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Persistent idiosyncrasies in behavioral phenotypes have been documented across animal taxa. These individual differences among or
ganisms from the same genotype and reared in identical environments can result in phenotypic variability in the absence of genetic vari
ation. While there is strong evidence to suggest that variability of traits can be heritable and determined by the genotype of an organism, 
little is known about how selection can specifically shape this heritable variance. Here, we describe a Python-based model of directional 
artificial selection for increasing the variability of a polygenic trait of interest. Specifically, our model focuses on variability in left-vs-right 
turn bias in Drosophila melanogaster. While the mean value of turn bias for a genotype is non-heritable and constant across genotypes, 
the variability of turn bias is a heritable and polygenic trait, varying dramatically among different genetic lines. Using our model, we com
pare different selection regimes and predict selection dynamics at population and genetic levels. We find that introducing population 
structure via a family-based selection regime can significantly affect selection response. When selection for increased variability is im
plemented on the basis of independently measured traits of individuals, the response is slower, but leads to a population with a greater 
genetic diversity. In contrast, when selection is implemented by measuring traits of families with half or full siblings, the response is faster, 
albeit with a reduced final genetic diversity in the population. Our model provides a useful starting point to study the effect of different 
selection regimes on any polygenic trait of interest. We can use this model to predict responses of laboratory-based selection experi
ments and implement feasible experiments for selection of complex polygenic traits in the laboratory.
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Introduction
Individuals exhibit idiosyncratic behavioral phenotypes, even in 
the absence of genetic variation (Dall et al. 2004; Sih et al. 2004). 
These behavioral differences persist over long periods of time 
and have been found in behaviors such as activity, aggression 
(Kortet and Hedrick 2007; Biro and Stamps 2008; Chapman et al. 
2011) and exploration (Verbeek et al. 1994; Minderman et al. 
2009; Dingemanse et al. 2012), in species such as fruit flies (Kain 
et al. 2012), Amazon mollies (Bierbach et al. 2017), and mice 
(Freund et al. 2013). At the mechanistic level, such differences 
may be an unavoidable consequence of the stochastic nature of 
molecular and cellular function, particularly during development 
(Vogt et al. 2008; Stamps and Groothuis 2010). Clonal single-celled 
organisms exhibit a significant amount of phenotypic variability, 
attributed to stochasticity in gene expression (Elowitz et al. 
2002). In fruit flies, 23% of genes were differentially expressed 
among genetically identical individuals reared under essentially 
identical laboratory conditions (Lin et al. 2016). Stochasticity in 
gene expression may affect behavior through its impact on neur
onal physiology, and specific neurons have been implicated in de
termining specific idiosyncratic behaviors. For example, the 
degree of left-right asymmetry in the wiring of fruit fly dorsal clus
ter neurons (DCNs) has been shown to predict individual differ
ences in visual object orientation in freely walking flies 

(Linneweber et al. 2020). Individual differences in calcium re
sponses (Honegger et al. 2020) of specific glomeruli in the antennal 
lobe of fruit flies predict individual odor preferences (Churgin et al. 
2025). In zebrafish, short-term habituation of the acoustic startle 
response has been found to be modulated by serotonergic neurons 
of the dorsal raphe nucleus (DRN) at the individual level (Pantoja 
et al. 2016).

At first glance, the stochastic, noisy nature of molecular pro
cesses suggests that intragenotypic behavioral variability may 

be non-adaptive. But theoretical models (McNamara et al. 2004; 
Wolf et al. 2008; Olofsson et al. 2009; Dingemanse and Wolf 

2010), and empirical studies from microbes (Beaumont et al. 

2009; Solopova et al. 2014) and plants (Simons 2009; Childs et al. 
2010; Solopova et al. 2014; Pausas et al. 2022) suggest that pheno

typic variability can, in some circumstances, be adaptive, allowing 

organisms to “hedge their bets” against fluctuations in the envir
onment. If variability is adaptive, it may be the object of evolution 

by natural selection, provided there is heritable variation for the 

level of variability. Evidence that variability of a trait is under gen
etic control (and therefore heritable) is mounting, with empirical 

studies of morphology (Dworkin and Gibson 2006; Debat et al. 
2009; Turner et al. 2011) and behavior (Turner et al. 2013; 

Ayroles et al. 2015) supporting this. Quantitative loci whose allelic 

states impact the variance of a trait, termed “vQTL,” have been 
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found across microorganisms, plants and animals, including hu
mans (Rönnegård and Valdar 2012). An analysis of the genetic 
components of variability, both within individual and between in
dividuals, can be found in Hill and Mulder (2010). These studies 
suggest that selection can act to increase or decrease variability 
in trait values. Consequently, bet-hedging strategies can poten
tially be fine-tuned to the ecological and environmental fluctua
tions that favor them.

Selection for phenotypic variability has been studied from a 
quantitative genetics perspective and most extensively applied in 
plant and animal breeding (Walsh and Lynch 2018c). Theoretical 
models predict that when a trait is under directional selection, 
there are correlated effects on the trait variance (Hill and Zhang 
2004 ). Truncation selection, for example, retains individuals 
from with phenotypes above or below a certain threshold, i.e. indi
viduals from either of the tail ends of a phenotypic distribution. If 
sites determining the trait mean also affect its variability, such 
truncation selection could indirectly select for individuals with 
greater variability, since they are likely to be over-represented in 
the tails of the distribution. In animal and plant breeding, the 
aim is often to increase the mean value of a trait, such as milk pro
duction in cows, while reducing variance, to increase uniformity 
across the population. In such cases, selection can be applied on 
a combined index that incorporates trait mean and variance, 
with the aim to increase the former and reduce the latter 
(SanCristobal-Gaudy et al. 1998; Mulder et al. 2008). Models predict 
that when the heritability of the variance is much lower than that 
of the mean, selection on such an index will initially result in the 
mean responding, after which selection pressure will shift to the 
variance (Mulder et al. 2008). When disruptive selection is applied 
on an index of wing shape in fruit flies, there is a drastic increase in 
phenotypic variation in these traits. Stabilizing and fluctuating se
lection, however, cause a decrease in phenotypic variation 
(Pélabon et al. 2010). Selection modeling and experiments have 
also been applied to within-individual variation, with the aim of re
ducing variation among repeated measurements made from an in
dividual (Ibáñez-Escriche et al. 2008). These prior studies have not 
focused on increasing among-individual variability without chan
ging the mean value of the trait.

Demonstrating that variability of a behavioral trait can indeed 
evolve under artificial selection would be an important step in es
tablishing whether it can evolve in natural circumstances as an 
adaptive strategy. Locomotor handedness in Drosophila melanoga
ster offers several advantages for such an effort. In fruit flies, loco
motor handedness is a behavioral measure that is readily 
estimated (de Bivort et al. 2022) and suitable for experimental evo
lutionary genetics. Flies have idiosyncratic tendencies to turn left 
or right in Y-shaped mazes or open arenas (Buchanan et al. 
2015). The distribution of average turn biases across flies is uni
modal and broad. That is, the most common turn bias is 50–50 
left-vs-right, but some individuals have strong left- or right-biases 
(e.g. in 100 flies, it is common to find individuals with biases as 
strong as 80–20 or more). Locomotor handedness has a mean of 
50–50 across genetic backgrounds (Ayroles et al. 2015; Buchanan 
et al. 2015), indicating that the mean value of turn bias has very 
low broad sense heritability and is unlikely to respond to selection. 
In contrast, different wild-derived inbred fruit fly lines exhibit dif
fering degrees of intragenotypic variability in this behavior. This 
variation has a complex genetic architecture with many sites of 
small effect correlated with the extent of variability (Ayroles 
et al. 2015). Consequently, variability of turn bias does have sub
stantial heritability and could potentially respond to selection. 
Therefore, locomotor handedness has unusual advantages for 

the study of selection on phenotypic variability, offering little risk 
that selection on trait variability has confounding effects on the 
trait mean.

Different approaches can be used over the course of artificial se
lection to choose which individuals are allowed to mate and con
tribute to the next generation. In mass selection, also known as 
individual-based selection, an individual is chosen based on its 
own score on the trait being selected. Alternatively, selection deci
sions can be made considering the trait scores of the individual and 
its relatives (an approach termed family-based or family selection) 
(Walsh and Lynch 2018a). The latter approach may enrich the stat
istical signal in selected individuals, as related individuals may 
have correlated phenotypes. Additionally, family-based selection 
can be more likely to maintain allelic combinations that contribute 
to the selected phenotype non-additively. The families chosen in 
each generation may be composed of half siblings, often with the 
same mother but different potential fathers, or of full siblings, gen
erated from one breeding pair. Family-based selection is often em
ployed in plant and animal breeding (Toro et al. 1988), and is 
sometimes employed in laboratory-based selection studies 
(Gallego and López-Fanjul 1983; Zwaan et al. 1995).

Laboratory-based selection experiments are long and labor- 
intensive. Further, factors such as the population size used in 
the experiment and the number of generations for which selection 
should be implemented are difficult to predict in advance, and can 
have significant impacts on the success of the experiment (Roff 
and Fairbairn 2009). Theoretical and computational models can 
be helpful in this regard, allowing one to predict the dynamics 
of selection at a population and genetic level prior to embarking 
on a selection experiment. In this paper, we describe an 
individual-based model of directional artificial selection on a poly
genic trait of interest, specifically behavioral variability in loco
motor handedness in Drosophila melanogaster. Informed by 
empirical data (Ayroles et al. 2015), this model compares the 
phenotypic and genotypic responses of mass versus family-based 
selection regimes (both half-sib and full-sib). This study is novel in 
focusing on a selected trait that is measured using many indivi
duals, the variance of individual behavior. Using this model, we 
predict how different selection regimes change the underlying 
genetic architecture of the evolving population, with focus on 
how epistatic interactions can modulate this change. While our 
model is motivated by an interest in behavior, it is generalizable 
and can be readily extended to a diversity of traits with differing 
genetic architectures. Importantly, it provides specific predictions 
about responses to selection on a phenotypic and genetic level, 
helping biologists optimize the parameters of their selection re
gime before committing to large-scale experiments.

Materials and methods
Our model assumes a polygenic trait with additive and epistatic 
components. All individuals are diploid, and reproduction is sex
ual with a fixed recombination rate. There are no de novo muta
tions. Generations are non-overlapping, with a fixed, finite 
population size. These assumptions are implemented in the mod
el through variables whose default values are given in Table 1. We 
chose values appropriate to behavioral experiments in Drosophila, 
but these variables can be readily changed for traits with different 
architectures or to model populations of various sizes and family 
compositions.

The model was implemented entirely in Python 3. Initial code 
optimization was done on a desktop-PC, and the full model was 
run on the FAS Research Computing Cluster at Harvard 
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University. Statistical analyses were also performed in Python 3, 
using built-in numpy (Harris et al. 2020) and scipy (Virtanen 
et al. 2020) functions. Annotated code can be found at: lab. 
debivort.org/family-selection-for-variability.

We assumed that variability as a trait is determined by L sites, 
each of which has 2 possible alleles: one that has no effect and one 
that contributes a direct additive effect and contributes to epistat
ic effects. Specifically, we assumed that additive effects (Ai) come 
from a beta prime distribution (Supplementary Fig. S1), which 
closely matches the empirical distribution of effect sizes for 
SNPs associated with variability in locomotor handedness 
(Ayroles et al. 2015). We used beta prime parameters of 
a = 0.976, b = 5.789, loc = 2.79 × 10−7 and scale = 0.272. To model 
epistatic effects, we defined an L × L symmetrical interaction ma
trix with each entry Ei,j drawn from an exponential distribution 
with parameter λ and sign randomly assigned as positive or nega
tive with equal probability (i.e. a Laplace distribution with mean 0 
and variance 2λ−2). The value of λ was determined based on the de
sired relative contribution of epistasis to the overall effect size, 
further detailed below. The values of site effect sizes and the epis
tatis interaction matrices were drawn once and fixed for all runs 
and all regimes, thus avoiding any effects introduced by random 
variation in effect sizes. All individuals in our simulations were 
diploid, so each site has 2 loci—individuals could have 0, 1, or 2 al
leles at each site with an effect on variability. Thus, the variability 
trait value for individual a was given by

Va =
􏽘La

i=1

na,iAi +
􏽘La

i=1

􏽘La

j=i+1

Ei,j 

where La is the number of sites in individual a for which at least 
one allele has an effect on variability, i and j index those sites, 
and na,i is, for individual a, the number of alleles at site i which 

have an effect on variability (1 or 2 depending whether that site 
is heterozygous or homozygous). Three levels of epistasis, defined 
as the ratio of the variance in epistatic effects to the overall vari
ance of genotypic values across the population, were simulated. 

Specifically, for high epistasis, Var(E)
Var(V) = 0.5, λ = 0.0021; for medium 

epistasis, Var(E)
Var(V) = 0.25, λ = 0.0012; for low epistasis, Var(E)

Var(V) = 0.125, 

λ = 0.00079.
In our model, an individual’s genotype determines their poten

tial to have a phenotype far from the mode (Ayroles et al. 2015). In 
other words, if an individual comes from a high variability geno
type, it will have a phenotype that is drawn from a wider distribu
tion of potential trait values. The particular behavioral trait 

inspiring this analysis, locomotor handedness, has a mean value 
very close to 0.5 across all assessed genotypes (Ayroles et al. 
2015; Buchanan et al. 2015; de Bivort et al. 2022). Therefore, we 
used each individual’s Va value to compute a true locomotor 
handedness phenotype Pa from a normal distribution with mean 
0.5. In order to make the standard deviation for these distributions 
match empirical data, Va values were scaled and matched via lin
ear interpolation (using the interp function in numpy) to a distri
bution of empirical standard deviations of locomotor handedness 
for 167 genotypes (Supplementary Fig. S2). Accordingly, for each 
individual, the phenotype was determined as: 
Pa ∼ Norm(0.5, (d(Va))2), where d(Va) is the genotypic value after 
mapping. If the sampled value was less than 0 or greater than 1, 
we set it to 0 or 1, respectively. Once the true phenotype of an in
dividual was assigned, we could determine its phenotype as would 
be measured in an actual selection experiment (πa). Locomotor 
handedness is measured as the fraction of t turns that an animal 
makes to the right. Thus, πa ∼ Binom(t, Pa)/t.

New offspring individuals in our simulations were generated 
via sexual reproduction. The sex ratio at birth was fixed at 50:50, 
but the distributions of fitness varied by sex. All females had equal 
probability of being a parent. However, fruit fly males do not have 
equal likelihood of successfully mating and fathering offspring. 
Accordingly, the probability of each male being a parent was 
drawn from the empirical distribution of male fitness in Fig. 1 of 
Pischedda and Rice (2012). For each new offspring, each of their 
diploid parents produced 2 gametes, with recombination. Each 
site had an independent probability ρ of being a site of recombin
ation. For our default values of L = 500 sites and recombination 
rate ρ = 0.002, there was on average one recombination event 
per haploid genome per generation. Of the two gametes generated 
by this process, one was chosen at random as the haploid contri
bution to the offspring. Note, in Drosophila there is no recombin
ation in males (Morgan 1912), so in this respect our simulation 
was more typical of other species.

In every generation of both family-based and mass selection si
mulations, we implemented a strength of selection s = 0.2 or 20%. 
For simulations of family-based selection, the initial population 
was seeded with f families, each of which have n individuals, for 
a total population size of f∗n = N. The default values of f = 35 
and N = 980 were chosen as plausible numbers for a potential 
real implementation of this experiment. Measured phenotypes 
(πa) were computed for all of the individuals from each family. 
The measured variability for each family m, in generation 0, was 
calculated as the standard deviation of individual phenotypes: 
σm(0) = std(πa). s% of f families with the highest variability were se
lected to seed the next generation (Fig. 1a). The average popula
tion variability was estimated as the average of family 
variabilities for all f families: σ0 = μ(σm(0)).

For half-sib selection, individuals from all selected families 
were pooled, and f families were seeded for the next generation 
by randomly picking f multiply-mated females from the pool. 
For full-sib selection, male and female individuals were randomly 
paired from among the selected families to create f monogamous 
pairs, that were used to generate f families for the next gener
ation. The variability for all families in the population (σm(g)) 
was estimated at every generation g, and selection was carried 
out as before.

For simulations of mass selection, the initial population was 
seeded with N individuals. Measured phenotypes (πa) were com
puted for all of the individuals in the population. The variability 
of this population was calculated as the standard deviation of 
the measured phenotypes: σ0 = std(πa). s% of N individuals were 

Table 1. Model variables and their default values.

Variable Variable symbol Default value

Population size N 980
Number of sites L 500
Generations G 100
Per-base recombination rate ρ 0.002
Percent strength of selection s 20%
Number of trials per individual t 500
For mass selection
Number of individuals screened Nsc

N
2

Number of individuals selected Nsel
s

100 × N
For family-based selection
Number of families f 35
Number of individuals per family n N

f

Individuals screened per family nsc
n
2

Number of families selected fsel
s

100 × f
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chosen to seed the next generation, such that the selected indivi
duals formed a subset with the highest possible variability 
(Fig. 1b). This was implemented by sampling across the distribu
tion of individuals, selecting those that have the highest probabil
ity of being from a target high variability distribution. This was the 
default method we used to implement mass selection, and we re
fer to this method of mass selection as “uniform sampling.” We 
additionally implemented a mass selection approach we term “ex
treme sampling,” wherein the 10% of the individuals with the 
most extreme left-bias and the 10% with the most extreme right- 
bias were selected every generation. This is a form of two-tailed 
truncation selection. In both cases, the next generation of N indi
viduals was created via reproduction among all selected indivi
duals. The variability of the population σg was estimated at each 
generation, and selection was carried out as before.

We estimated the selection differential (S) in different regimes 
by calculating the difference in variability of the whole population 
and variability of the subset of individuals that was selected every 
generation. Selection response (R) was calculated as the change in 
phenotypic variability over 1 generation of selection. We 

quantified the realized heritability (h2) at different time points 
during selection as the slope of the regression between the cumu

lative changes in S and R. At generation g, h2 =
􏽐g

1
S

􏽐g

1
R
.

To track the genotypic changes associated with selection, each 
variability site was evaluated for fixation at the end of selection. 
All selection regimes with various combinations of parameters 
were simulated k times under different random seeds to assess 
variation in selection response trajectories.

Results
Family-based selection for variability is faster 
than mass selection
Starting with a simple additive model (no epistasis), our simula
tions showed robust responses to selection for higher turn bias 
variability (Fig. 1c). Family-based selection (half-sib or full-sib) 
yielded a faster response than mass selection. Half-sib family- 
based selection yielded 75% of its total response to selection by 

a

b c

Fig. 1. Variability selection regimes. a) Schematic of family-based selection regime used in the model, showing half-sib and full-sib variants; b) Mass 
selection regime; c) Change in turn bias variability (Δσg = σg − σ0) over 100 generations of mass, half-sib and full-sib selection. Lines are the average Δσg at 
each generation g, averaged across k = 10,000 replicate runs of model. Shaded regions indicate ±1 standard deviation due to run-to-run variation (ϵr)g 
estimated as the standard deviation of Δσg across k replicates; dotted line indicates the variability value of a population where all individuals have the 
maximum variability trait value Va possible with this genetic architecture.
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generation 6, whereas mass selection attained 75% of its final re
sponse by generation 11. Full-sib selection was slightly faster than 
half-sib selection, attaining 75% of its final response approximate
ly 2 generations sooner. When we implemented mass selection 
with extreme sampling, the response was faster than with uni
form mass selection, but was still slower than both half and full- 
sib family-based selection through at least 5 generations 
(Supplementary Fig. S3). However, a downside of extreme sam
pling is the possibility of evolving an undesirable multimodal 
phenotype distribution if the mean of the trait is also heritable 
(Supplementary Fig. S10).

Initial populations had comparable variability (σ0 = 0.135) 
across regimes, measured as the standard deviation of pheno
types across all individuals. The change in variability over 100 
generations of selection was consistent across all regimes. The fi
nal variability attained was, on average, almost as high as the the
oretical maximum possible value, calculated as the variability of a 
population where all the individuals have all the sites fixed at the 
high variability allele (Fig. 1c).

We estimated the selection differential S across regimes as a 
function of the number of generations of selection. Mass was as
sociated with the highest selection differential at all generations 
(Supplementary Fig. S4a). But that regime’s selection response 
(R) was only slightly higher than that of the family-based regimes 
from generations 6 to 15, and even there only by a small amount 
(Supplementary Fig. S4b). Mass selection moreover had a much 
lower selection response than family-based regimes for the first 
3 or 4 generations. Thus, the realized heritability of family-based 
selection was higher than that of mass selection consistently 
across generations (Supplementary Fig. S4c).

Family-based selection for variability fixes more 
sites than mass selection
Many more variability-determining sites were fixed in 100 genera
tions of family-based selection compared to mass selection, with 
full-sib selection fixing 94.9% of all sites on average (Fig. 2a). This 
was an expected consequence of the lower effective population 
size, and therefore higher inbreeding in family-based selection 
(Pekkala et al. 2014). Sites with large effects on turn bias variability 
had higher fixation probabilities in all regimes (Fig. 2b–d), as ex
pected. This relationship was strongest in mass selection (r2 = 0.81 
using a second-degree polynomial fit), weaker in half-sib selection 
(r2 = 0.20), and weakest in full-sib selection (r2 = 0.07), where a large 
number of sites were likely to fix regardless of their effect size 
(Fig. 2d).

Family structure modulates selection response
To determine the effects of family and population size on selec
tion response, we systematically varied these parameters (f and 
N) and measured peak variability change Δσ100 = σ100 − σ0. 
Selection response was smaller at both extremes of f (Fig. 3a). 
The smallest response to selection was found with populations 
with few families of many individuals each (low f , high n). 
Slightly higher variability was attained with populations made 
of a large number of families with few individuals in each family 
(high f , low n). The greatest selection responses were found in po
pulations with families of intermediate size. Regardless of family 
composition, increasing population size boosted the selection 
response.

Run-to-run noise (ϵr) can affect the reliability of selection, an 
important consideration for artificial selection experiments that 
might actually be implemented in the laboratory. With fewer, lar
ger, families (low f , high n), selection responses were more 

variable (Fig. 3b). Populations with more, small families (high f , 
low n) were generally less subject to noisy fluctuations. 
Unsurprisingly, increasing total population size reduced 
run-to-run variability. Overall, our simulations indicated that 
intermediate number of moderate sized families can optimize se
lection for variability at various population sizes, allowing for re
liable, consistently high responses.

Selection outcomes are robust to change in 
model parameters
Changing model parameters (in Table 1) altered the selection re
sponses quantitatively, but did not alter the overall trends and dif
ferences between the selection regimes. For example, changing 
the number of sites that contribute to phenotypic variability 
from 63 to 1,000 had little discernible effect on the selection re
sponse in any of the regimes (Supplementary Fig. S5). Likewise, 
changing the distribution of site effects had no qualitative effect 
on selection outcomes (Supplementary Fig. S6). This suggest 
that results from our model apply to traits with a variety of effect 
size statistics.

When selection was weaker (i.e. more individuals were chosen 
to found subsequent generations) the selection response was 
slower, as expected. This effect was most pronounced under 
mass selection (Supplementary Fig. S7). Modulating population 
size had similar effects across all regimes, with larger population 
sizes showing faster and stronger responses to selection. This ef
fect was more pronounced in family-based selection, where the 
effective population size is reduced due to inbreeding 
(Supplementary Fig. S8).

Epistasis attenuates selection responses
Our model accommodates pairwise epistatic interactions be
tween sites that additively contribute to variability. These epistat
ic effects can be positive or negative (Fig. 5b), increasing or 
decreasing an individual’s latent variability (Va). When epistasis 
was added to the model, the response to selection was slower 
across all selection regimes. However, over 100 generations, a 
similar value of variability was attained (Fig. 4a). The effect of 
epistasis was quantitative: increasing the magnitude of epistatic 
interactions resulted in slower selection responses (Fig. 4b, 
Supplementary Fig. S9).

Sites are differentially fixed with and without 
epistasis
We examined the effect of epistasis on the probability of site fix
ation after selection (Fig. 5a). In our model, a site’s additive effect 
and its average epistatic effect were uncorrelated (Fig. 5b). How 
these 2 effects determined a site’s fixation probability depended 
on the selection regime. In general, fixation probabilities were 
higher when both additive and epistatic effects were included 
(Fig. 5c–h). This difference was more pronounced in family- 
selection regimes, where the population structure could preserve 
combinations of linked sites with strong epistatic interactions. 
Unsurprisingly, the fixation probability of a site depended on its 
additive effect, with larger effect sites being more likely to fix 
(Fig. 2c–e). This relationship was strongest when epistasis was 
not included in the model.

Conversely, sites that had very positive average epistatic ef
fects were more likely to fix when the model included epistatis 
(Fig. 5f–h). This was true even for sites with low additive effects, 
on account of their large positive epistatic contribution to variabil
ity. Similarly, sites that had highly negative epistatic effect sizes 
fixed with a higher probability with epistasis, potentially due to 
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a b

c d

Fig. 2. Fixation of variability determining sites after 100 generations of selection. a) Mean fixation percentage of sites at generation 100 for the 3 selection 
regimes, averaged over 1,000 runs. b–d) Site fixation probability versus effect size in mass, half-sib and full-sib regimes, respectively. Lines are 
second-degree polynomial fits. Tick marks at bottom indicate the values of site effect sizes, which were fixed across all runs.

a b

Fig. 3. Effects of population structure in family-based selection. Changes in (a) peak variability (Δσ100) and (b) run-to-run variation (ϵr) in selection 
response over 100 generations of half-sib selection. Each row has a fixed total population size, with population structure varied by changing the 
distribution of animals within families. The leftmost column corresponds to a many families with few individuals in each, while the rightmost column 
corresponds to fewer, larger families.
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their strong negative effects on variability driving them to extinc
tion (Fig. 5f–h).

Family-based selection is particularly efficient for 
variance- but not mean-based traits
In our model, family-based selection produced a faster response 
than mass selection when the trait under selection was variance- 
based, such as turn bias variability (Fig. 1c, Fig. 6a). We hypothe
sized that the efficiency of family-based selection resulted from 
the concordance of the unit of selection (families) and a trait that 
can only be measured from multiple individuals (variance). To 
test this hypothesis, we used the same model (genetic architecture, 
selection regimes, etc.) to instead select for increased mean value 
of the trait. When the trait under selection was mean-based, and 
not variance-based, all selection regimes were equally rapid 
(Fig. 6b). Both mass and half-sib selection yielded close to their 
maximum selective response within 8 generations (Fig. 6d and f). 
This was in contrast to what we saw for a variance-based trait, in 
which mass selection did not yield nearly half of its selective re
sponse within 8 generations (Fig. 6c and e), while half-sib selection 
reached close to maximum variability. Therefore, the increased ef
ficiency of family-based designs appears specific to selection that 
acts on the variability of a trait, and not its mean.

We conducted further analyses of traits that have heritability 
for both mean and variability. This is a complex topic, with interac
tions between mean and variability, their respective trait architec
tures and the selection regime. We explored these relationships 
only superficially, with a toy trait where mean and variability 
were determined by independent sites. We used the same family- 
based and mass regimes to select for increased variability. When 
variability and mean are both determined by the same number 
of sites with effect sizes drawn from the same distribution, the 
overall qualitative relationships remain as before—family selec
tion outperforms extreme and uniform mass selection, especially 
in the initial generations (Supplementary Fig. S10a–c). However, 
selection outcomes can differ when the mean and variability 
have different underlying effect sizes. When the mean value of 
the trait has sites of much larger effects than the variability sites 
(i.e. the mean has higher heritability), selecting on variability is 
more effective with mass selection (Supplementary Fig. S10d). As 
suspected, using extreme (two-tailed truncated) mass selection 

resulted in the final population having a tri-modal or bi-modal dis
tribution of phenotypes (Supplementary Fig. S10f).

Discussion
We examined the efficiency of different artificial selection regimes 
at evolving variability of a trait. We modeled a trait with a poly
genic architecture, including the possibility of epistatic interac
tions, as is typical of behaviors. Our simulations demonstrated 
that selection can indeed increase the variability of a polygenic 
trait (Fig. 1c), without impacting the mean (Fig. 6a,c,e). 
Family-based selection allowed for an efficient response of in
creasing variability in the focal trait. The parameters of our trait 
were based on locomotor handedness in Drosophila melanogaster, 
but should generalize to many traits, and our major findings are 
robust to large parameter changes (Supplementary Figs. S5–S8). 
Mass selection did result in a strong selection response, but this 
response was slower, a difference with practical consequences 
for actual selection experiments. For instance, laboratory artificial 
selection in fruit flies over a year would result in 20 to 25 genera
tions (Stocker and Gallant 2008); at this point family-based selec
tion is still likely to have yielded a larger response than mass 
selection. An added practical advantage of family-based selection 
is that family-wise variability estimates can be obtained by 
screening a subset of the individuals in each family (Walsh and 
Lynch 2018a). Therefore, a comparable strength of selection can 
be achieved by screening fewer animals than in mass selection.

Since estimating variance requires the measurement of mul
tiple individuals, it makes sense that family-based selection will 
be more efficient at selecting for variability. Family-based selec
tion measures the phenotypes of multiple, related individuals 
that are enriched for common variants, and propagates families 
as the unit of selection. Consistent with this reasoning, we found 
that family-based selection was faster than mass selection on our 
variance-based trait (Fig. 6). Consistently, family-based selection 
had higher realized heritability (Supplementary Fig. S4c) despite 
having lower selection differentials (Supplementary Fig. S4a). 
We believe this performance can be attributed to family-based se
lection estimating the true genetic trait value V more faithfully by 
calculating it over genetically related individuals.

When the same model was used to select for an increase in the 
mean value of the phenotype, all 3 regimes performed essentially 

a b

Fig. 4. Effect of epistasis on selection response. a) Average change in variability versus generations of selection, with high level of epistasis (Var(E)
Var(V) = 0.5) and 

without epistasis, in different selection regimes; b) Average change in variability versus generations of mass selection, with varying magnitudes of 
epistatic interactions.
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identically (Fig. 6b,d,e). Therefore, family-based selection might 
be specifically effective when the selected trait reflects variability 
among individuals. While turn bias in flies does not have substan
tial heritability for its mean (Ayroles et al. 2015; de Bivort et al. 
2022), our model allows the study of selection for variability in 
traits with both heritable mean and variability. Selection re
sponses can vary depending on how much the mean and variabil
ity of the trait vary, their heritabilities, their underlying site effect 
size distributions (Supplementary Fig. S10), and almost certainly 
any pleiotropy between these traits. Our model offers a flexible 
tool for exploring these relationships, and can help pinpoint the 
best selection regime for specific traits. Follow-up studies using 

this model also have the potential to clarify the general relation
ships between trait mean and variability genetic architectures 
and efficient selection regimes.

Population size plays a key role in selection, with larger popula
tions being more resistant to drift, resulting in stronger selection 
response (Wright 1931; Kimura et al. 1963). Accordingly, we found 
larger population sizes resulted in faster, more reliable responses 
across all selection regimes (Supplementary Fig. S8). Family-based 
selection schemes have smaller effective populations than mass 
selection (Pekkala et al. 2014; Walsh and Lynch 2018b), and we 
found that their maximum selection responses were correspond
ingly sensitive to decreased total population size (Supplementary 

a b

c d e

f g h

Fig. 5. Effect of epistasis on fixation of variability-influencing sites. a) Schematic for interpreting fixation probability plots in (c to h); b) Additive effect size 
versus average epistatic effect size for each site (purple point). c–e) Site fixation probability with epistasis versus without epistasis, under mass, half-sib 
and full-sib selection regimes after 100 generations. Points (sites) are colored by their additive effect sizes. Diagonal line indicates the unity line and X 
marks average fixation probabilities across sites. f–h) as in c–e, but with points colored by their average epistatic effect.
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Fig. S8). The relative size of families within the population also 
mattered for selective responses. Given a constant total popula
tion size, more, smaller families improved the reliability of selec
tion across independent runs (Fig. 3b). Reliability is important 
when planning selection experiments in organisms with substan
tial generation times. Even fruit flies, with 10 day generations, re
quire months or years to complete an artificial selection 

experiment. Unfortunately, while increasing the number of fam
ilies improves reliability, it tends to diminish the magnitude of se
lection responses (Fig. 3a). Therefore, a population that has an 
intermediate number of moderate sized families represented a 
good compromise between maximizing selection response and 
minimizing run-to-run noise. Our model thus is helpful for plan
ning experiments and predicting the population structure most 

a b

c d

e f

Fig. 6. Efficacy of selection regimes for variance-based and mean-based traits. Change in selected phenotype versus generations of selection for increased 
(a) variability of the trait (same as Fig. 1c) and (b) mean of the trait. c) Kernel density estimates of the distributions of trait values at generations 0, 8 and 
100 of mass selection for increased trait variability. The generation 8 distribution is not as wide as the generation 100 distribution. d) As in c, but for 
selection for increased trait mean. Note that the generation 8 distribution has a similar mean to that of generation 100. e, f) As in c and d, but for half-sib 
selection. In both panels, the generation 8 and 100 distributions are very similar.
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likely to maximize the chances of seeing a selection response 
within experimental constraints.

Laboratory-based evolution experiments in Drosophila can 
show a rapid response. Directional selection on the mean value 
of thermal tolerance, for example, led to selected flies having a 
higher thermal tolerance within ten generations (Hangartner 
and Hoffmann 2016). In another study, flies selected for better for
aging found food twice as fast as control flies after 5 generations of 
selection (Sevenello et al. 2023). In male flies selected for increased 
or decreased sexual aggression, lineages diverged in the aggres
sive behavior of forced copulation in 3 to 5 generations (Dukas 
et al. 2020). While experimental evolution on variability has not 
been conducted in flies, these previous findings suggested that 
our model’s prediction of selection responses within ∼10 genera
tions are plausible. However, there are factors which our model 
does not account for that might slow the response, such as fitness 
trade-offs or physiological limitations. Our model considers sites 
which only affect our trait of interest, but there might be pleio
tropic interactions with other traits that could alter the selection 
response.

Site fixation probabilities varied considerably across regimes 
(Fig. 2) and with the presence or absence of epistasis (Fig. 5). 
Even with a large total population size, family-based selection’s 
reduced effective population size led to substantially lower het
erozygosity after selection in our model (Fig. 2a). The effects of in
breeding were most prominent in full-sib selection. The absence 
of inbreeding in mass selection resulted in far fewer sites being 
fixed after 100 generations (Fig. 2a). Also, in mass selection the ef
fect sizes of the sites were more strongly correlated with fixation 
probability. Sites of large effect had higher chances of fixing in 
all regimes, but sites of low effect were much less likely to fix in 
mass selection (Fig. 2), consistent with drift being a powerful dy
namic in family-based selection. Therefore, while the population 
structure in family-based selection can accelerate the speed of se
lection, the loss of genetic diversity could potentially lead to in
breeding depression (Pekkala et al. 2014).

When epistatis was factored into the model, fixation probabil
ity rose (Fig. 5). Since inbreeding and family structure can preserve 
larger regions of linked sites, they make it more likely that sites 
with neutral or mild direct effects but more positive or negative 
epistatic effects will fix (Fig. 5f–h). Conversely, sites of high direct 
effect can be prevented from fixing if they are epistatically 
coupled with sites that negatively impact the trait under selec
tion. This was evident in our model, with sites of high additive ef
fect size having a lower likelihood of fixation when epistasis was 
included, across all selection regimes (Fig. 5c–e). When planning 
actual selection experiments, the true level of epistasis may be 
unknown. Fortunately, our model suggests that the extent of epis
tasis does not change the relative efficacy of the 3 regimes (nor did 
it impact the final variability values attained after many genera
tions of selection; Fig. 4).

Our model is flexible, accommodating populations of varying 
structures and traits having different underlying genetic architec
tures. We did not include dominance interactions in our model, 
but the model could be readily extended to incorporate a domin
ance matrix, similar to our implementation of the site-wise epi
static matrix. We observed a robust response to selection for 
variability across a wide range of configurations with our model 
(Supplementary Figs. S5–S8). Our model highlights that selection 
can change the variance of traits, and that family-based regimes 
are an effective way of implementing directional selection for in
creased variability. Intragenotypic behavioral variability can be a 
target of selection, in the laboratory and potentially in nature. 

Responsiveness to selection is a precondition for bet-hedging to 
evolve as an adaptive phenotypic strategy. Experimental studies 
that implement selection on variability in the lab can are a prom
ising path forward to understand the evolutionary role of variabil
ity and its genetic basis.

Data availability
Annotated code used to generate all the data can be found at: lab. 
debivort.org/family-selection-for-variability or at Zenodo (https:// 
doi.org/10.5281/zenodo.15392202). Empirical data for turn-bias 
variability in Drosophila melanogaster were obtained from Ayroles 
et al. (2015). Relevant data can be found at: https://lab.debivort. 
org/genetic-control-of-phenotypic-variability.

Supplemental material available at G3 online.
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