

https://doi.org/10.1093/g3journal/jkaf165 Advance Access Publication Date: 18 July 2025 Investigation

Family-based selection: an efficient method for increasing phenotypic variability

Shraddha Lall (D), ¹ Chris Milton, ¹ Benjamin de Bivort (D) ^{1,2,*}

Persistent idiosyncrasies in behavioral phenotypes have been documented across animal taxa. These individual differences among organisms from the same genotype and reared in identical environments can result in phenotypic variability in the absence of genetic variation. While there is strong evidence to suggest that variability of traits can be heritable and determined by the genotype of an organism, little is known about how selection can specifically shape this heritable variance. Here, we describe a Python-based model of directional artificial selection for increasing the variability of a polygenic trait of interest. Specifically, our model focuses on variability in left-vs-right turn bias in *Drosophila melanogaster*. While the mean value of turn bias for a genotype is non-heritable and constant across genotypes, the variability of turn bias is a heritable and polygenic trait, varying dramatically among different genetic lines. Using our model, we compare different selection regimes and predict selection dynamics at population and genetic levels. We find that introducing population structure via a family-based selection regime can significantly affect selection response. When selection for increased variability is implemented on the basis of independently measured traits of individuals, the response is slower, but leads to a population with a greater genetic diversity. In contrast, when selection is implemented by measuring traits of families with half or full siblings, the response is faster, albeit with a reduced final genetic diversity in the population. Our model provides a useful starting point to study the effect of different selection regimes on any polygenic trait of interest. We can use this model to predict responses of laboratory-based selection experiments and implement feasible experiments for selection of complex polygenic traits in the laboratory.

Keywords: artificial selection; phenotypic variability; behavioral individuality; modeling; family-based selection; Drosophila melanogaster

Introduction

Individuals exhibit idiosyncratic behavioral phenotypes, even in the absence of genetic variation (Dall et al. 2004; Sih et al. 2004). These behavioral differences persist over long periods of time and have been found in behaviors such as activity, aggression (Kortet and Hedrick 2007; Biro and Stamps 2008; Chapman et al. 2011) and exploration (Verbeek et al. 1994; Minderman et al. 2009; Dingemanse et al. 2012), in species such as fruit flies (Kain et al. 2012), Amazon mollies (Bierbach et al. 2017), and mice (Freund et al. 2013). At the mechanistic level, such differences may be an unavoidable consequence of the stochastic nature of molecular and cellular function, particularly during development (Vogt et al. 2008; Stamps and Groothuis 2010). Clonal single-celled organisms exhibit a significant amount of phenotypic variability, attributed to stochasticity in gene expression (Elowitz et al. 2002). In fruit flies, 23% of genes were differentially expressed among genetically identical individuals reared under essentially identical laboratory conditions (Lin et al. 2016). Stochasticity in gene expression may affect behavior through its impact on neuronal physiology, and specific neurons have been implicated in determining specific idiosyncratic behaviors. For example, the degree of left-right asymmetry in the wiring of fruit fly dorsal cluster neurons (DCNs) has been shown to predict individual differences in visual object orientation in freely walking flies

(Linneweber et al. 2020). Individual differences in calcium responses (Honegger et al. 2020) of specific glomeruli in the antennal lobe of fruit flies predict individual odor preferences (Churgin et al. 2025). In zebrafish, short-term habituation of the acoustic startle response has been found to be modulated by serotonergic neurons of the dorsal raphe nucleus (DRN) at the individual level (Pantoja et al. 2016).

At first glance, the stochastic, noisy nature of molecular processes suggests that intragenotypic behavioral variability may be non-adaptive. But theoretical models (McNamara et al. 2004; Wolf et al. 2008; Olofsson et al. 2009; Dingemanse and Wolf 2010), and empirical studies from microbes (Beaumont et al. 2009; Solopova et al. 2014) and plants (Simons 2009; Childs et al. 2010; Solopova et al. 2014; Pausas et al. 2022) suggest that phenotypic variability can, in some circumstances, be adaptive, allowing organisms to "hedge their bets" against fluctuations in the environment. If variability is adaptive, it may be the object of evolution by natural selection, provided there is heritable variation for the level of variability. Evidence that variability of a trait is under genetic control (and therefore heritable) is mounting, with empirical studies of morphology (Dworkin and Gibson 2006; Debat et al. 2009; Turner et al. 2011) and behavior (Turner et al. 2013; Ayroles et al. 2015) supporting this. Quantitative loci whose allelic states impact the variance of a trait, termed "vQTL," have been

¹Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States

²Center for Brain Science, Harvard University, Cambridge, MA 02138, USA

^{*}Corresponding author: Email: debivort@oeb.harvard.edu

found across microorganisms, plants and animals, including humans (Rönnegård and Valdar 2012). An analysis of the genetic components of variability, both within individual and between individuals, can be found in Hill and Mulder (2010). These studies suggest that selection can act to increase or decrease variability in trait values. Consequently, bet-hedging strategies can potentially be fine-tuned to the ecological and environmental fluctuations that favor them.

Selection for phenotypic variability has been studied from a quantitative genetics perspective and most extensively applied in plant and animal breeding (Walsh and Lynch 2018c). Theoretical models predict that when a trait is under directional selection, there are correlated effects on the trait variance (Hill and Zhang 2004). Truncation selection, for example, retains individuals from with phenotypes above or below a certain threshold, i.e. individuals from either of the tail ends of a phenotypic distribution. If sites determining the trait mean also affect its variability, such truncation selection could indirectly select for individuals with greater variability, since they are likely to be over-represented in the tails of the distribution. In animal and plant breeding, the aim is often to increase the mean value of a trait, such as milk production in cows, while reducing variance, to increase uniformity across the population. In such cases, selection can be applied on a combined index that incorporates trait mean and variance, with the aim to increase the former and reduce the latter (SanCristobal-Gaudy et al. 1998; Mulder et al. 2008). Models predict that when the heritability of the variance is much lower than that of the mean, selection on such an index will initially result in the mean responding, after which selection pressure will shift to the variance (Mulder et al. 2008). When disruptive selection is applied on an index of wing shape in fruit flies, there is a drastic increase in phenotypic variation in these traits. Stabilizing and fluctuating selection, however, cause a decrease in phenotypic variation (Pélabon et al. 2010). Selection modeling and experiments have also been applied to within-individual variation, with the aim of reducing variation among repeated measurements made from an individual (Ibáñez-Escriche et al. 2008). These prior studies have not focused on increasing among-individual variability without changing the mean value of the trait.

Demonstrating that variability of a behavioral trait can indeed evolve under artificial selection would be an important step in establishing whether it can evolve in natural circumstances as an adaptive strategy. Locomotor handedness in Drosophila melanogaster offers several advantages for such an effort. In fruit flies, locomotor handedness is a behavioral measure that is readily estimated (de Bivort et al. 2022) and suitable for experimental evolutionary genetics. Flies have idiosyncratic tendencies to turn left or right in Y-shaped mazes or open arenas (Buchanan et al. 2015). The distribution of average turn biases across flies is unimodal and broad. That is, the most common turn bias is 50-50 left-vs-right, but some individuals have strong left- or right-biases (e.g. in 100 flies, it is common to find individuals with biases as strong as 80-20 or more). Locomotor handedness has a mean of 50-50 across genetic backgrounds (Ayroles et al. 2015; Buchanan et al. 2015), indicating that the mean value of turn bias has very low broad sense heritability and is unlikely to respond to selection. In contrast, different wild-derived inbred fruit fly lines exhibit differing degrees of intragenotypic variability in this behavior. This variation has a complex genetic architecture with many sites of small effect correlated with the extent of variability (Ayroles et al. 2015). Consequently, variability of turn bias does have substantial heritability and could potentially respond to selection. Therefore, locomotor handedness has unusual advantages for

the study of selection on phenotypic variability, offering little risk that selection on trait variability has confounding effects on the

Different approaches can be used over the course of artificial selection to choose which individuals are allowed to mate and contribute to the next generation. In mass selection, also known as individual-based selection, an individual is chosen based on its own score on the trait being selected. Alternatively, selection decisions can be made considering the trait scores of the individual and its relatives (an approach termed family-based or family selection) (Walsh and Lynch 2018a). The latter approach may enrich the statistical signal in selected individuals, as related individuals may have correlated phenotypes. Additionally, family-based selection can be more likely to maintain allelic combinations that contribute to the selected phenotype non-additively. The families chosen in each generation may be composed of half siblings, often with the same mother but different potential fathers, or of full siblings, generated from one breeding pair. Family-based selection is often employed in plant and animal breeding (Toro et al. 1988), and is sometimes employed in laboratory-based selection studies (Gallego and López-Fanjul 1983; Zwaan et al. 1995).

Laboratory-based selection experiments are long and laborintensive. Further, factors such as the population size used in the experiment and the number of generations for which selection should be implemented are difficult to predict in advance, and can have significant impacts on the success of the experiment (Roff and Fairbairn 2009). Theoretical and computational models can be helpful in this regard, allowing one to predict the dynamics of selection at a population and genetic level prior to embarking on a selection experiment. In this paper, we describe an individual-based model of directional artificial selection on a polygenic trait of interest, specifically behavioral variability in locomotor handedness in Drosophila melanogaster. Informed by empirical data (Ayroles et al. 2015), this model compares the phenotypic and genotypic responses of mass versus family-based selection regimes (both half-sib and full-sib). This study is novel in focusing on a selected trait that is measured using many individuals, the variance of individual behavior. Using this model, we predict how different selection regimes change the underlying genetic architecture of the evolving population, with focus on how epistatic interactions can modulate this change. While our model is motivated by an interest in behavior, it is generalizable and can be readily extended to a diversity of traits with differing genetic architectures. Importantly, it provides specific predictions about responses to selection on a phenotypic and genetic level, helping biologists optimize the parameters of their selection regime before committing to large-scale experiments.

Materials and methods

Our model assumes a polygenic trait with additive and epistatic components. All individuals are diploid, and reproduction is sexual with a fixed recombination rate. There are no de novo mutations. Generations are non-overlapping, with a fixed, finite population size. These assumptions are implemented in the model through variables whose default values are given in Table 1. We chose values appropriate to behavioral experiments in Drosophila, but these variables can be readily changed for traits with different architectures or to model populations of various sizes and family compositions.

The model was implemented entirely in Python 3. Initial code optimization was done on a desktop-PC, and the full model was run on the FAS Research Computing Cluster at Harvard

Table 1. Model variables and their default values.

Variable	Variable symbol	Default value
Population size	N	980
Number of sites	L	500
Generations	G	100
Per-base recombination rate	ρ	0.002
Percent strength of selection	S	20%
Number of trials per individual	t	500
For mass selection		
Number of individuals screened	N_{sc}	<u>N</u>
Number of individuals selected	$N_{\rm sel}$	$\frac{s}{100} \times N$
For family-based selection		100
Number of families	f	35
Number of individuals per family	n	<u>N</u>
Individuals screened per family	n_{sc}	<u>n</u>
Number of families selected	$f_{ m sel}$	$\frac{s}{100} \times f$

University. Statistical analyses were also performed in Python 3, using built-in numpy (Harris et al. 2020) and scipy (Virtanen et al. 2020) functions. Annotated code can be found at: lab. debivort.org/family-selection-for-variability.

We assumed that variability as a trait is determined by L sites, each of which has 2 possible alleles: one that has no effect and one that contributes a direct additive effect and contributes to epistatic effects. Specifically, we assumed that additive effects (A_i) come from a beta prime distribution (Supplementary Fig. S1), which closely matches the empirical distribution of effect sizes for SNPs associated with variability in locomotor handedness (Ayroles et al. 2015). We used beta prime parameters of a = 0.976, b = 5.789, $loc = 2.79 \times 10^{-7}$ and scale = 0.272. To model epistatic effects, we defined an L x L symmetrical interaction matrix with each entry $E_{i,j}$ drawn from an exponential distribution with parameter λ and sign randomly assigned as positive or negative with equal probability (i.e. a Laplace distribution with mean 0 and variance $2\lambda^{-2}$). The value of λ was determined based on the desired relative contribution of epistasis to the overall effect size, further detailed below. The values of site effect sizes and the epistatis interaction matrices were drawn once and fixed for all runs and all regimes, thus avoiding any effects introduced by random variation in effect sizes. All individuals in our simulations were diploid, so each site has 2 loci—individuals could have 0, 1, or 2 alleles at each site with an effect on variability. Thus, the variability trait value for individual a was given by

$$V_a = \sum_{i=1}^{L_a} n_{a,i} A_i + \sum_{i=1}^{L_a} \sum_{j=i+1}^{L_a} E_{i,j}$$

where L_a is the number of sites in individual a for which at least one allele has an effect on variability, i and j index those sites, and $n_{a,i}$ is, for individual a, the number of alleles at site i which have an effect on variability (1 or 2 depending whether that site is heterozygous or homozygous). Three levels of epistasis, defined as the ratio of the variance in epistatic effects to the overall variance of genotypic values across the population, were simulated. Specifically, for high epistasis, $\frac{Var(E)}{Var(V)} = 0.5$, $\lambda = 0.0021$; for medium epistasis, $\frac{Var(E)}{Var(V)} = 0.25$, $\lambda = 0.0012$; for low epistasis, $\frac{Var(E)}{Var(V)} = 0.125$, $\lambda = 0.00079$.

In our model, an individual's genotype determines their potential to have a phenotype far from the mode (Ayroles et al. 2015). In other words, if an individual comes from a high variability genotype, it will have a phenotype that is drawn from a wider distribution of potential trait values. The particular behavioral trait

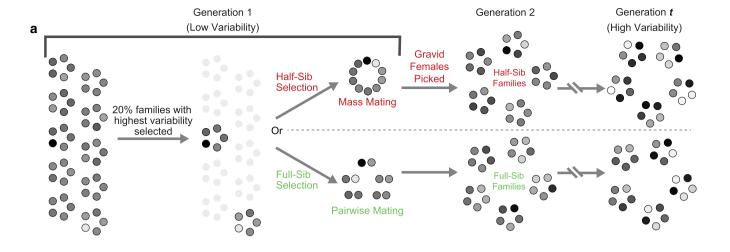
inspiring this analysis, locomotor handedness, has a mean value very close to 0.5 across all assessed genotypes (Ayroles et al. 2015; Buchanan et al. 2015; de Bivort et al. 2022). Therefore, we used each individual's Va value to compute a true locomotor handedness phenotype P_a from a normal distribution with mean 0.5. In order to make the standard deviation for these distributions match empirical data, Va values were scaled and matched via linear interpolation (using the interp function in numpy) to a distribution of empirical standard deviations of locomotor handedness for 167 genotypes (Supplementary Fig. S2). Accordingly, for each was individual, the phenotype determined $P_a \sim Norm(0.5, (d(V_a))^2)$, where $d(V_a)$ is the genotypic value after mapping. If the sampled value was less than 0 or greater than 1, we set it to 0 or 1, respectively. Once the true phenotype of an individual was assigned, we could determine its phenotype as would be measured in an actual selection experiment (π_a) . Locomotor handedness is measured as the fraction of t turns that an animal makes to the right. Thus, $\pi_a \sim \text{Binom}(t, P_a)/t$.

New offspring individuals in our simulations were generated via sexual reproduction. The sex ratio at birth was fixed at 50:50, but the distributions of fitness varied by sex. All females had equal probability of being a parent. However, fruit fly males do not have equal likelihood of successfully mating and fathering offspring. Accordingly, the probability of each male being a parent was drawn from the empirical distribution of male fitness in Fig. 1 of Pischedda and Rice (2012). For each new offspring, each of their diploid parents produced 2 gametes, with recombination. Each site had an independent probability ρ of being a site of recombination. For our default values of L = 500 sites and recombination rate $\rho = 0.002$, there was on average one recombination event per haploid genome per generation. Of the two gametes generated by this process, one was chosen at random as the haploid contribution to the offspring. Note, in Drosophila there is no recombination in males (Morgan 1912), so in this respect our simulation was more typical of other species.

In every generation of both family-based and mass selection simulations, we implemented a strength of selection s=0.2 or 20%. For simulations of family-based selection, the initial population was seeded with f families, each of which have n individuals, for a total population size of f*n=N. The default values of f=35 and N=980 were chosen as plausible numbers for a potential real implementation of this experiment. Measured phenotypes (π_a) were computed for all of the individuals from each family. The measured variability for each family m, in generation 0, was calculated as the standard deviation of individual phenotypes: $\sigma_m(0) = std(\pi_a)$. s% of f families with the highest variability were selected to seed the next generation (Fig. 1a). The average population variability was estimated as the average of family variabilities for all f families: $\sigma_0 = \mu(\sigma_m(0))$.

For half-sib selection, individuals from all selected families were pooled, and f families were seeded for the next generation by randomly picking f multiply-mated females from the pool. For full-sib selection, male and female individuals were randomly paired from among the selected families to create f monogamous pairs, that were used to generate f families for the next generation. The variability for all families in the population $(\sigma_m(g))$ was estimated at every generation g, and selection was carried out as before.

For simulations of mass selection, the initial population was seeded with N individuals. Measured phenotypes (π_a) were computed for all of the individuals in the population. The variability of this population was calculated as the standard deviation of the measured phenotypes: $\sigma_0 = \operatorname{std}(\pi_a)$. s% of N individuals were



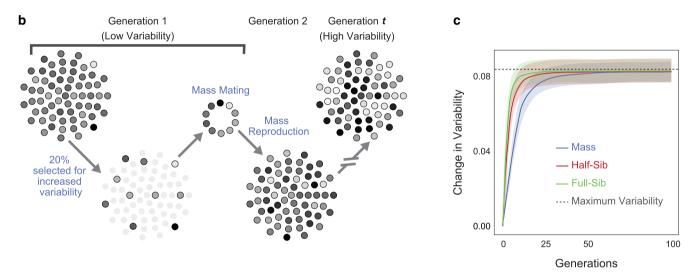


Fig. 1. Variability selection regimes. a) Schematic of family-based selection regime used in the model, showing half-sib and full-sib variants; b) Mass selection regime; c) Change in turn bias variability ($\Delta \sigma_g = \sigma_g - \sigma_0$) over 100 generations of mass, half-sib and full-sib selection. Lines are the average $\Delta \sigma_g$ at each generation g, averaged across k = 10,000 replicate runs of model. Shaded regions indicate ± 1 standard deviation due to run-to-run variation $(\epsilon_f)_g$ estimated as the standard deviation of $\Delta \sigma_g$ across k replicates; dotted line indicates the variability value of a population where all individuals have the maximum variability trait value V_g possible with this genetic architecture.

chosen to seed the next generation, such that the selected individuals formed a subset with the highest possible variability (Fig. 1b). This was implemented by sampling across the distribution of individuals, selecting those that have the highest probability of being from a target high variability distribution. This was the default method we used to implement mass selection, and we refer to this method of mass selection as "uniform sampling." We additionally implemented a mass selection approach we term "extreme sampling," wherein the 10% of the individuals with the most extreme left-bias and the 10% with the most extreme right-bias were selected every generation. This is a form of two-tailed truncation selection. In both cases, the next generation of N individuals was created via reproduction among all selected individuals. The variability of the population σ_g was estimated at each generation, and selection was carried out as before.

We estimated the selection differential (S) in different regimes by calculating the difference in variability of the whole population and variability of the subset of individuals that was selected every generation. Selection response (R) was calculated as the change in phenotypic variability over 1 generation of selection. We quantified the realized heritability (h^2) at different time points during selection as the slope of the regression between the cumu-

lative changes in S and R. At generation g, $h^2 = \frac{\sum_{j=1}^{9} S}{\sum_{j=1}^{9} R}$

To track the genotypic changes associated with selection, each variability site was evaluated for fixation at the end of selection. All selection regimes with various combinations of parameters were simulated k times under different random seeds to assess variation in selection response trajectories.

Results

Family-based selection for variability is faster than mass selection

Starting with a simple additive model (no epistasis), our simulations showed robust responses to selection for higher turn bias variability (Fig. 1c). Family-based selection (half-sib or full-sib) yielded a faster response than mass selection. Half-sib family-based selection yielded 75% of its total response to selection by

generation 6, whereas mass selection attained 75% of its final response by generation 11. Full-sib selection was slightly faster than half-sib selection, attaining 75% of its final response approximately 2 generations sooner. When we implemented mass selection with extreme sampling, the response was faster than with uniform mass selection, but was still slower than both half and fullsib family-based selection through at least 5 generations (Supplementary Fig. S3). However, a downside of extreme sampling is the possibility of evolving an undesirable multimodal phenotype distribution if the mean of the trait is also heritable (Supplementary Fig. S10).

Initial populations had comparable variability ($\sigma_0 = 0.135$) across regimes, measured as the standard deviation of phenotypes across all individuals. The change in variability over 100 generations of selection was consistent across all regimes. The final variability attained was, on average, almost as high as the theoretical maximum possible value, calculated as the variability of a population where all the individuals have all the sites fixed at the high variability allele (Fig. 1c).

We estimated the selection differential S across regimes as a function of the number of generations of selection. Mass was associated with the highest selection differential at all generations (Supplementary Fig. S4a). But that regime's selection response (R) was only slightly higher than that of the family-based regimes from generations 6 to 15, and even there only by a small amount (Supplementary Fig. S4b). Mass selection moreover had a much lower selection response than family-based regimes for the first 3 or 4 generations. Thus, the realized heritability of family-based selection was higher than that of mass selection consistently across generations (Supplementary Fig. S4c).

Family-based selection for variability fixes more sites than mass selection

Many more variability-determining sites were fixed in 100 generations of family-based selection compared to mass selection, with full-sib selection fixing 94.9% of all sites on average (Fig. 2a). This was an expected consequence of the lower effective population size, and therefore higher inbreeding in family-based selection (Pekkala et al. 2014). Sites with large effects on turn bias variability had higher fixation probabilities in all regimes (Fig. 2b-d), as expected. This relationship was strongest in mass selection ($r^2 = 0.81$ using a second-degree polynomial fit), weaker in half-sib selection $(r^2 = 0.20)$, and weakest in full-sib selection $(r^2 = 0.07)$, where a large number of sites were likely to fix regardless of their effect size (Fig. 2d).

Family structure modulates selection response

To determine the effects of family and population size on selection response, we systematically varied these parameters (f and N) and measured peak variability change $\Delta \sigma_{100} = \sigma_{100} - \sigma_0$. Selection response was smaller at both extremes of f (Fig. 3a). The smallest response to selection was found with populations with few families of many individuals each (low f, high n). Slightly higher variability was attained with populations made of a large number of families with few individuals in each family (high f, low n). The greatest selection responses were found in populations with families of intermediate size. Regardless of family composition, increasing population size boosted the selection

Run-to-run noise (ϵ_r) can affect the reliability of selection, an important consideration for artificial selection experiments that might actually be implemented in the laboratory. With fewer, larger, families (low f, high n), selection responses were more variable (Fig. 3b). Populations with more, small families (high f, low n) were generally less subject to noisy fluctuations. Unsurprisingly, increasing total population size reduced run-to-run variability. Overall, our simulations indicated that intermediate number of moderate sized families can optimize selection for variability at various population sizes, allowing for reliable, consistently high responses.

Selection outcomes are robust to change in model parameters

Changing model parameters (in Table 1) altered the selection responses quantitatively, but did not alter the overall trends and differences between the selection regimes. For example, changing the number of sites that contribute to phenotypic variability from 63 to 1,000 had little discernible effect on the selection response in any of the regimes (Supplementary Fig. S5). Likewise, changing the distribution of site effects had no qualitative effect on selection outcomes (Supplementary Fig. S6). This suggest that results from our model apply to traits with a variety of effect size statistics.

When selection was weaker (i.e. more individuals were chosen to found subsequent generations) the selection response was slower, as expected. This effect was most pronounced under mass selection (Supplementary Fig. S7). Modulating population size had similar effects across all regimes, with larger population sizes showing faster and stronger responses to selection. This effect was more pronounced in family-based selection, where the effective population size is reduced due to inbreeding (Supplementary Fig. S8).

Epistasis attenuates selection responses

Our model accommodates pairwise epistatic interactions between sites that additively contribute to variability. These epistatic effects can be positive or negative (Fig. 5b), increasing or decreasing an individual's latent variability (V_a) . When epistasis was added to the model, the response to selection was slower across all selection regimes. However, over 100 generations, a similar value of variability was attained (Fig. 4a). The effect of epistasis was quantitative: increasing the magnitude of epistatic interactions resulted in slower selection responses (Fig. 4b, Supplementary Fig. S9).

Sites are differentially fixed with and without epistasis

We examined the effect of epistasis on the probability of site fixation after selection (Fig. 5a). In our model, a site's additive effect and its average epistatic effect were uncorrelated (Fig. 5b). How these 2 effects determined a site's fixation probability depended on the selection regime. In general, fixation probabilities were higher when both additive and epistatic effects were included (Fig. 5c-h). This difference was more pronounced in familyselection regimes, where the population structure could preserve combinations of linked sites with strong epistatic interactions. Unsurprisingly, the fixation probability of a site depended on its additive effect, with larger effect sites being more likely to fix (Fig. 2c-e). This relationship was strongest when epistasis was not included in the model.

Conversely, sites that had very positive average epistatic effects were more likely to fix when the model included epistatis (Fig. 5f-h). This was true even for sites with low additive effects, on account of their large positive epistatic contribution to variability. Similarly, sites that had highly negative epistatic effect sizes fixed with a higher probability with epistasis, potentially due to

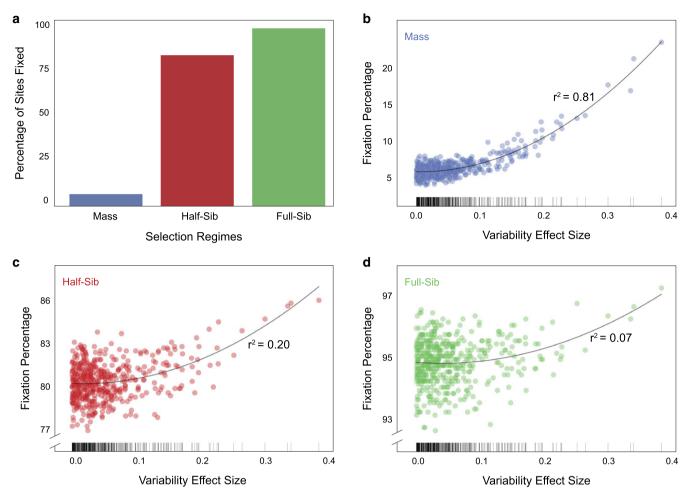


Fig. 2. Fixation of variability determining sites after 100 generations of selection. a) Mean fixation percentage of sites at generation 100 for the 3 selection regimes, averaged over 1,000 runs. b-d) Site fixation probability versus effect size in mass, half-sib and full-sib regimes, respectively. Lines are second-degree polynomial fits. Tick marks at bottom indicate the values of site effect sizes, which were fixed across all runs.

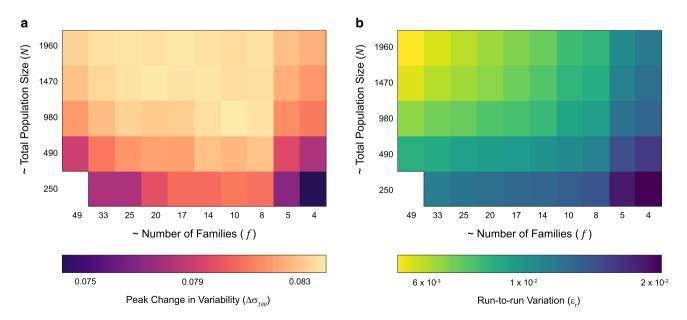
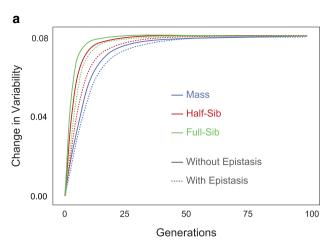


Fig. 3. Effects of population structure in family-based selection. Changes in (a) peak variability ($\Delta\sigma_{100}$) and (b) run-to-run variation (ϵ_r) in selection response over 100 generations of half-sib selection. Each row has a fixed total population size, with population structure varied by changing the distribution of animals within families. The leftmost column corresponds to a many families with few individuals in each, while the rightmost column corresponds to fewer, larger families.



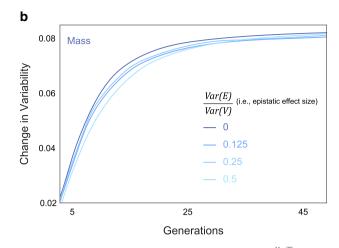


Fig. 4. Effect of epistasis on selection response. a) Average change in variability versus generations of selection, with high level of epistasis $\frac{Var(E)}{Var(V)} = 0.5$) and without epistasis, in different selection regimes; b) Average change in variability versus generations of mass selection, with varying magnitudes of epistatic interactions.

their strong negative effects on variability driving them to extinction (Fig. 5f-h).

Family-based selection is particularly efficient for variance- but not mean-based traits

In our model, family-based selection produced a faster response than mass selection when the trait under selection was variancebased, such as turn bias variability (Fig. 1c, Fig. 6a). We hypothesized that the efficiency of family-based selection resulted from the concordance of the unit of selection (families) and a trait that can only be measured from multiple individuals (variance). To test this hypothesis, we used the same model (genetic architecture, selection regimes, etc.) to instead select for increased mean value of the trait. When the trait under selection was mean-based, and not variance-based, all selection regimes were equally rapid (Fig. 6b). Both mass and half-sib selection yielded close to their maximum selective response within 8 generations (Fig. 6d and f). This was in contrast to what we saw for a variance-based trait, in which mass selection did not yield nearly half of its selective response within 8 generations (Fig. 6c and e), while half-sib selection reached close to maximum variability. Therefore, the increased efficiency of family-based designs appears specific to selection that acts on the variability of a trait, and not its mean.

We conducted further analyses of traits that have heritability for both mean and variability. This is a complex topic, with interactions between mean and variability, their respective trait architectures and the selection regime. We explored these relationships only superficially, with a toy trait where mean and variability were determined by independent sites. We used the same familybased and mass regimes to select for increased variability. When variability and mean are both determined by the same number of sites with effect sizes drawn from the same distribution, the overall qualitative relationships remain as before—family selection outperforms extreme and uniform mass selection, especially in the initial generations (Supplementary Fig. S10a-c). However, selection outcomes can differ when the mean and variability have different underlying effect sizes. When the mean value of the trait has sites of much larger effects than the variability sites (i.e. the mean has higher heritability), selecting on variability is more effective with mass selection (Supplementary Fig. S10d). As suspected, using extreme (two-tailed truncated) mass selection

resulted in the final population having a tri-modal or bi-modal distribution of phenotypes (Supplementary Fig. S10f).

Discussion

We examined the efficiency of different artificial selection regimes at evolving variability of a trait. We modeled a trait with a polygenic architecture, including the possibility of epistatic interactions, as is typical of behaviors. Our simulations demonstrated that selection can indeed increase the variability of a polygenic trait (Fig. 1c), without impacting the mean (Fig. 6a,c,e). Family-based selection allowed for an efficient response of increasing variability in the focal trait. The parameters of our trait were based on locomotor handedness in Drosophila melanogaster, but should generalize to many traits, and our major findings are robust to large parameter changes (Supplementary Figs. S5-S8). Mass selection did result in a strong selection response, but this response was slower, a difference with practical consequences for actual selection experiments. For instance, laboratory artificial selection in fruit flies over a year would result in 20 to 25 generations (Stocker and Gallant 2008); at this point family-based selection is still likely to have yielded a larger response than mass selection. An added practical advantage of family-based selection is that family-wise variability estimates can be obtained by screening a subset of the individuals in each family (Walsh and Lynch 2018a). Therefore, a comparable strength of selection can be achieved by screening fewer animals than in mass selection.

Since estimating variance requires the measurement of multiple individuals, it makes sense that family-based selection will be more efficient at selecting for variability. Family-based selection measures the phenotypes of multiple, related individuals that are enriched for common variants, and propagates families as the unit of selection. Consistent with this reasoning, we found that family-based selection was faster than mass selection on our variance-based trait (Fig. 6). Consistently, family-based selection had higher realized heritability (Supplementary Fig. S4c) despite having lower selection differentials (Supplementary Fig. S4a). We believe this performance can be attributed to family-based selection estimating the true genetic trait value V more faithfully by calculating it over genetically related individuals.

When the same model was used to select for an increase in the mean value of the phenotype, all 3 regimes performed essentially

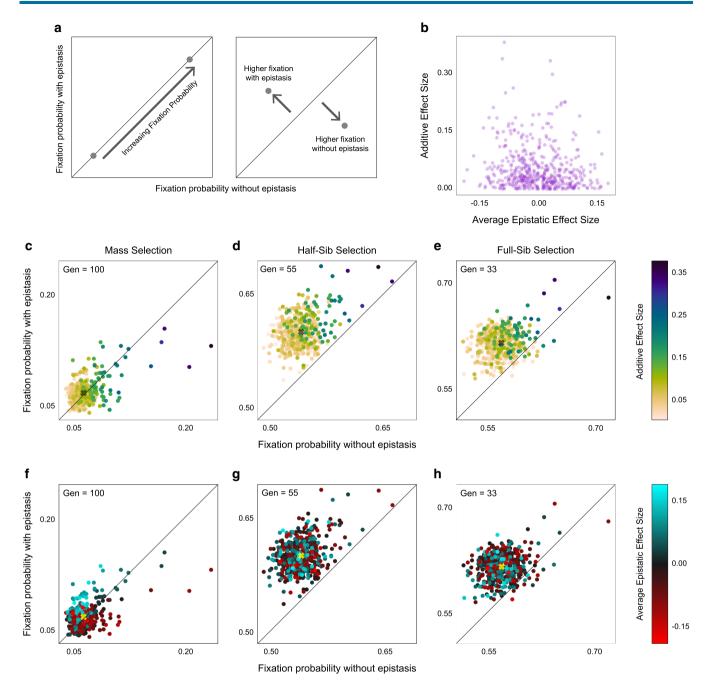


Fig. 5. Effect of epistasis on fixation of variability-influencing sites. a) Schematic for interpreting fixation probability plots in (c to h); b) Additive effect size versus average epistatic effect size for each site (purple point). c–e) Site fixation probability with epistasis versus without epistasis, under mass, half-sib and full-sib selection regimes after 100 generations. Points (sites) are colored by their additive effect sizes. Diagonal line indicates the unity line and X marks average fixation probabilities across sites. f–h) as in c–e, but with points colored by their average epistatic effect.

identically (Fig. 6b,d,e). Therefore, family-based selection might be specifically effective when the selected trait reflects variability among individuals. While turn bias in flies does not have substantial heritability for its mean (Ayroles et al. 2015; de Bivort et al. 2022), our model allows the study of selection for variability in traits with both heritable mean and variability. Selection responses can vary depending on how much the mean and variability of the trait vary, their heritabilities, their underlying site effect size distributions (Supplementary Fig. S10), and almost certainly any pleiotropy between these traits. Our model offers a flexible tool for exploring these relationships, and can help pinpoint the best selection regime for specific traits. Follow-up studies using

this model also have the potential to clarify the general relationships between trait mean and variability genetic architectures and efficient selection regimes.

Population size plays a key role in selection, with larger populations being more resistant to drift, resulting in stronger selection response (Wright 1931; Kimura et al. 1963). Accordingly, we found larger population sizes resulted in faster, more reliable responses across all selection regimes (Supplementary Fig. S8). Family-based selection schemes have smaller effective populations than mass selection (Pekkala et al. 2014; Walsh and Lynch 2018b), and we found that their maximum selection responses were correspondingly sensitive to decreased total population size (Supplementary

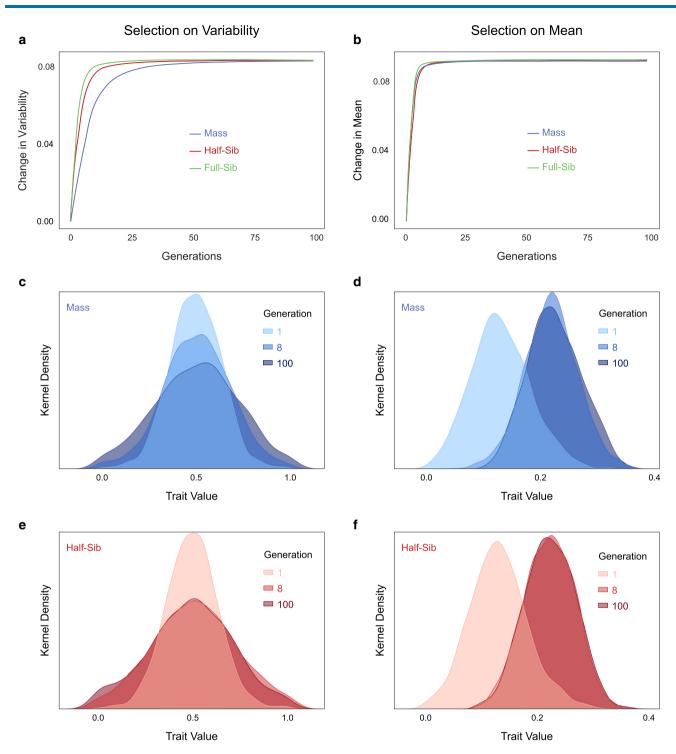


Fig. 6. Efficacy of selection regimes for variance-based and mean-based traits. Change in selected phenotype versus generations of selection for increased (a) variability of the trait (same as Fig. 1c) and (b) mean of the trait. c) Kernel density estimates of the distributions of trait values at generations 0, 8 and 100 of mass selection for increased trait variability. The generation 8 distribution is not as wide as the generation 100 distribution. d) As in c, but for selection for increased trait mean. Note that the generation 8 distribution has a similar mean to that of generation 100. e, f) As in c and d, but for half-sib selection. In both panels, the generation 8 and 100 distributions are very similar.

Fig. S8). The relative size of families within the population also mattered for selective responses. Given a constant total population size, more, smaller families improved the reliability of selection across independent runs (Fig. 3b). Reliability is important when planning selection experiments in organisms with substantial generation times. Even fruit flies, with 10 day generations, require months or years to complete an artificial selection

experiment. Unfortunately, while increasing the number of families improves reliability, it tends to diminish the magnitude of selection responses (Fig. 3a). Therefore, a population that has an intermediate number of moderate sized families represented a good compromise between maximizing selection response and minimizing run-to-run noise. Our model thus is helpful for planning experiments and predicting the population structure most

likely to maximize the chances of seeing a selection response within experimental constraints.

Laboratory-based evolution experiments in Drosophila can show a rapid response. Directional selection on the mean value of thermal tolerance, for example, led to selected flies having a higher thermal tolerance within ten generations (Hangartner and Hoffmann 2016). In another study, flies selected for better foraging found food twice as fast as control flies after 5 generations of selection (Sevenello et al. 2023). In male flies selected for increased or decreased sexual aggression, lineages diverged in the aggressive behavior of forced copulation in 3 to 5 generations (Dukas et al. 2020). While experimental evolution on variability has not been conducted in flies, these previous findings suggested that our model's prediction of selection responses within ~10 generations are plausible. However, there are factors which our model does not account for that might slow the response, such as fitness trade-offs or physiological limitations. Our model considers sites which only affect our trait of interest, but there might be pleiotropic interactions with other traits that could alter the selection response.

Site fixation probabilities varied considerably across regimes (Fig. 2) and with the presence or absence of epistasis (Fig. 5). Even with a large total population size, family-based selection's reduced effective population size led to substantially lower heterozygosity after selection in our model (Fig. 2a). The effects of inbreeding were most prominent in full-sib selection. The absence of inbreeding in mass selection resulted in far fewer sites being fixed after 100 generations (Fig. 2a). Also, in mass selection the effect sizes of the sites were more strongly correlated with fixation probability. Sites of large effect had higher chances of fixing in all regimes, but sites of low effect were much less likely to fix in mass selection (Fig. 2), consistent with drift being a powerful dynamic in family-based selection. Therefore, while the population structure in family-based selection can accelerate the speed of selection, the loss of genetic diversity could potentially lead to inbreeding depression (Pekkala et al. 2014).

When epistatis was factored into the model, fixation probability rose (Fig. 5). Since inbreeding and family structure can preserve larger regions of linked sites, they make it more likely that sites with neutral or mild direct effects but more positive or negative epistatic effects will fix (Fig. 5f-h). Conversely, sites of high direct effect can be prevented from fixing if they are epistatically coupled with sites that negatively impact the trait under selection. This was evident in our model, with sites of high additive effect size having a lower likelihood of fixation when epistasis was included, across all selection regimes (Fig. 5c-e). When planning actual selection experiments, the true level of epistasis may be unknown. Fortunately, our model suggests that the extent of epistasis does not change the relative efficacy of the 3 regimes (nor did it impact the final variability values attained after many generations of selection; Fig. 4).

Our model is flexible, accommodating populations of varying structures and traits having different underlying genetic architectures. We did not include dominance interactions in our model, but the model could be readily extended to incorporate a dominance matrix, similar to our implementation of the site-wise epistatic matrix. We observed a robust response to selection for variability across a wide range of configurations with our model (Supplementary Figs. S5–S8). Our model highlights that selection can change the variance of traits, and that family-based regimes are an effective way of implementing directional selection for increased variability. Intragenotypic behavioral variability can be a target of selection, in the laboratory and potentially in nature. Responsiveness to selection is a precondition for bet-hedging to evolve as an adaptive phenotypic strategy. Experimental studies that implement selection on variability in the lab can are a promising path forward to understand the evolutionary role of variability and its genetic basis.

Data availability

Annotated code used to generate all the data can be found at: lab. debivort.org/family-selection-for-variability or at Zenodo (https:// doi.org/10.5281/zenodo.15392202). Empirical data for turn-bias variability in Drosophila melanogaster were obtained from Ayroles et al. (2015). Relevant data can be found at: https://lab.debivort. org/genetic-control-of-phenotypic-variability.

Supplemental material available at G3 online.

Acknowledgments

We thank Ian Dworkin for the conceptual understanding of family-based selection, Danylo Lavrentovich for assistance in using the FAS Research Computing Cluster, and Vikram Ravindranath for help with LaTeX typesetting.

Funding

B.d.B was supported by National Institutes of Health/National Institute of Neurological Disorders and Stroke grant no. 1R01NS121874-01.

Conflicts of interest

The authors declare no conflicts of interest.

Literature cited

Ayroles JF et al. 2015. Behavioral idiosyncrasy reveals genetic control of phenotypic variability. Proc Natl Acad Sci U S A. 112:6706–6711. https://doi.org/10.1073/pnas.1503830112.

Beaumont HJE, Gallie J, Kost C, Ferguson GC, Rainey PB. 2009. Experimental evolution of bet hedging. Nature. 462:90-93. https://doi.org/10.1038/nature08504.

Bierbach D, Laskowski KL, Wolf M. 2017. Behavioural individuality in clonal fish arises despite near-identical rearing conditions. Nat Commun. 8:15361. https://doi.org/10.1038/ncomms15361.

Biro PA, Stamps JA. 2008. Are animal personality traits linked to lifehistory productivity?. Trends Ecol Evol. 23:361–368. http://dx.doi. org/10.1016/j.tree.2008.04.003.

Buchanan SM, Kain JS, de Bivort BL. 2015. Neuronal control of locomotor handedness in Drosophila. Proc Natl Acad Sci U S A. 112: 6700-6705. https://doi.org/10.1073/pnas.1500804112.

Chapman BB, Thain H, Coughlin J, Hughes WOH. 2011. Behavioural syndromes at multiple scales in Myrmica ants. Anim Behav. 82: 391-397. https://doi.org/10.1016/j.anbehav.2011.05.019.

Childs DZ, Metcalf CJE, Rees M. 2010. Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants. Proc Biol Sci. 277:3055–3064. https://doi.org/10.1098/rspb.2010.

Churgin MA, Lavrentovich DO, et al. 2025. A neural correlate of individual odor preference in Drosophila. eLife. 12:RP90511. https:// doi.org/10.7554/eLife.90511.

Dall SRX, Houston AI, McNamara JM. 2004. The behavioural ecology of personality: consistent individual differences from an adaptive

- perspective. Ecol Lett. 7:734-739. https://doi.org/10.1111/ele. 2004.7.issue-8.
- Debat V, Debelle A, Dworkin I. 2009. Plasticity, canalization, and developmental stability of the drosophila wing: joint effects of mutations and developmental temperature. Evolution. 63:2864–2876. https://doi.org/10.1111/evo.2009.63.issue-11.
- de Bivort B et al. 2022. Precise quantification of behavioral individuality from 80 million decisions across 183,000 flies. Front Behav Neurosci. 16:836626. https://doi.org/10.3389/fnbeh.2022.836626.
- Dingemanse NJ et al. 2012. Variation in personality and behavioural plasticity across four populations of the great tit parus major. J Anim Ecol. 81:116–126. https://doi.org/10.1111/jane.2011.81.issue-1.
- Dingemanse NJ, Wolf M. 2010. Recent models for adaptive personality differences: a review. Philos Trans R Soc Lond B Biol Sci. 365: 3947-3958. https://doi.org/10.1098/rstb.2010.0221.
- Dukas R, Yan JL, Scott AM, Sivaratnam S, Baxter CM. 2020. Artificial selection on sexual aggression: correlated traits and possible tradeoffs. Evolution. 74:1112-1123. https://doi.org/10.1111/evo.v74.6.
- Dworkin I, Gibson G. 2006. Epidermal growth factor receptor and transforming growth factor-beta signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics. 173: 1417-1431. https://doi.org/10.1534/genetics.105.053868.
- Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic gene expression in a single cell. Science. 297:1183-1186. https://doi.org/ 10.1126/science.1070919.
- Freund J et al. 2013. Emergence of individuality in genetically identical mice. Science. 340:756-759. https://doi.org/10.1126/science. 1235294.
- Gallego A, López-Fanjul C. 1983. The number of loci affecting a quantitative trait in drosophila melanogaster revealed by artificial selection. Genet Res. 42:137-149. https://doi.org/10.1017/S0016672300021601.
- Hangartner S, Hoffmann AA. 2016. Evolutionary potential of multiple measures of upper thermal tolerance in Drosophila melanogaster. Funct Ecol. 30:442–452. https://doi.org/10.1111/fec.2016.30.issue-3.
- Harris CR et al. 2020. Array programming with NumPy. Nature. 585: 357-362. https://doi.org/10.1038/s41586-020-2649-2.
- Hill WG, Mulder HA. 2010. Genetic analysis of environmental variation. Genet Res. 92:381-395. https://doi.org/10.1017/S0016672310000546.
- Hill WG, Zhang XS. 2004. Effects on phenotypic variability of directional selection arising through genetic differences in residual variability. Genet Res. 83:121-132. https://doi.org/10.1017/ S0016672304006640.
- Honegger KS, Smith MAY, Churgin MA, Turner GC, de Bivort BL. 2020. Idiosyncratic neural coding and neuromodulation of olfactory individuality in Drosophila. Proc Natl Acad Sci U S A. 117:23292-23297. https://doi.org/10.1073/pnas.1901623116.
- Ibáñez-Escriche N, Sorensen D, Waagepetersen R, Blasco A. 2008. Selection for environmental variation: a statistical analysis and power calculations to detect response. Genetics. 180:2209-2226. https://doi.org/10.1534/genetics.108.091678.
- Kain JS, Stokes C, de Bivort BL. 2012. Phototactic personality in fruit flies and its suppression by serotonin and white. Proc Natl Acad Sci U S A. 109:19834–19839. https://doi.org/10.1073/pnas.1211988109.
- Kimura M, Maruyama T, Crow JF. 1963. The mutation load in small populations. Genetics. 48:1303-1312. https://doi.org/10.1093/ genetics/48.10.1303.
- Kortet R, Hedrick A. 2007. A behavioural syndrome in the field cricket gryllus integer: intrasexual aggression is correlated with activity in a novel environment. Biol J Linn Soc Lond. 91:475-482. https:// doi.org/10.1111/bij.2007.91.issue-3.
- Lin Y, Chen ZX, Oliver B, Harbison ST. 2016. Microenvironmental gene expression plasticity among individual Drosophila melanogaster. G3. 6:4197-4210. https://doi.org/10.1534/g3.116.035444.

- Linneweber GA et al. 2020. A neurodevelopmental origin of behavioral individuality in the Drosophila visual system. Science. 367: 1112-1119. https://doi.org/10.1126/science.aaw7182.
- McNamara JM, Barta Z, Houston AI. 2004. Variation in behaviour promotes cooperation in the prisoner's dilemma game. Nature. 428: 745-748. https://doi.org/10.1038/nature02432.
- Minderman J, Reid JM, Evans PGH, Whittingham MJ. 2009. Personality traits in wild starlings: exploration behavior and environmental sensitivity. Behav Ecol. 20:830-837. https://doi.org/10.1093/ beheco/arp067.
- Morgan T. 1912. Complete linkage in the second chromosome of the male of Drosophila. Science. 36:719-720. https://doi.org/10.1126/ science.36.934.719.
- Mulder HA, Bijma P, Hill WG. 2008. Selection for uniformity in livestock by exploiting genetic heterogeneity of residual variance. Genet Sel Evol. 40:1-23. https://doi.org/10.1186/1297-9686-40-1-1.
- Olofsson H, Ripa J, Jonzén N. 2009. Bet-hedging as an evolutionary game: the trade-off between egg size and number. Proc Biol Sci. 276:2963-2969. https://doi.org/10.1098/rspb.2009.0500.
- Pantoja C et al. 2016. Neuromodulatory regulation of behavioral individuality in Zebrafish. Neuron. 91:587-601. https://doi.org/10. 1016/j.neuron.2016.06.016.
- Pausas JG, Lamont BB, Keeley JE, Bond WJ. 2022. Bet-hedging and best-bet strategies shape seed dormancy. New Phytol. 236: 1232-1236. https://doi.org/10.1111/nph.v236.4.
- Pekkala N, Knott KE, Kotiaho JS, Nissinen K, Puurtinen M. 2014. The effect of inbreeding rate on fitness, inbreeding depression and heterosis over a range of inbreeding coefficients. Evol Appl. 7: 1107-1119. https://doi.org/10.1111/eva.2014.7.issue-9.
- Pélabon C, Hansen TF, Carter AJR, Houle D. 2010. Evolution of variation and variability under fluctuating, stabilizing, and disruptive selection. Evolution. 64:1912–1925. https://doi.org/10.1111/j. 1558-5646.2010.00979.x.
- Pischedda A, Rice WR. 2012. Partitioning sexual selection into its mating success and fertilization success components. Proc Natl Acad Sci USA. 109:2049-2053. https://doi.org/10.1073/pnas.1110841109.
- Roff D, Fairbairn D. 2009. Modeling experimental evolution using individual-based variance-componenets models. In: Garland T, Rose MR, editors. Experimental evolution: concepts, methods, and applications of selection experiments. University of California Press. p. 31-64.
- Rönnegård L, Valdar W. 2012. Recent developments in statistical methods for detecting genetic loci affecting phenotypic variability. BMC Genet. 13:63. https://doi.org/10.1186/1471-2156-13-63.
- SanCristobal-Gaudy M, Elsen JM, Bodin L, Chevalet C. 1998. Prediction of the response to a selection for canalisation of a continuous trait in animal breeding. Genet Sel Evol. 30:423-451. https://doi.org/10.1186/1297-9686-30-5-423.
- Sevenello M, Luna P, De La Rosa-Perea D, Guevara-Fiore P. 2023. Direct and correlated responses to artificial selection on foraging in drosophila: artificial selection on foraging behaviour. Behav Ecol Sociobiol. 77:1-11. https://doi.org/10.1007/s00265-023-03363-1.
- Sih A, Bell AM, Johnson JC, Ziemba RE. 2004. Behavioral syndromes: an intergrative overiew. Q Rev Biol. 79:241-277. https://doi.org/10.1086/422893.
- Simons AM. 2009. Fluctuating natural selection accounts for the evolution of diversification bet hedging. Proc Biol Sci. 276:1987–1992. https://doi.org/10.1098/rspb.2008.1920.
- Solopova A et al. 2014. Bet-hedging during bacterial diauxic shift. Proc Natl Acad Sci U S A. 111:7427-7432. https://doi.org/10.1073/pnas.1320063111.
- Stamps JA, Groothuis TGG. 2010. Developmental perspectives on personality: implications for ecological and evolutionary studies of individual differences. Philos Trans R Soc Lond B Biol Sci. 365: 4029-4041. https://doi.org/10.1098/rstb.2010.0218.

- Stocker H, Gallant P. 2008. Getting started. In: Dahmann C, editor. Drosophila: methods and protocols. Humana Press. p. 27–44.
- Toro MA, Silio L, Rodrigañez J, Teresa Dobao M. 1988. Inbreeding and family index selection for prolificacy in pigs. Anim Sci. 46:79–85. https://doi.org/10.1017/S0003356100003135.
- Turner TL, Miller PM, Cochrane VA. 2013. Combining genome-wide methods to investigate the genetic complexity of courtship song variation in Drosophila melanogaster. Mol Biol Evol. 30: 2113–2120. https://doi.org/10.1093/molbev/mst111.
- Turner TL, Stewart AD, Fields AT, Rice WR, Tarone AM. 2011. Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster. PLoS Genet. 7:e1001336. https://doi.org/10.1371/journal.pgen.1001336.
- Verbeek MEM, Drent PJ, Wiepkema PR. 1994. Consistent individual differences in early exploratory behaviour of male great tits. Anim Behav. 48:1113–1121. https://doi.org/10.1006/anbe.1994.1344.
- Virtanen P et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods. 17:261–272. https://doi.org/10.1038/s41592-019-0686-2.
- Vogt G et al. 2008. Production of different phenotypes from the same genotype in the same environment by developmental

- variation. J Exp Biol. 211:510–523. https://doi.org/10.1242/jeb. 008755.
- Walsh B, Lynch M. 2018a. Family-based selection. In: Walsh B, Lynch M, editors. Evolution and Selection of Quantitative Traits. Oxford University Press. p. 719–768.
- Walsh B, Lynch M. 2018b. Long-term response: 2. Finite population size and mutation. In: Walsh B, Lynch M, editors. Evolution and Selection of Quantitative Traits. Oxford University Press. p. 953–990.
- Walsh B, Lynch M. 2018c. Short-term changes in the variance: 2. Changes in the environmental variance. In: Walsh B, Lynch M, editors. Evolution and Selection of Quantitative Traits. Oxford University Press. p. 573–590.
- Wolf M, van Doorn GS, Weissing FJ. 2008. Evolutionary emergence of responsive and unresponsive personalities. Proc Natl Acad Sci U S A. 105:15825–15830. https://doi.org/10.1073/pnas.0805473105.
- Wright S. 1931. Evolution in mendelian populations. Genetics. 16: 97–159. https://doi.org/10.1093/genetics/16.2.97.
- Zwaan B, Bijlsma R, Hoekstra RF. 1995. Direct selection on life span in Drosophila melanogaster. Evolution. 49:649–659. https://doi.org/10.2307/2410318.

Editor: A. Kern