeasured genes in spatial transcriptomics from matched pathology

images and single-cell transcriptomics data (Crunch 2). Within each tissue patch region,
predict the gene expression of 2,000 protein-coding genes (lower left) using the spatial transcriptomic
training data (expression of 460 genes per cell) (right), segmentation mask, paired H&E image, and
single-cell RNA-seq data on 18,615 genes (upper left) obtained from similar colon tissues. Prediction
accuracy will be evaluated based on the expression of 20 genes that were measured, but held out,
from the spatial transcriptomics training data (g461,....g480 in the upper left image of the single-cell
transcriptomic data). This figure is also shown in the accompanying crash-course video lectures, but
the gene numbers are updated here to the final numbers used in this challenge.
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four scRNA-Seq datasets that cover the cell types and states found in healthy and diseased
colon tissue including: an extensive atlas of ulcerative colitis patients including inflamed,
non-inflamed, and healthy colon tissue defined based on pathologic evaluation (UC), an atlas
of the enteric nervous system including the glial cells and neurons innervating the colon (ENS),
and an atlas of the colon muscle layer (muscle). How you integrate the scRNA-Seq datasets with
the Xenium data is your decision. However, we expect the cell type annotation information may
be helpful as it is a grouping of cells by similar gene expression profiles indicating how genes
covary with one another in a cell type. The scRNA-Seq datasets are provided as an anndata

object stored in an h5ad file Crunch2 scRNAseq.h5ad, which includes cell meta data in
an obs dataframe indicating for each cell, its cell type (adata.obs["annotation"]), in which
study the cell was profiled (adata.obs["study"]), from which individual the cell was isolated
(adata.obs["individual"]), and the disease status of the individual (adata.obs["status"]).
This data (adata.X) is log1p-normalized, which means that the original gene expression counts
per cell is divided by the sum of counts per cell, multiplied by 10,000 and then log1p transformed.
The raw gene counts are stored in a separate slot in the anndata object and can be accessed
under adata.layers["counts"].

Participant output:

For each of the eight tissue samples, provide gene expression predictions rounded to 2 decimal

points for each held-out nucleus as a DataFrame with nucleus IDs from the tissue as row names and
2,000 gene features as column names. The DataFrame dimension is nnuclei ↑ 2, 000, where nnuclei is
the number of nuclei included in the corresponding validation or test set and 2,000 is the number
of protein-coding genes, including the 20 held-out genes, for which to predict expression. Make
sure your predictions are log1p-normalized as in adata.X from Crunch2 scRNAseq.h5ad and the
predicted values are limited to 2 decimal points.

Evaluation:

In this Crunch you will not have checkpoints, as in Crunch 1, to assess your performance on the
validation set. You will submit all predictions for validation and test set regions by January 31st
(Eastern Time 17:59). Your predictions will be subset to 20 genes, which we held-out from the
Xenium spatial transcriptomic dataset. Your predictions X̂ will be evaluated on these 20 genes based
on (i) the mean of Spearman’s correlation to the log1p-normalized test data X for test cells with any
non-zero gene expression in the 20 target genes, and (ii) and an auxiliary score for test cells that were
all-zero gene expression on those genes, for which Spearman’s correlation cannot be meaningfully
evaluated:

Score for cells with non-zero gene expression entries will be:

L1 =
∑

i→nuclei non-zero

rs(X̂i, Xi) (1)

Cells with all-zero gene expression in these 20 target genes will be evaluated based on an auxiliary
score or removed from scoring.

As in Crunch 1, the validation and test sets consist of global and local tissue patch regions, which are
identical to the tissue patches tested in Crunch 1. In these patches, you receive the tissue H&E image,
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which is surrounded by both the remaining H&E image and the Xenium spatial transcriptomics
measurements for 460 genes.

External resources:

The application of external resources (e.g., external gene expression datasets including the dataset
provided in Crunch 2, external H&E images or pretrained embeddings, etc.) is allowed; however, all
external resources must be published or in the public domain and properly credited. In addition, you
can optionally use the Foundry computing environment, which provides $10 USD of GPU time and a
python environment. Depending on the Foundry market, we estimate this may be about 10 hours of
runtime on an instance with an A5000 GPU.
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Crunch 3: Identifying gene markers of pre-cancerous tissue
regions in IBD

The risk of colorectal cancer can be up to two-fold higher in IBD patients, but this cancer is highly
treatable if detected during early screening. Based on H&E images, pathologists can identify and
label regions of dysplasia in the colon tissue, which are regions containing abnormally appearing
cells that may develop into cancer. Dysplasia originally arises in the normal, epithelial cell lining of
the colon. However, the sets of genes expressed in cells from dysplasia tissue regions are unknown.
If we can identify the genes, or gene expression programs, driving dysplasia, we can have a better
understanding of the functional details and the molecular pathways underlying this early cancer
process, thereby improving the diagnosis and treatment of colorectal cancer.

In Crunch 3, the goal is to design a panel of genes that best distinguishes dysplasia regions from
noncancerous mucosa regions (Fig. 5). We will provide you with H&E images that have been
labeled by a pathologist to indicate dysplasia regions and noncancerous mucosa regions. You will
rank all protein-coding genes by how well you expect them to discriminate between dysplasia and
noncancerous tissue regions. If you have participated in Crunch 2, you may choose to use your trained
model to make gene expression predictions on these regions and then design a gene panel based on
these predictions. Also for those who participated in Crunch 1 or 2, it is important to note that
the setting in Crunch 3 is similar to the extrapolation test set predictions you had previously made.
Here, we provide you Xenium spatial transcriptomic data and the corresponding H&E image for one
half of the tissue section, but for the half of the tissue section where dysplasia has been annotated,
we only provide you the H&E image. For those who did not participate in Crunch 2, you can design
a gene panel from scratch using biological understanding or other approaches. Regardless of your
chosen approach, you are required to provide a justification for how you constructed your gene panel.
You are also required to participate in peer-reviewing three submissions of other participants based
on their justifications of their gene panel design.

We will select a subset of genes from participants’ output as our new gene panel and perform a new
spatial transcriptomics experiment (see “Validation experiments” below). We will evaluate how these
selected genes discriminate between cells in noncancerous mucosa and dysplasia regions, rewarding
candidates for identifying distinct gene programs (see “Evaluation’ below).

Dataset:

1. We provide H&E images from two colon tissue sections from the patient with dysplasia: the
first H&E image is collected post-Xenium and only includes the noncancerous mucosa (already
provided in Crunch 1), and the second H&E image is the entire colon tissue section including
both the dysplasia region and noncancerous mucosa (UC9 Infl-crunch3-HE.tif). For each of
the two tissue sections, we provide the H&E image, the nucleus segmentation mask, and the
defined tissue region mask as three ti! files. Regions of dysplasia and regions of noncancerous
mucosa tissue are marked in the tissue region mask (UC9 Infl-crunch3-HE-dysplasia-ROI.tif).
These annotations are stored as a channel with categorical values: 1 indicates noncancerous
mucosa, 2 indicates dysplasia, and 0 indicates other tissue regions.

2. We provide single-cell RNA-seq (scRNA-Seq) data of colon tissue samples with and without
dysplasia. This data provides the gene expression of 18,615 protein-coding genes, including
the 460 genes measured in the Xenium data. While we do not have scRNA-Seq data collected
from the individual with diagnosed dysplasia (UC9 I), a separate study recently reported
single-cell transcriptomic profiling of healthy colon, polyps, and colorectal cancer. Polyps are
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Single-cell transcriptomics (19K genes)
H&E image of colon tissue with dysplasia

(with spatial transcriptomics for a portion of tissue)

<g1, g2,...g460, g461,...g480, g481...g19K><g1, g2,...g460, g461,...g480, g481...g19K>

<g1, g2,...g460, g461,...g480, g481...g19K>

<g1, g2,...g460, g461,...g480, g481...g19K>

<g1, g2,...g460, g461,...g480, g481...g19K>

<g1, g2,...g460, g461,...g480, g481...g19K>

Genes distinguishing 
noncancerous mucosa and dysplasia  

Gene expression predictions

dysplasia  

noncancerous  

Figure 5: Identifying gene markers of pre-cancerous tisue regions in IBD (Crunch 3).

Given scRNA-Seq data from colon tissue samples with dysplasia (upper right), Xenium spatial
transcriptomic data for the noncancerous half of a tissue section paired with an H&E image, and an
H&E image of the entire tissue section with both noncancerous and dysplasia regions (upper left),
predict the gene expression for cells in both halves of the tissue section, where noncancerous and
dysplasia regions have been annotated. Rank the 18,615 protein-coding genes by how well you expect
them to discriminate between dysplasia and noncancerous tissue regions, and provide a justification
for how you constructed your ranking. You will be asked to evaluate three submissions of other
participants based on their justifications of their gene panel design.
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abnormal growths of the epithelial cells lining the colon, are typically non-cancerous, and often
present dysplasia under the microscope. These polyps exist on a continuum of transcriptional
states, from normal colon to colorectal cancer, and will inform you on the gene expression
programs active during dysplasia. Importantly, we note that a baseline classification solution
to this Crunch would be to work directly with this provided scRNA-Seq data and to compare
gene expression programs between dysplasia and noncancerous mucosa tissue regions, as was
performed in the initial study. We expect that your models developed in Crunches 1 and 2,
using Xenium spatial transcriptomic data and H&E images, can outperform this baseline.

The scRNA-Seq dataset is provided as an anndata object stored in a h5ad fileCrunch3 scRNAseq.h5ad

that includes cell meta data in an obs dataframe indicating for each cell, its cell type
(adata.obs["annotation"]), from which individual the cell was isolated (adata.obs["individual"]),
the disease status of the colon tissue specimen (adata.obs["status"]), and whether a pathol-
ogist diagnosed dysplasia in the tissue (adata.obs["dysplasia"]). The disease status can be:
Normal, Una!ected tissue, Polyp, and Adenocarcinoma (cancer). The dysplasia status can be:
y (yes, dysplasia detected), n (no, dysplasia not detected), or ND (not provided in the study).

This data (adata.X) is log1p-normalized, which means that the original gene expression counts
per cell is divided by the sum of counts per cell, multiplied by 10,000 and then log1p transformed.
The raw gene counts are stored in a separate slot in the anndata object and can be accessed
under adata.layers["counts"].

3. Output features (genes names) in the context of example output file example output-

crunch3.csv where the row names are the 18,615 genes which are to be ranked by how well
each gene is predicted to distinguish regions of dysplasia from noncancerous mucosa.

Participant output:

1. Prediction of rank for each gene as a table of size 18, 615 ↑ 1 with gene IDs as row names
and the predicted rank of the gene from 1 (best at distinguishing dysplasia from noncancerous
mucosa) to 18,615 (worst) as entries. See example output crunch3.csv for more details.
The genes must be ordered as in example output crunch3.csv and ties are not allowed.

2. 1 page report detailing the justification for your gene panel design, in the following format:

• at least 1 paragraph (5-10 sentences) describing how your method works

• at least 1 paragraph (5-10 sentences) describing the rationale behind the method for your
gene panel design

• 1 paragraph (5-10 sentences) describing the datasets and any other resources used

A list of references can be included and does not count towards the 1-page limit.

Mandatory participation in peer reviewing

In order to qualify for prizes in Crunch 3, you are required to review three submissions of gene panel
designs from other participants based on the justification they have provided. In particular, you will
be assigned three submissions and are expected to rank them on a 1-3 scale (1-excellent justification,
2-adequate justification, 3-poor justification) and provide a short explanation of your ranking of
200-400 words covering the following aspects:

• rationale of design
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• novelty of design

• whether the submitted justification complies with the required format.

Experimental validation of dysplasia gene panels

We will select 500 genes for experimental evaluation, as follows. There are two routes to have your
genes selected.

• Route 1: The top 5 performing teams in Crunch 2 who also participate in Crunch 3 will have
up to 50 of their top genes in their ranked lists included in the panel, resulting in a total of up
to 250 genes (there will likely be some overlap across teams). The rationale here is that models
that are good at predicting gene expression from H&E should be useful for selecting genes that
correlate with new, unseen tissue structures.

• Route 2: The top 5 performing teams in Crunch 3, based on a combination of peer and expert
committee reviews, will have up to 50 of their top genes included in the panel, resulting in up
to 250 additional genes.

We will order a Xenium gene panel with at most 500 genes from the two participation routes above.
We will reserve a small number of genes in the panel to specifically identify important cell types in
the colon. We will use this Xenium gene panel to carry out spatial transcriptomics measurements of
a previously unmeasured colon tissue section, with pathologist diagnosed dysplasia.

Evaluation:

For each team, we will choose the top 50 highest-ranked genes from their ranked list as described
above. For the top 5 teams (either by Route 1 or Route 2 above), these 50 genes will be the top 50
genes in their ranking; for other teams, these top 50 genes will likely be ranked di!erently. You will
submit your ranked gene panels by January 31st (Eastern Time 17:59).

We will compute a ranking of all submissions as follows. Using the noncancerous mucosa and dysplasia
regions we annotated, we will train k-fold cross-validated logistic regression classifiers to distinguish
noncancerous and dysplasia regions using the 50 genes selected from each team as features. We will
rank participants by classification accuracy (higher is better). For each nucleus i, denote the true
classification label as yi and the predicted label as ŷi. Then the accuracy for each test set t is defined
as follows:

Ltest set t =
1

N t
nuclei

∑

i→nuclei

(ŷi = yi),

where denotes the indicator function. In each cross-validation run, we will leave out one fold as
test set and train a classifier on the remainder of the data. We will then calculate the accuracy on
the left out test set. We will repeat this for all k folds and use the average accuracy over all runs to
rank the teams. See below for a pseudo-code for the cross-validation strategy.

We will also compute a diversity ranking to encourage the inclusion of genes associated with di!erent
biological functions. Each of the 500 genes will be normalized by z-score. The principal components
(PCs) of the normalized data with all 500 genes will be computed. For each team, we will then compute
the projection of the 50-gene subset to the PCs. The sum of the PC scores is the diversity score.
We will compute an overall ranking by weighting the cell classification and diversity rankings. The
ranking will be mainly determined by the classification accuracy as described above and supplemented
by diversity rankings.

18



Algorithm 1 k-fold cross-validation

1: Divide the data into k folds, stratified by observed labels
2: for t fold in k folds do
3: Train logistic classifier on all data except for t fold
4: Calculate accuracy on t fold: Ltest set t

5: end for

6: Calculate overall accuracy by averaging over all k folds

External resources:

The application of external resources (e.g., external gene expression datasets including the dataset
provided in Crunch 2, external H&E images or pretrained embeddings, etc.) is allowed; however, all
external resources must be published or in the public domain and properly credited. In addition, you
can optionally use the Foundry computing environment, which provides $10 USD of GPU time and a
python environment. Depending on the Foundry market, we estimate this may be about 10 hours of
runtime on an instance with an A5000 GPU.
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References

Below are a few references meant to provide more background and some of the approaches researchers
are applying in the fields relevant to these Crunches. This is not meant to be an exhaustive list and
many important works are not listed here. We may add more informative references in response to
your questions over the next three months.

Single cell RNA-Seq colon tissue datasets

• Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis

• The Human and Mouse Enteric Nervous System at Single-Cell Resolution

• Single Nucleus Sequencing of Human Colon Myenteric Plexus-Associated Visceral Smooth
Muscle Cells, Platelet Derived Growth Factor Receptor Alpha Cells, and Interstitial Cells of
Cajal

• Single-cell analyses define a continuum of cell state and composition changes in the malignant
transformation of polyps to colorectal cancer

Spatial transcriptomic colon tissue datasets

• Organization of the human intestine at single-cell resolution

• Single-cell and spatial multi-omics highlight e!ects of anti-integrin therapy across cellular
compartments in ulcerative colitis

H&E histopathology tissue foundation models

• A foundation model for clinical-grade computational pathology and rare cancers detection

• A whole-slide foundation model for digital pathology from real-world data

• A pathology foundation model for cancer diagnosis and prognosis prediction

• Towards a general-purpose foundation model for computational pathology

• A multimodal generative AI copilot for human pathology

• Hibou: A Family of Foundational Vision Transformers for Pathology

• H-optimus-0

• HEST-1k: A Dataset for Spatial Transcriptomics and Histology Image Analysis

• Virchow2: Scaling Self-Supervised Mixed Magnification Models in Pathology
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Objects and APIs for spatial and single cell analysis

• SpatialData - An open and universal framework for processing spatial omics data.

• Squidpy - Spatial Single Cell Analysis in Python.

• Scanpy - Single-Cell Analysis in Python.

Optional Review Articles

This challenge draws on many di!erent subject areas, which are covered in the three introductory
crash course lectures. To supplement this, we provide scientific review articles on these subject areas,
which can give you a more detailed perspective and point you to other relevant datasets and data
modalities. Reading these articles is not necessary to complete the challenge, but we

believe these can be a helpful resource.

• Pathway paradigms revealed from the genetics of inflammatory bowel disease

• The expanding vistas of spatial transcriptomics

• Exploring tissue architecture using spatial transcriptomics

• Current best practices in single-cell RNA-seq analysis: a tutorial

• Single-cell transcriptomics to explore the immune system in health and disease
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