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Persistent idiosyncrasies in behavioral phenotypes have been documented across animal taxa. These individual differences among or-
ganisms from the same genotype and reared in identical environments can result in phenotypic variability in the absence of genetic vari-
ation. While there is strong evidence to suggest that variability of traits can be heritable and determined by the genotype of an organism,
little is known about how selection can specifically shape this heritable variance. Here, we describe a Python-based model of directional
artificial selection for increasing the variability of a polygenic trait of interest. Specifically, our model focuses on variability in left-vs-right
turn bias in Drosophila melanogaster. While the mean value of turn bias for a genotype is non-heritable and constant across genotypes,
the variability of turn bias is a heritable and polygenic trait, varying dramatically among different genetic lines. Using our model, we com-
pare different selection regimes and predict selection dynamics at population and genetic levels. We find that introducing population
structure via a family-based selection regime can significantly affect selection response. When selection for increased variability is im-
plemented on the basis of independently measured traits of individuals, the response is slower, but leads to a population with a greater
genetic diversity. In contrast, when selection is implemented by measuring traits of families with half or full siblings, the response is faster,
albeit with a reduced final genetic diversity in the population. Our model provides a useful starting point to study the effect of different
selection regimes on any polygenic trait of interest. We can use this model to predict responses of laboratory-based selection experi-
ments and implement feasible experiments for selection of complex polygenic traits in the laboratory.
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(Linneweber et al. 2020). Individual differences in calcium re-
sponses (Honegger et al. 2020) of specific glomeruli in the antennal
lobe of fruit flies predict individual odor preferences (Churgin et al.
2025). In zebrafish, short-term habituation of the acoustic startle
response has been found to be modulated by serotonergic neurons
of the dorsal raphe nucleus (DRN) at the individual level (Pantoja
et al. 2016).

At first glance, the stochastic, noisy nature of molecular pro-
cesses suggests that intragenotypic behavioral variability may
be non-adaptive. But theoretical models (McNamara et al. 2004;
Wolf et al. 2008; Olofsson et al. 2009; Dingemanse and Wolf
2010), and empirical studies from microbes (Beaumont et al.
2009; Solopova et al. 2014) and plants (Simons 2009; Childs et al.
2010; Solopova et al. 2014; Pausas et al. 2022) suggest that pheno-
typic variability can, in some circumstances, be adaptive, allowing
organisms to “hedge their bets” against fluctuations in the envir-
onment. If variability is adaptive, it may be the object of evolution
by natural selection, provided there is heritable variation for the
level of variability. Evidence that variability of a trait is under gen-

Introduction

Individuals exhibit idiosyncratic behavioral phenotypes, even in
the absence of genetic variation (Dall et al. 2004; Sih et al. 2004).
These behavioral differences persist over long periods of time
and have been found in behaviors such as activity, aggression
(Kortet and Hedrick 2007; Biro and Stamps 2008; Chapman et al.
2011) and exploration (Verbeek et al. 1994; Minderman et al.
2009; Dingemanse et al. 2012), in species such as fruit flies (Kain
et al. 2012), Amazon mollies (Bierbach et al. 2017), and mice
(Freund et al. 2013). At the mechanistic level, such differences
may be an unavoidable consequence of the stochastic nature of
molecular and cellular function, particularly during development
(Vogt et al. 2008; Stamps and Groothuis 2010). Clonal single-celled
organisms exhibit a significant amount of phenotypic variability,
attributed to stochasticity in gene expression (Elowitz et al.
2002). In fruit flies, 23% of genes were differentially expressed
among genetically identical individuals reared under essentially
identical laboratory conditions (Lin et al. 2016). Stochasticity in
gene expression may affect behavior through its impact on neur-

onal physiology, and specific neurons have been implicated in de-
termining specific idiosyncratic behaviors. For example, the
degree of left-right asymmetry in the wiring of fruit fly dorsal clus-
ter neurons (DCNs) has been shown to predict individual differ-
ences in visual object orientation in freely walking flies

etic control (and therefore heritable) is mounting, with empirical
studies of morphology (Dworkin and Gibson 2006; Debat et al.
2009; Turner et al. 2011) and behavior (Turner et al. 2013;
Ayroles et al. 2015) supporting this. Quantitative loci whose allelic
states impact the variance of a trait, termed “vQTL,” have been
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found across microorganisms, plants and animals, including hu-
mans (Ronnegard and Valdar 2012). An analysis of the genetic
components of variability, both within individual and between in-
dividuals, can be found in Hill and Mulder (2010). These studies
suggest that selection can act to increase or decrease variability
in trait values. Consequently, bet-hedging strategies can poten-
tially be fine-tuned to the ecological and environmental fluctua-
tions that favor them.

Selection for phenotypic variability has been studied from a
quantitative genetics perspective and most extensively applied in
plant and animal breeding (Walsh and Lynch 2018c). Theoretical
models predict that when a trait is under directional selection,
there are correlated effects on the trait variance (Hill and Zhang
2004 ). Truncation selection, for example, retains individuals
from with phenotypes above or below a certain threshold, i.e. indi-
viduals from either of the tail ends of a phenotypic distribution. If
sites determining the trait mean also affect its variability, such
truncation selection could indirectly select for individuals with
greater variability, since they are likely to be over-represented in
the tails of the distribution. In animal and plant breeding, the
aim is often to increase the mean value of a trait, such as milk pro-
duction in cows, while reducing variance, to increase uniformity
across the population. In such cases, selection can be applied on
a combined index that incorporates trait mean and variance,
with the aim to increase the former and reduce the latter
(SanCristobal-Gaudy et al. 1998; Mulder et al. 2008). Models predict
that when the heritability of the variance is much lower than that
of the mean, selection on such an index will initially result in the
mean responding, after which selection pressure will shift to the
variance (Mulder et al. 2008). When disruptive selection is applied
on an index of wing shape in fruit flies, there is a drastic increase in
phenotypic variation in these traits. Stabilizing and fluctuating se-
lection, however, cause a decrease in phenotypic variation
(Pélabon et al. 2010). Selection modeling and experiments have
also been applied to within-individual variation, with the aim of re-
ducing variation among repeated measurements made from an in-
dividual (Ibafiez-Escriche et al. 2008). These prior studies have not
focused on increasing among-individual variability without chan-
ging the mean value of the trait.

Demonstrating that variability of a behavioral trait can indeed
evolve under artificial selection would be an important step in es-
tablishing whether it can evolve in natural circumstances as an
adaptive strategy. Locomotor handedness in Drosophila melanoga-
ster offers several advantages for such an effort. In fruit flies, loco-
motor handedness is a behavioral measure that is readily
estimated (de Bivort et al. 2022) and suitable for experimental evo-
lutionary genetics. Flies have idiosyncratic tendencies to turn left
or right in Y-shaped mazes or open arenas (Buchanan et al.
2015). The distribution of average turn biases across flies is uni-
modal and broad. That is, the most common turn bias is 50-50
left-vs-right, but some individuals have strong left- or right-biases
(e.g. in 100 flies, it is common to find individuals with biases as
strong as 80-20 or more). Locomotor handedness has a mean of
50-50 across genetic backgrounds (Ayroles et al. 2015; Buchanan
et al. 2015), indicating that the mean value of turn bias has very
low broad sense heritability and is unlikely to respond to selection.
In contrast, different wild-derived inbred fruit fly lines exhibit dif-
fering degrees of intragenotypic variability in this behavior. This
variation has a complex genetic architecture with many sites of
small effect correlated with the extent of variability (Ayroles
et al. 2015). Consequently, variability of turn bias does have sub-
stantial heritability and could potentially respond to selection.
Therefore, locomotor handedness has unusual advantages for

the study of selection on phenotypic variability, offering little risk
that selection on trait variability has confounding effects on the
trait mean.

Different approaches can be used over the course of artificial se-
lection to choose which individuals are allowed to mate and con-
tribute to the next generation. In mass selection, also known as
individual-based selection, an individual is chosen based on its
own score on the trait being selected. Alternatively, selection deci-
sions can be made considering the trait scores of the individual and
its relatives (an approach termed family-based or family selection)
(Walsh and Lynch 2018a). The latter approach may enrich the stat-
istical signal in selected individuals, as related individuals may
have correlated phenotypes. Additionally, family-based selection
can be more likely to maintain allelic combinations that contribute
to the selected phenotype non-additively. The families chosen in
each generation may be composed of half siblings, often with the
same mother but different potential fathers, or of full siblings, gen-
erated from one breeding pair. Family-based selection is often em-
ployed in plant and animal breeding (Toro et al. 1988), and is
sometimes employed in laboratory-based selection studies
(Gallego and Lépez-Fanjul 1983; Zwaan et al. 1995).

Laboratory-based selection experiments are long and labor-
intensive. Further, factors such as the population size used in
the experiment and the number of generations for which selection
should be implemented are difficult to predictin advance, and can
have significant impacts on the success of the experiment (Roff
and Fairbairn 2009). Theoretical and computational models can
be helpful in this regard, allowing one to predict the dynamics
of selection at a population and genetic level prior to embarking
on a selection experiment. In this paper, we describe an
individual-based model of directional artificial selection on a poly-
genic trait of interest, specifically behavioral variability in loco-
motor handedness in Drosophila melanogaster. Informed by
empirical data (Ayroles et al. 2015), this model compares the
phenotypic and genotypic responses of mass versus family-based
selection regimes (both half-sib and full-sib). This study is novel in
focusing on a selected trait that is measured using many indivi-
duals, the variance of individual behavior. Using this model, we
predict how different selection regimes change the underlying
genetic architecture of the evolving population, with focus on
how epistatic interactions can modulate this change. While our
model is motivated by an interest in behavior, it is generalizable
and can be readily extended to a diversity of traits with differing
genetic architectures. Importantly, it provides specific predictions
about responses to selection on a phenotypic and genetic level,
helping biologists optimize the parameters of their selection re-
gime before committing to large-scale experiments.

Materials and methods

Our model assumes a polygenic trait with additive and epistatic
components. All individuals are diploid, and reproduction is sex-
ual with a fixed recombination rate. There are no de novo muta-
tions. Generations are non-overlapping, with a fixed, finite
population size. These assumptions are implemented in the mod-
el through variables whose default values are given in Table 1. We
chose values appropriate to behavioral experiments in Drosophila,
but these variables can be readily changed for traits with different
architectures or to model populations of various sizes and family
compositions.

The model was implemented entirely in Python 3. Initial code
optimization was done on a desktop-PC, and the full model was
run on the FAS Research Computing Cluster at Harvard
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Table 1. Model variables and their default values.

Variable Variable symbol Default value
Population size N 980
Number of sites L 500
Generations G 100
Per-base recombination rate P 0.002
Percent strength of selection s 20%
Number of trials per individual t 500
For mass selection

Number of individuals screened Nsc N
Number of individuals selected Nsel 00X N
For family-based selection

Number of families f 35
Number of individuals per family n %
Individuals screened per family Nse z
Number of families selected fsel i

University. Statistical analyses were also performed in Python 3,
using built-in numpy (Harris et al. 2020) and scipy (Virtanen
et al. 2020) functions. Annotated code can be found at: lab.
debivort.org/family-selection-for-variability.

We assumed that variability as a trait is determined by L sites,
each of which has 2 possible alleles: one that has no effect and one
that contributes a direct additive effect and contributes to epistat-
ic effects. Specifically, we assumed that additive effects (A;) come
from a beta prime distribution (Supplementary Fig. S1), which
closely matches the empirical distribution of effect sizes for
SNPs associated with variability in locomotor handedness
(Ayroles et al. 2015). We used beta prime parameters of
a=0.976, b=5.789, loc =2.79 x 10~/ and scale = 0.272. To model
epistatic effects, we defined an L x L symmetrical interaction ma-
trix with each entry E;; drawn from an exponential distribution
with parameter 4 and sign randomly assigned as positive or nega-
tive with equal probability (i.e. a Laplace distribution with mean 0O
and variance 227%). The value of 2 was determined based on the de-
sired relative contribution of epistasis to the overall effect size,
further detailed below. The values of site effect sizes and the epis-
tatis interaction matrices were drawn once and fixed for all runs
and all regimes, thus avoiding any effects introduced by random
variation in effect sizes. All individuals in our simulations were
diploid, so each site has 2 loci—individuals could have 0, 1, or 2 al-
leles at each site with an effect on variability. Thus, the variability
trait value for individual a was given by

L L Lo
Va = ZnayiAl- + Z Z E”
i=1 i=1 j=i+1

where L, is the number of sites in individual a for which at least
one allele has an effect on variability, i and j index those sites,
and ng; is, for individual a, the number of alleles at site i which
have an effect on variability (1 or 2 depending whether that site
is heterozygous or homozygous). Three levels of epistasis, defined
as the ratio of the variance in epistatic effects to the overall vari-
ance of genotypic values across the population, were simulated.

Specifically, for high epistasis, \\,/ZY'((\E,)) =0.5, 2=0.0021; for medium
Var(E)

epistasis, ygp7=0.25, 1=0.0012; for low epistasis, \‘;2:(@) =0.125,
A=0.00079.

In our model, an individual’s genotype determines their poten-
tial to have a phenotype far from the mode (Ayroles et al. 2015). In
other words, if an individual comes from a high variability geno-
type, it will have a phenotype thatis drawn from a wider distribu-
tion of potential trait values. The particular behavioral trait

inspiring this analysis, locomotor handedness, has a mean value
very close to 0.5 across all assessed genotypes (Ayroles et al.
2015; Buchanan et al. 2015; de Bivort et al. 2022). Therefore, we
used each individual's V, value to compute a true locomotor
handedness phenotype P, from a normal distribution with mean
0.5.In order to make the standard deviation for these distributions
match empirical data, V, values were scaled and matched via lin-
earinterpolation (using the interp function in numpy) to a distri-
bution of empirical standard deviations of locomotor handedness
for 167 genotypes (Supplementary Fig. S2). Accordingly, for each
individual, the phenotype was determined as:
P, ~ Norm(0.5, (d(Vq))?), where d(V,) is the genotypic value after
mapping. If the sampled value was less than O or greater than 1,
we setit to 0 or 1, respectively. Once the true phenotype of an in-
dividual was assigned, we could determine its phenotype as would
be measured in an actual selection experiment (z,). Locomotor
handedness is measured as the fraction of t turns that an animal
makes to the right. Thus, z, ~ Binom(t, Py)/t.

New offspring individuals in our simulations were generated
via sexual reproduction. The sex ratio at birth was fixed at 50:50,
but the distributions of fitness varied by sex. All females had equal
probability of being a parent. However, fruit fly males do not have
equal likelihood of successfully mating and fathering offspring.
Accordingly, the probability of each male being a parent was
drawn from the empirical distribution of male fitness in Fig. 1 of
Pischedda and Rice (2012). For each new offspring, each of their
diploid parents produced 2 gametes, with recombination. Each
site had an independent probability p of being a site of recombin-
ation. For our default values of L =500 sites and recombination
rate p=0.002, there was on average one recombination event
per haploid genome per generation. Of the two gametes generated
by this process, one was chosen at random as the haploid contri-
bution to the offspring. Note, in Drosophila there is no recombin-
ation in males (Morgan 1912), so in this respect our simulation
was more typical of other species.

In every generation of both family-based and mass selection si-
mulations, we implemented a strength of selection s = 0.2 or 20%.
For simulations of family-based selection, the initial population
was seeded with f families, each of which have n individuals, for
a total population size of fxn=N. The default values of f=235
and N =980 were chosen as plausible numbers for a potential
real implementation of this experiment. Measured phenotypes
(wa) were computed for all of the individuals from each family.
The measured variability for each family m, in generation 0, was
calculated as the standard deviation of individual phenotypes:
om(0) = std(w,). s% of f families with the highest variability were se-
lected to seed the next generation (Fig. 1a). The average popula-
tion variability was estimated as the average of family
variabilities for all f families: oy = p(om (0)).

For half-sib selection, individuals from all selected families
were pooled, and f families were seeded for the next generation
by randomly picking f multiply-mated females from the pool.
For full-sib selection, male and female individuals were randomly
paired from among the selected families to create f monogamous
pairs, that were used to generate f families for the next gener-
ation. The variability for all families in the population (om(g))
was estimated at every generation g, and selection was carried
out as before.

For simulations of mass selection, the initial population was
seeded with N individuals. Measured phenotypes (z,) were com-
puted for all of the individuals in the population. The variability
of this population was calculated as the standard deviation of
the measured phenotypes: 6y = std(r,). s% of N individuals were
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Fig. 1. Variability selection regimes. a) Schematic of family-based selection regime used in the model, showing half-sib and full-sib variants; b) Mass
selection regime; c) Change in turn bias variability (Acy = o4 — 00) over 100 generations of mass, half-sib and full-sib selection. Lines are the average Ao, at

each generation g, averaged across k = 10,000 replicate runs of model. Shaded regions indicate +1 standard deviation due to run-to-run variation (e;)

g

estimated as the standard deviation of As, across k replicates; dotted line indicates the variability value of a population where all individuals have the

maximum variability trait value V, possible with this genetic architecture.

chosen to seed the next generation, such that the selected indivi-
duals formed a subset with the highest possible variability
(Fig. 1b). This was implemented by sampling across the distribu-
tion of individuals, selecting those that have the highest probabil-
ity of being from a target high variability distribution. This was the
default method we used to implement mass selection, and we re-
fer to this method of mass selection as “uniform sampling.” We
additionally implemented a mass selection approach we term “ex-
treme sampling,” wherein the 10% of the individuals with the
most extreme left-bias and the 10% with the most extreme right-
bias were selected every generation. This is a form of two-tailed
truncation selection. In both cases, the next generation of N indi-
viduals was created via reproduction among all selected indivi-
duals. The variability of the population ¢4 was estimated at each
generation, and selection was carried out as before.

We estimated the selection differential (S) in different regimes
by calculating the difference in variability of the whole population
and variability of the subset of individuals that was selected every
generation. Selection response (R) was calculated as the change in
phenotypic variability over 1 generation of selection. We

quantified the realized heritability (h?) at different time points
during selection as the slope of the regression between the cumu-

lative changes in S and R. At generation g, h? = %32
1
To track the genotypic changes associated with selection, each
variability site was evaluated for fixation at the end of selection.
All selection regimes with various combinations of parameters
were simulated k times under different random seeds to assess
variation in selection response trajectories.

Results

Family-based selection for variability is faster
than mass selection

Starting with a simple additive model (no epistasis), our simula-
tions showed robust responses to selection for higher turn bias
variability (Fig. 1c). Family-based selection (half-sib or full-sib)
yielded a faster response than mass selection. Half-sib family-
based selection yielded 75% of its total response to selection by
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generation 6, whereas mass selection attained 75% of its final re-
sponse by generation 11. Full-sib selection was slightly faster than
half-sib selection, attaining 75% of its final response approximate-
ly 2 generations sooner. When we implemented mass selection
with extreme sampling, the response was faster than with uni-
form mass selection, but was still slower than both half and full-
sib family-based selection through at least 5 generations
(Supplementary Fig. S3). However, a downside of extreme sam-
pling is the possibility of evolving an undesirable multimodal
phenotype distribution if the mean of the trait is also heritable
(Supplementary Fig. 510).

Initial populations had comparable variability (oo =0.135)
across regimes, measured as the standard deviation of pheno-
types across all individuals. The change in variability over 100
generations of selection was consistent across all regimes. The fi-
nal variability attained was, on average, almost as high as the the-
oretical maximum possible value, calculated as the variability of a
population where all the individuals have all the sites fixed at the
high variability allele (Fig. 1c).

We estimated the selection differential S across regimes as a
function of the number of generations of selection. Mass was as-
sociated with the highest selection differential at all generations
(Supplementary Fig. S4a). But that regime’s selection response
(R) was only slightly higher than that of the family-based regimes
from generations 6 to 15, and even there only by a small amount
(Supplementary Fig. S4b). Mass selection moreover had a much
lower selection response than family-based regimes for the first
3 or 4 generations. Thus, the realized heritability of family-based
selection was higher than that of mass selection consistently
across generations (Supplementary Fig. S4c).

Family-based selection for variability fixes more
sites than mass selection

Many more variability-determining sites were fixed in 100 genera-
tions of family-based selection compared to mass selection, with
full-sib selection fixing 94.9% of all sites on average (Fig. 2a). This
was an expected consequence of the lower effective population
size, and therefore higher inbreeding in family-based selection
(Pekkala et al. 2014). Sites with large effects on turn bias variability
had higher fixation probabilities in all regimes (Fig. 2b-d), as ex-
pected. This relationship was strongest in mass selection (r? = 0.81
using a second-degree polynomial fit), weaker in half-sib selection
(r? = 0.20), and weakest in full-sib selection (> = 0.07), where a large
number of sites were likely to fix regardless of their effect size
(Fig. 2d).

Family structure modulates selection response

To determine the effects of family and population size on selec-
tion response, we systematically varied these parameters (f and
N) and measured peak variability change Asi00 = 0100 — 0.
Selection response was smaller at both extremes of f (Fig. 3a).
The smallest response to selection was found with populations
with few families of many individuals each (low f, high n).
Slightly higher variability was attained with populations made
of a large number of families with few individuals in each family
(high f, low n). The greatest selection responses were found in po-
pulations with families of intermediate size. Regardless of family
composition, increasing population size boosted the selection
response.

Run-to-run noise () can affect the reliability of selection, an
important consideration for artificial selection experiments that
might actually be implemented in the laboratory. With fewer, lar-
ger, families (low f, high n), selection responses were more

variable (Fig. 3b). Populations with more, small families (high f,
low n) were generally less subject to noisy fluctuations.
Unsurprisingly, increasing total population size reduced
run-to-run variability. Overall, our simulations indicated that
intermediate number of moderate sized families can optimize se-
lection for variability at various population sizes, allowing for re-
liable, consistently high responses.

Selection outcomes are robust to change in
model parameters

Changing model parameters (in Table 1) altered the selection re-
sponses quantitatively, but did not alter the overall trends and dif-
ferences between the selection regimes. For example, changing
the number of sites that contribute to phenotypic variability
from 63 to 1,000 had little discernible effect on the selection re-
sponse in any of the regimes (Supplementary Fig. S5). Likewise,
changing the distribution of site effects had no qualitative effect
on selection outcomes (Supplementary Fig. S6). This suggest
that results from our model apply to traits with a variety of effect
size statistics.

When selection was weaker (i.e. more individuals were chosen
to found subsequent generations) the selection response was
slower, as expected. This effect was most pronounced under
mass selection (Supplementary Fig. S7). Modulating population
size had similar effects across all regimes, with larger population
sizes showing faster and stronger responses to selection. This ef-
fect was more pronounced in family-based selection, where the
effective population size is reduced due to inbreeding
(Supplementary Fig. S8).

Epistasis attenuates selection responses

Our model accommodates pairwise epistatic interactions be-
tween sites that additively contribute to variability. These epistat-
ic effects can be positive or negative (Fig. 5b), increasing or
decreasing an individual’s latent variability (V,). When epistasis
was added to the model, the response to selection was slower
across all selection regimes. However, over 100 generations, a
similar value of variability was attained (Fig. 4a). The effect of
epistasis was quantitative: increasing the magnitude of epistatic
interactions resulted in slower selection responses (Fig. 4b,
Supplementary Fig. S9).

Sites are differentially fixed with and without
epistasis

We examined the effect of epistasis on the probability of site fix-
ation after selection (Fig. S5a). In our model, a site’s additive effect
and its average epistatic effect were uncorrelated (Fig. 5b). How
these 2 effects determined a site’s fixation probability depended
on the selection regime. In general, fixation probabilities were
higher when both additive and epistatic effects were included
(Fig. 5c-h). This difference was more pronounced in family-
selection regimes, where the population structure could preserve
combinations of linked sites with strong epistatic interactions.
Unsurprisingly, the fixation probability of a site depended on its
additive effect, with larger effect sites being more likely to fix
(Fig. 2c—e). This relationship was strongest when epistasis was
not included in the model.

Conversely, sites that had very positive average epistatic ef-
fects were more likely to fix when the model included epistatis
(Fig. 5f-h). This was true even for sites with low additive effects,
on account of their large positive epistatic contribution to variabil-
ity. Similarly, sites that had highly negative epistatic effect sizes
fixed with a higher probability with epistasis, potentially due to
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their strong negative effects on variability driving them to extinc-
tion (Fig. 5f-h).

Family-based selection is particularly efficient for
variance- but not mean-based traits

In our model, family-based selection produced a faster response
than mass selection when the trait under selection was variance-
based, such as turn bias variability (Fig. 1c, Fig. 6a). We hypothe-
sized that the efficiency of family-based selection resulted from
the concordance of the unit of selection (families) and a trait that
can only be measured from multiple individuals (variance). To
test this hypothesis, we used the same model (genetic architecture,
selection regimes, etc.) to instead select for increased mean value
of the trait. When the trait under selection was mean-based, and
not variance-based, all selection regimes were equally rapid
(Fig. 6b). Both mass and half-sib selection yielded close to their
maximum selective response within 8 generations (Fig. 6d and f).
This was in contrast to what we saw for a variance-based trait, in
which mass selection did not yield nearly half of its selective re-
sponse within 8 generations (Fig. 6¢ and e), while half-sib selection
reached close to maximum variability. Therefore, the increased ef-
ficiency of family-based designs appears specific to selection that
acts on the variability of a trait, and not its mean.

We conducted further analyses of traits that have heritability
for both mean and variability. Thisis a complex topic, with interac-
tions between mean and variability, their respective trait architec-
tures and the selection regime. We explored these relationships
only superficially, with a toy trait where mean and variability
were determined by independent sites. We used the same family-
based and mass regimes to select for increased variability. When
variability and mean are both determined by the same number
of sites with effect sizes drawn from the same distribution, the
overall qualitative relationships remain as before—family selec-
tion outperforms extreme and uniform mass selection, especially
in the initial generations (Supplementary Fig. S10a—c). However,
selection outcomes can differ when the mean and variability
have different underlying effect sizes. When the mean value of
the trait has sites of much larger effects than the variability sites
(i.e. the mean has higher heritability), selecting on variability is
more effective with mass selection (Supplementary Fig. S10d). As
suspected, using extreme (two-tailed truncated) mass selection

resulted in the final population having a tri-modal or bi-modal dis-
tribution of phenotypes (Supplementary Fig. S10f).

Discussion

We examined the efficiency of different artificial selection regimes
at evolving variability of a trait. We modeled a trait with a poly-
genic architecture, including the possibility of epistatic interac-
tions, as is typical of behaviors. Our simulations demonstrated
that selection can indeed increase the variability of a polygenic
trait (Fig. 1c), without impacting the mean (Fig. 6a,.c,e).
Family-based selection allowed for an efficient response of in-
creasing variability in the focal trait. The parameters of our trait
were based on locomotor handedness in Drosophila melanogaster,
but should generalize to many traits, and our major findings are
robust to large parameter changes (Supplementary Figs. S5-S8).
Mass selection did result in a strong selection response, but this
response was slower, a difference with practical consequences
foractual selection experiments. For instance, laboratory artificial
selection in fruit flies over a year would result in 20 to 25 genera-
tions (Stocker and Gallant 2008); at this point family-based selec-
tion is still likely to have yielded a larger response than mass
selection. An added practical advantage of family-based selection
is that family-wise variability estimates can be obtained by
screening a subset of the individuals in each family (Walsh and
Lynch 2018a). Therefore, a comparable strength of selection can
be achieved by screening fewer animals than in mass selection.

Since estimating variance requires the measurement of mul-
tiple individuals, it makes sense that family-based selection will
be more efficient at selecting for variability. Family-based selec-
tion measures the phenotypes of multiple, related individuals
that are enriched for common variants, and propagates families
as the unit of selection. Consistent with this reasoning, we found
that family-based selection was faster than mass selection on our
variance-based trait (Fig. 6). Consistently, family-based selection
had higher realized heritability (Supplementary Fig. S4c) despite
having lower selection differentials (Supplementary Fig. S4a).
We believe this performance can be attributed to family-based se-
lection estimating the true genetic trait value V more faithfully by
calculating it over genetically related individuals.

When the same model was used to select for an increase in the
mean value of the phenotype, all 3 regimes performed essentially
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identically (Fig. 6b,d,e). Therefore, family-based selection might
be specifically effective when the selected trait reflects variability
among individuals. While turn bias in flies does not have substan-
tial heritability for its mean (Ayroles et al. 2015; de Bivort et al.
2022), our model allows the study of selection for variability in
traits with both heritable mean and variability. Selection re-
sponses can vary depending on how much the mean and variabil-
ity of the trait vary, their heritabilities, their underlying site effect
size distributions (Supplementary Fig. S10), and almost certainly
any pleiotropy between these traits. Our model offers a flexible
tool for exploring these relationships, and can help pinpoint the
best selection regime for specific traits. Follow-up studies using

this model also have the potential to clarify the general relation-
ships between trait mean and variability genetic architectures
and efficient selection regimes.

Population size plays a key role in selection, with larger popula-
tions being more resistant to drift, resulting in stronger selection
response (Wright 1931; Kimura et al. 1963). Accordingly, we found
larger population sizes resulted in faster, more reliable responses
across all selection regimes (Supplementary Fig. S8). Family-based
selection schemes have smaller effective populations than mass
selection (Pekkala et al. 2014; Walsh and Lynch 2018b), and we
found that their maximum selection responses were correspond-
ingly sensitive to decreased total population size (Supplementary

20z 1990}20 80 U0 1s9nB Aq £219028/59 Liex(/jeunolgB/e601 01/10p/ajo1ue-aoueApe/[euInolg6/woo dno-olwapeoe//:sdjy oy papeojumoq


http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf165#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf165#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf165#supplementary-data

Family selection for variability | 9

Selection on Variability

a
0.08
2
%
@
g — Mass
£ 004 )
% — Half-Sib
c — Full-Sib
]
e
(@]
0.00
0 25 50 75 100
Generations
C
Mass Generation
= 1
2 =g
2 = 100
o)
o
©
£
(V]
X
0.0 0.5 1.0
Trait Value
e
Half-Sib
Generation
Fn) =8
‘@
S = 100
o
©
£
V]
X

0.0 0.5 1.0

Trait Value

Selection on Mean

b
0.08
C
(]
(4]
=
c — Mass
“8’, 0.04 — Half-Sib
8 — Full-Sib
(@]
0.00
0 25 50 75 100
Generations
d
Mass Generation
= 1
Fn) =3
2 = 100
[0
=}
©
£
(V]
4
0.0 0.2 0.4
Trait Value
f
Half-Sib )
Generation
Fn) =8
2
S =100
o
©
£
(V]
4
0.0 0.2 0.4

Trait Value

Fig. 6. Efficacy of selection regimes for variance-based and mean-based traits. Change in selected phenotype versus generations of selection for increased
(a) variability of the trait (same as Fig. 1c) and (b) mean of the trait. c) Kernel density estimates of the distributions of trait values at generations 0, 8 and
100 of mass selection for increased trait variability. The generation 8 distribution is not as wide as the generation 100 distribution. d) As in ¢, but for
selection for increased trait mean. Note that the generation 8 distribution has a similar mean to that of generation 100. e, f) As in c and d, but for half-sib
selection. In both panels, the generation 8 and 100 distributions are very similar.

Fig. S8). The relative size of families within the population also
mattered for selective responses. Given a constant total popula-
tion size, more, smaller families improved the reliability of selec-
tion across independent runs (Fig. 3b). Reliability is important
when planning selection experiments in organisms with substan-
tial generation times. Even fruit flies, with 10 day generations, re-
quire months or years to complete an artificial selection

experiment. Unfortunately, while increasing the number of fam-
ilies improves reliability, it tends to diminish the magnitude of se-
lection responses (Fig. 3a). Therefore, a population that has an
intermediate number of moderate sized families represented a
good compromise between maximizing selection response and
minimizing run-to-run noise. Our model thus is helpful for plan-
ning experiments and predicting the population structure most
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likely to maximize the chances of seeing a selection response
within experimental constraints.

Laboratory-based evolution experiments in Drosophila can
show a rapid response. Directional selection on the mean value
of thermal tolerance, for example, led to selected flies having a
higher thermal tolerance within ten generations (Hangartner
and Hoffmann 2016). In another study, flies selected for better for-
aging found food twice as fast as control flies after 5 generations of
selection (Sevenello et al. 2023). In male flies selected for increased
or decreased sexual aggression, lineages diverged in the aggres-
sive behavior of forced copulation in 3 to 5 generations (Dukas
et al. 2020). While experimental evolution on variability has not
been conducted in flies, these previous findings suggested that
our model’s prediction of selection responses within ~10 genera-
tions are plausible. However, there are factors which our model
does not account for that might slow the response, such as fitness
trade-offs or physiological limitations. Our model considers sites
which only affect our trait of interest, but there might be pleio-
tropic interactions with other traits that could alter the selection
response.

Site fixation probabilities varied considerably across regimes
(Fig. 2) and with the presence or absence of epistasis (Fig. 5).
Even with a large total population size, family-based selection’s
reduced effective population size led to substantially lower het-
erozygosity after selection in our model (Fig. 2a). The effects of in-
breeding were most prominent in full-sib selection. The absence
of inbreeding in mass selection resulted in far fewer sites being
fixed after 100 generations (Fig. 2a). Also, in mass selection the ef-
fect sizes of the sites were more strongly correlated with fixation
probability. Sites of large effect had higher chances of fixing in
all regimes, but sites of low effect were much less likely to fix in
mass selection (Fig. 2), consistent with drift being a powerful dy-
namic in family-based selection. Therefore, while the population
structure in family-based selection can accelerate the speed of se-
lection, the loss of genetic diversity could potentially lead to in-
breeding depression (Pekkala et al. 2014).

When epistatis was factored into the model, fixation probabil-
ity rose (Fig. 5). Since inbreeding and family structure can preserve
larger regions of linked sites, they make it more likely that sites
with neutral or mild direct effects but more positive or negative
epistatic effects will fix (Fig. 5f-h). Conversely, sites of high direct
effect can be prevented from fixing if they are epistatically
coupled with sites that negatively impact the trait under selec-
tion. This was evident in our model, with sites of high additive ef-
fect size having a lower likelihood of fixation when epistasis was
included, across all selection regimes (Fig. 5c—e). When planning
actual selection experiments, the true level of epistasis may be
unknown. Fortunately, our model suggests that the extent of epis-
tasis does not change the relative efficacy of the 3 regimes (nor did
it impact the final variability values attained after many genera-
tions of selection; Fig. 4).

Our model is flexible, accommodating populations of varying
structures and traits having different underlying genetic architec-
tures. We did not include dominance interactions in our model,
but the model could be readily extended to incorporate a domin-
ance matrix, similar to our implementation of the site-wise epi-
static matrix. We observed a robust response to selection for
variability across a wide range of configurations with our model
(Supplementary Figs. S5-S8). Our model highlights that selection
can change the variance of traits, and that family-based regimes
are an effective way of implementing directional selection for in-
creased variability. Intragenotypic behavioral variability can be a
target of selection, in the laboratory and potentially in nature.

Responsiveness to selection is a precondition for bet-hedging to
evolve as an adaptive phenotypic strategy. Experimental studies
that implement selection on variability in the lab can are a prom-
ising path forward to understand the evolutionary role of variabil-
ity and its genetic basis.

Data availability

Annotated code used to generate all the data can be found at: lab.
debivort.org/family-selection-for-variability or at Zenodo (https:/
doi.org/10.5281/zenodo.15392202). Empirical data for turn-bias
variability in Drosophila melanogaster were obtained from Ayroles
et al. (2015). Relevant data can be found at: https://lab.debivort.
org/genetic-control-of-phenotypic-variability.

Supplemental material available at G3 online.
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