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1. METHODOLOGY OVERVIEW 
1.1.SCOPE 
This methodology protocol uses remotely sensed multispectral imagery and soil sample 
results to train an Artificial Neural Network (ANN) to monitor changes in Soil Organic Carbon 
(SOC) stocks, within a project area, through time. The project area will be defined in the 
credit class document. The SOC change will be reported as CO2 equivalent. SOC is crucial 
to soil health, fertility and ecosystem services including food production, making its 
preservation and restoration essential. This methodology will concentrate on the assessment 
of SOC sequestration as a major soil health characteristic, reported in: 

1. SOC stocks (tSOC). 
2. CO2 equivalents (tCO2e). 

1.2.MOTIVATION 
Soil contains approximately 2344 Gt of organic carbon globally and is the largest terrestrial 
pool of organic carbon (Stockmann et al., 2013). Small changes in SOC stock could result in 
significant impacts on the atmospheric carbon concentration. By monitoring the carbon 
levels in the soil, farmers and landowners will be able to measure the impact of their 
stewardship. 
1.3.OUTLINE 
The following steps will be followed to estimate change in SOC stocks within a project area:  

1. Develop a soil sampling plan for the project area. 
2. Sample collection and preparation. 
3. Laboratory analysis of soil samples. 
4. Estimation of SOC stocks using Machine Learning (ML) and remotely sensed 

multispectral imagery.  
5. Convert SOC stocks to CO2 equivalent stocks. 
6. Calculate the change in CO2e stocks between monitoring periods. 

If historic SOC sampled data meets this methodology’s sampling and laboratory analysis 
requirements, it may be used to calculate a historic baseline.  
This methodology outlines an innovative approach using remote sensing data to train a 
neural network to estimate SOC stocks. This approach also allows for a significant reduction 
in the number of soil samples and in turn reduces costs. 

2. PROJECT BOUNDARIES 
2.1.SPATIAL BOUNDARIES 
Spatial boundaries of the project area will be defined, including any parcels or stratification 
schemes, using an appropriate data format. Acceptable data formats include but are not 
limited to: 

1. ESRI polygon shapefiles 
2. KML/KMZ 
3. GeoJSON. 

2.2.MASKING 
Any areas outside the defined spatial boundaries will be masked. 
2.3.TEMPORAL BOUNDARIES 
The project timeframe will be defined as the period during which SOC stocks will be 
monitored. This methodology will initially be based on annual sampling rounds and will follow 

 | P a g e  1



existing guidelines on advised sampling time delays after the application of organic or 
inorganic fertiliser. Sampling will be conducted at 12-month intervals, or as close to 12-
month intervals as possible depending on logistic requirements and required delays 
following fertiliser applications, to ensure temporal comparability. Modifications can be made 
if an extreme climatic event or disaster is declared in or near the project area, in which case 
clear justification will be provided. 

3. ESTIMATING CARBON SEQUESTRATION USING REMOTELY 
SENSED MULTISPECTRAL IMAGERY AND NEURAL NETWORKS 

3.1.BACKGROUND 
Satellite imagery and other remote sensing data has been shown to provide a proxy for 
SOC; previous approaches were mainly based on spectral indices and some used machine 
learning. An example of the spectral index approach, (Thaler et al., 2019), developed a SOC 
index (SOCI) using three bands of WorldView-2 imagery, with central wavelength (ρ). 

 

Bartholomeus et al., (2008) tested, in laboratory conditions, the performance of several 
spectral indices which had been developed to detect biochemical constituents (e.g., 
cellulose, lignin) for their ability to retrieve SOC. They found correlation for indices based on 
the visible part of the spectrum (R2 = 0.80) and for the absorption features related to 
cellulose (around 2100 nm) (R2 = 0.81). Rasel et al., (2017)) used remotely sensed variables 
such as elevation and forest type rather than image pixel values to estimate SOC. Gardin et 
al., (2021) used meteorological data, a land use map and MODIS Normalised Difference 
Vegetation Index (NDVI) imagery. This information was processed by advanced statistical 
methods to map SOC spatial distribution. Guo et al., (2021) estimated SOC and soil bulk 
density (SBD) through partial least square regression (PLSR) and extreme learning machine 
(ELM) neural networks, achieving a correlation between image reflectance and SOC% with 
R2=0.67. They found that the combination of Sentinel 2 images and ELM obtained the best 
prediction results. ELMs are not as accurate as traditional backpropagation networks; they 
are generally used with problems that require real-time retraining of the network.  
3.2.PROPOSED SOC PROXY 
In this methodology Sentinel-2 multispectral data will be used as the proxy (inputs) and soil 
samples will be used to provide ground truth SOC (targets) data for the estimation of SOC 
stocks.  
Additional data may be used if further research indicates a benefit. Alternative remote 
sensing imagery may be applied in place of Sentinel-2 data provided the spatial and spectral 
resolutions are similar or better.  
3.3.NEURAL NETWORKS 
This methodology will use Machine Learning (ML) in the form of an Artificial Neural Network 
(ANN). ML has been used by various other carbon sequestration methodologies, including 
both shallow and deep learning networks alongside Sentinel-2 imagery, as reviewed by 
(Odebiri et al., 2021). A further review investigated remote sensing techniques for SOC 
estimation, highlighting the most appropriate wavelengths and the use of ML (Angelopoulou 
et al., 2019).  
The advantage of ANN, over other ML methods, is their ability to train directly on high 
dimensional data such as multispectral imagery. They have a high noise tolerance and can 
function on incomplete data. Neural network training is stochastic, producing slightly different 
predictions from each training session. The network may be trained multiple times and the 
results averaged to reduce the potential for extreme results, smoothing the data to provide 
more reliable and conservative estimates.  

SOCI =
ρ478

ρ659 − ρ546
 #( SEQ Equation \* ARABIC 1)
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4. SOIL SAMPLING METHODS 
For each project a suitable soil sampling scheme will be chosen based on field 
characteristics and practical considerations such as sampling capacity. Two primary 
stratification approaches may be applied: (i) area-based stratification using equal-sized 
blocks, and (ii) stratified random sampling using homogenous zones. In addition, two main 
sampling methods may be applied within strata: (i) distributed composite sampling, and (ii) 
clustered composite sampling.  
Stratum boundaries, strata size, and sampling point locations may be adjusted in 
subsequent sampling rounds as knowledge on project SOC variability improves. 
Adjustments shall be documented and justified based on improved understanding of project-
area conditions. 
Projects may propose alternative sampling strategies where scientifically justified. Such 
approaches shall be supported by adequate project-specific rationale and submitted as a 
methodology deviation where required. 
4.1.STRATIFICATION METHODS 
Stratification refers to the technique of partitioning a population into smaller groups based on 
similar characteristics. It is the preferred sampling method as it can help to reduce the 
number of samples needed whilst increasing the accuracy of the results, (Booman et al., 
2023).   
4.1.1.AREA-BASED STRATIFICATION 
Under area-based stratification, agricultural fields will be divided into blocks of approximately 
equal area. A single block may cover an entire field where appropriate. Each block will 
constitute a sampling stratum. This stratification approach is preferred in situations where 
there is limited understanding of existing project-specific SOC variation and/or limited data 
regarding variables known to impact SOC stocks.  
4.1.2.ZONAL STRATIFICATION 
Under zonal stratification, the project area will be divided into zones which represent 
relatively homogeneous conditions impacting SOC stocks. Relevant factors may include, but 
are not limited to, the following variables found to be good proxies to spatial variability of soil 
type, topography, Land Use/Land Cover (LULC), hydrology, satellite imagery, and climatic 
zone, (Lawrence et al., 2021). SOC estimations from machine learning algorithms validated 
within a comparable context to the project area (e.g. similar climate zone, soil type, 
management system) may also be used for stratification. 
Strata may cover multiple fields, and a single field may contain multiple strata, dependant on 
project variability. This stratification approach is preferred in situations where there is existing 
knowledge on project-specific SOC variation and/or available data on variables known to 
impact SOC stocks.  
4.2.SAMPLING METHODS 
Within strata, two main sampling methods may be applied: (i) distributed composite 
sampling, and (ii) clustered composite sampling. For both sampling methods, multiple soil 
cores will be composited into a single sample for lab analysis. The exact number of soil 
cores within each composited sample will be dependent on field characteristics, sampling 
resources, and laboratory soil volume requirements. Typically, a composited sample will 
include 9-12 individual soil cores, but this number may vary within and between projects.  
Single-core samples may also be used where determined to be more appropriate for the 
sampling objectives or analytical requirements. 
In all cases, the locations of the soil sample positions will be reported by the sampling team. 
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4.2.1.DISTRIBUTED COMPOSITES 
Under the distributed composites approach, cores will be arranged across the entire stratum 
in an evenly spaced grid design. All cores within a stratum will then be composited into a 
single soil sample. The density of cores within each stratum will primarily be determined by 
sampling logistics and laboratory soil volume requirements. This method aims to optimise 
the capture of spatial variation, particularly in situations where there is no prior knowledge of 
SOC patterns. This method is most appropriate where strata are relatively small in area to 
ensure spatial variation is adequately captured whilst retaining accuracy and avoiding 
averaging over excessive areas which could obscure real differences.  

  
Figure 1 - Example of distributed composite sampling. 

4.2.2.CLUSTERED COMPOSITES 
For the clustered composites approach, the number and location of sampling points may be 
determined by stratum size and/or existing variability. Sampling points may be placed at 
random locations within the strata, in representative locations within the stratum where prior 
knowledge of SOC patterns is available, or in an evenly spaced grid pattern within the 
stratum. At each sampling point, several cores will be collected within a small radius 
(typically <20 m) and composited to produce a sample for that individual point. This differs 
from the distributed composites approach in which all soil cores collected across a stratum 
are combined into one composite. In the clustered approach, each point retains its own 
composite sample. 
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Figure 2 - Example of clustered composite sampling. 

4.3.SOIL CORE EXTRACTION 
To maintain the integrity of the results the Regen Network soil sampling guide (Booman et 
al., 2023) will be the main reference. The following method will be used to collect soil 
samples: 

1. This proposal will use a consistent depth across monitoring rounds. 
2. The sampling depth will be the same for all samples. The only exception to this 

will be where the nominated sampling depth cannot be reached due to bedrock 
or impenetrable layers. The sampling depth will be recorded where <30cm. 

3. Each core will be georeferenced using a GNSS device with an accuracy of 10 
metres or better. 

4. Samples will be taken a sufficient distance from any tree, structure, or body of 
water so as not to be influenced. 

5. The date/time of each core will be recorded for each sampling round. 
6. Sampling rounds may be conducted earlier than 6 months after the application 

of organic amendments, provided that the contribution of the organic carbon 
(OC) content of the amendment can be estimated and deducted from the 
SOCS. 

4.4.SAMPLING UNCERTAINTY 
Soil represents a spatially continuous and highly heterogeneous medium, often treated as 
an infinite population in statistical terms due to the impracticality of sampling every individual 
unit (grain or location). Consequently, statistical inference is required to estimate population 
parameters (e.g. mean SOC concentration) from a finite sample set. These estimates 
inherently carry uncertainty, which can be estimated using confidence intervals, a method 
that reflects the variability of the estimate due to statistical sampling error (Montgomery & 
Runger, 2014). The precision of such estimates improves with increased sample size, as per 
the Central Limit Theorem, but collecting large sample sets is often constrained by cost and 
logistics (Webster & Oliver, 2007). 
To address this, a methodology is employed that synthetically augments the sample density 
using a combination of observed sample data and multispectral imagery processed through 
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a trained neural network. This approach generates synthetic data points that maintain spatial 
consistency with the resolution of the imagery, effectively increasing the sampling density 
without additional fieldwork. The reliability of inferences drawn from this synthetic dataset is 
contingent on the resolution of the imagery used during the baseline monitoring period. If 
resolution is reduced, the uncertainty in derived estimates increases proportionally. 
The uncertainty in SOC estimation is inversely related to the sampling density and directly 
related to the spatial variability of SOC, which can be quantified using the standard deviation 
or coefficient of variation. This relationship can be simulated by generating random values 
with defined variability across grids of decreasing sample density. Such simulations illustrate 
the impact of sampling resolution on statistical confidence, as shown in Figure 3, and may 
be used to determine optimal sampling density if SOC variability is known. These principles 
align with geostatistical theory and spatial sampling design (Isaaks & Srivastava, 1991). 

 
Figure 3 - Sample Uncertainty v Relative Sample Density. Colours denote the variability 

(Standard Deviation) within the sample area.  

5. PROCESSING WORKFLOW 
The following workflow outlines the method used to estimate SOC stocks using remotely 
sensed imagery, ancillary data and ML. All images and ancillary data included in the analysis 
will be specified in the project report. The workflow sequence will be: 

1. Soil sampling. 
2. Ancillary data, if used. 
3. Sample analysis. 
4. Image and ancillary data pre-processing. 
5. Neural network training data. 
6. Neural network training. 
7. Estimating SOC with the previously trained neural network. 
8. Project reporting. 

Sampling 
Uncertainty v Relative Spatial Density and Variability
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5.1.ANCILLARY DATA 
Ancillary data may be used to augment the ANN training dataset by adding additional 
predictors. The ancillary data may include: 

1. Date, to allow for seasonal change. 
2. Soil type. 
3. Temperature. 
4. Rainfall. 
5. Soil moisture. 
6. Nitrogen levels. 
7. Slope. 
8. Altitude. 

The soil sample dates and the sample dates for the ancillary data, where relevant, will be 
chosen to be temporally close. 

6. SAMPLE ANALYSIS 
The DUMAS dry combustion laboratory test will be the preferred method for the laboratory 
measurement of SOC % due to its direct and complete measurement of total organic carbon 
with the highest reproducible accuracy.   
The Walkley-Black wet combustion method is an acceptable moderate accuracy alternative 
for rapid field assessments, historical data continuity and low-resource settings where 
DUMAS capability is unavailable but is inferior to DUMAS due to incomplete oxidation 
leading to underestimation. It typically recovers only 60% to 80% of total SOC depending on 
soil type and conditions due to partial oxidation by potassium dichromate (Shamrikova et al., 
2022). A conversion factor, commonly 1.3, is frequently used to adjust Walkley-Black results 
to better approximate SOC (Shamrikova et al., 2022), though this factor can vary with soil 
properties, introducing inconsistency and potential bias in analysis.  
Loss on Ignition (LOI) may only be used when DUMAS or Walkley-Black laboratory tests are 
geographically unavailable as a low accuracy mass-loss measurement of organic matter, to 
maintain relative comparison with historic organic matter data records. 
6.1.LABORATORY STANDARDS 
Table 1 in Regen Network soil sampling guide (Booman et al., 2021) will be used to comply 
with Regen Network laboratory specific instructions, laboratory accreditation requirements 
and approved laboratories. The analysis must follow standard recommendations or standard 
procedures for SOC analysis. DUMAS will be the preferred laboratory method with Walkley-
Black an acceptable secondary method alternative. Loss on Ignition (LoI) may only used in 
geographies where DUMAS and Walkley-Black are unavailable.  Any future new methods of 
analysis that improve on the accuracy of current methods may be adopted.  
If possible, the same analysis type using the same laboratory will be continued throughout 
the Project Crediting Period to ensure comparability. Exceptions are allowed where justified 
e.g. higher accuracy laboratory analysis methods become available, or the laboratory stops 
providing the service or increases cost to a degree that renders the project commercially 
unviable.  
6.2.CARBON STOCK CALCULATION 
The following equation will be used to quantify SOC stock (t/ha), using laboratory reported 
percent soil organic carbon (%), bulk density (g/cm3) and sample depth (cm): 

SOC Stock = Sample Depth*Bulk Density*SOC #( SEQ Equation \* ARABIC 2)
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7. NEURAL NETWORK PROCESSING 
The processing by the neural network requires the following steps: 

• Collection of imagery. 
• Collection of ancillary data, if applicable. 
• Training. 
• Estimation of SOC. 

7.1.IMAGERY 
Remotely sensed multispectral or hyperspectral image data will be used for ANN training. As 
an example, Sentinel-2  image bands are shown in Table 1. 1

Table 1 Sentinel-2 Multispectral Bands 

7.2.IMAGE PROCESSING 
Imagery with a sensing date as close as possible to the sampling date will be used. Image 
processing will include: 

1. Processed to provide Bottom of Atmosphere (BOA) reflectance values. 
2. Coordinate conversion as required (e.g. British National Grid for UK projects). 
3. Resampling imagery and ancillary data to the same resolution (normally 10m). 
4. Band stacking to create a multispectral image. 

7.3.NEURAL NETWORK TRAINING DATA 
A GIS sampling tool will be used to extract multispectral reflectance data at each soil sample 
location. This data will then be paired with its respective SOCS values to create a training 
dataset. A proportion of the training dataset will be withheld for validation and test data. The 
most common fractions for validation and testing data are 15% (Shahin et al., n.d.). 
Validation data may not be required for certain network architectures. 

Band Number Central Wavelength 
(nm)

Bandwidth 
(nm)

Spatial Resolution (m) Remarks

1 443 20 60 Aerosols

2 490 65 10 Blue

3 560 35 10 Green

4 665 30 10 Red

5 705 15 20 Red Edge 1

6 740 15 20 Red Edge 2

7 783 20 20 Red Edge 3

8 842 115 10 Near IR

8a 865 20 20 Red Edge 8

9 945 20 60 Water Vapour

10 1375 30 60 Cirrus Detection

11 1610 90 20 SWIR 1

12 2190 180 20 SWIR 2

 https://eos.com/find-satellite/sentinel-2/1
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7.4.ESTIMATED SOIL ORGANIC CARBON STOCK 
A trained network and remotely sensed imagery covering the project area will be used to 
estimate SOC stock at sampled and unsampled locations. The estimated SOC stock (t/ha) 
will be exported as a raster image. Post-processing will then be used to summarise the 
results as required e.g. mean and total stock values for strata, fields, and the total project 
area.  

8. CALCULATING CREDITABLE CARBON CHANGE 
8.1.BASELINE DEFINITION 
The baseline SOC stock is defined here as the total carbon stock calculated for the project’s 
initial monitoring date, or date of the first sampling round. The methodology will use a static 
baseline for each project, calculated as the total SOC stocks at the initial monitoring date.  
Subsequent monitoring rounds will be compared to the baseline, or historical maximum SOC 
stock, whichever is greater, to calculate creditable carbon change. 
8.2.GROSS SOIL ORGANIC CARBON STOCK CHANGE 
The gross change in SOC stocks between reporting periods is estimated as the difference 
between the total SOC stock recorded by the current monitoring round (tSOC(t)), minus the 
maximum historically recorded total SOC stock (tSOC(Max)): 

8.3.CONVERTING SOC STOCKS TO CO2 EQUIVALENTS 
Converting soil organic carbon stocks to CO2 equivalent stocks (CO2e) will be done by 
multiplying the SOC stocks (t) by a conversion factor of 3.67, the ratio of the molecular mass 
of carbon dioxide (44) to that of carbon (12): 

The same applies for converting the change in the total SOC between two monitoring 
periods into CO2 equivalents (CO2e). 
8.4.NET SOIL ORGANIC CARBON STOCK CHANGE 
The gross SOC stock change must be adjusted for the error and uncertainty related to the 
SOC predictions from the ANN to calculate the net SOC stock change. In the context of this 
methodology, error refers to the difference between the ANN result and the lab analysis 
result from the soil sample. Uncertainty refers to the uncertainty in the ANN’s SOC 
predictions in unsampled pixels.   
8.4.1.ERROR 
The method for calculating error in the ANN results will be to compare geographically 
corresponding network predictions to sample results data. The error will be quantified using 
the Absolute Percentage Error (APE) for each sample point or stratum, and the overall error 
for the project area will be calculated using the average of all APE values, referred to as the 
Mean Absolute Percentage Error (MAPE): 

with number of values (n), soil sample value (At), and network prediction (Ft). 
8.4.2.UNCERTAINTY 
The MAPE provides a scale-independent measure of the average prediction error of the 
ANN results in the sampled locations and can be used to estimate the uncertainty of the 
ANN results in the unsampled locations.  
The reliability of the MAPE as a measure of uncertainty in unsampled locations depends on 
the density and spatial distribution of the validation soil samples used in the calculation. For 

Gross SOC Stock Change = tSOC(t) − tSOC(Max) #( SEQ Equation \* ARABIC 3)

CO2e = SOC × 3.67#( SEQ Equation \* ARABIC 4)

MAPE = 1
n ∑n

t=1
At−Ft

At
 #( SEQ Equation \* ARABIC 5)
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this reason, it is preferable where possible to account for the stability of the MAPE 
calculation itself.  
In the context of this methodology, the stability of the MAPE calculation will be determined 
through a Monte Carlo resampling procedure, which is commonly used in accuracy 
assessments within the remote sensing field (Hsiao & Cheng, 2016; Lyons et al., 2018). 
Using this approach, the MAPE will be repeatedly recalculated after omitting a small subset 
of validation points in each iteration. The resulting distribution of MAPE values reflects the 
stability of the original MAPE calculation.  
From the distribution of MAPE values generated through the Monte Carlo resampling 
procedure, the 90th percentile (MAPE90) will be calculated. This corresponds to the MAPE 
value that is only exceeded by 10% of the simulations, thereby representing a conservative, 
upper-bound estimate of model error. 
A stability threshold of 1% is applied to determine whether the original MAPE (MAPEorig) is 
sufficiently robust. If MAPE90 exceeds MAPEorig by more than 1%, then MAPEorig is 
considered unstable and MAPE90 will be used as the final MAPE (MAPEfinal) in further 
calculations. If the difference is less than or equal to 1%, the stability is deemed acceptable 
and MAPEorig is retained as MAPEfinal.  
The final MAPE is therefore defined as: 

 

  
MAPEfinal (%) and gross SOC stock change (tCO2e) will be used to calculate the uncertainty 
adjustment (tCO2e) for the entire project area. This represents a deduction as a proportion of 
total SOC stock change, accounting for ANN uncertainty.  

The exact procedure used to perform the Monte Carlo resampling approach of the MAPE 
may differ between projects and monitoring rounds, including the number of iterations 
performed, the proportion of the validation soil sample points omitted in each iteration, and 
the method for selecting a subset of validation points to omit in each iteration. These 
parameter choices must be clearly reported and justified.  
Measuring the stability of the MAPE calculation provides an indirect but meaningful reflection 
of the uncertainty originating in soil sampling designs. When the validation soil sample 
dataset is relatively large and well distributed, the MAPE value typically remains stable 
across recalculation iterations which suggests a more reliable assessment of ANN error. In 
contrast, when sample density is low then each sample point has a proportionally greater 
impact on the MAPE calculation, typically leading to a wider spread of values hence a less 
stable MAPE.  
Accounting for ANN uncertainty through both the MAPE value and the stability of the MAPE 
value itself allows the indirect inclusion of the impact of reduced sample density on ANN 
uncertainty, thereby providing a more robust and conservative estimation of the confidence 
on the ANN results.  
Other suitable methods for error and/or uncertainty estimations may be chosen where 
scientifically justified.  
8.4.3.NET CHANGE 
The net change in SOC stocks is calculated by deducting the uncertainty adjustment from 
the gross change in SOC stocks. 

 

M A PEfinal{
M A PE90      if M A PE90  >  M A PEorig  ×  1.01
M A PEorig   if M A PE90  ≤  M A PEorig  ×  1.01

Uncertainty Adjustment = MAPEfinal × Gross SOC Stock Change#( SEQ Equation \* ARABIC 6)

Net SOC Stock Change = Gross SOC Stock Change − Uncertainty Adjustment#( SEQ Equation \* ARABIC 7)
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8.5.DEDUCTIONS 
The deduction (D) for the project will be the sum of the following factors: 

1. Yield-related Leakage Deduction (L) 
2. Greenhouse Gas Emissions Deduction (E). 

The total deduction (tCO2e) is calculated as sum of the deductions: 

 

8.5.1.YIELD-RELATED LEAKAGE 
Yield-related leakage refers to any significant reduction in yield within the project area which 
may lead to increased production elsewhere, hence increased emissions outside of the 
project area. In this methodology, a significant yield reduction refers to a project average 
percentage reduction in yield of 10% or more in comparison to the 5-year average or, in the 
event of climatic conditions that reduce regional yield, a reduction in yield of 10% or more 
below the regional average for that crop type.  
The yield leakage exceeding the 10% threshold will be calculated as shown for each 
relevant crop type.  

 

This is then multiplied by the relevant crop area and crop-specific average emissions 
reported by the project during the current monitoring period to calculate the leakage 
deduction. 

 

The leakage deductions for each relevant crop type in the project are summed to give a total 
project leakage deduction. 
8.5.2.GREENHOUSE GAS EMISSIONS 
The total Greenhouse Gas Emissions (GHG) deduction refers to emissions from all food and 
fibre production within the geographic boundaries of the Project Area emitted during the 
monitoring period, in tCO2e, calculated using an IPCC higher tier (tier II or III) method of 
GHG reporting or other approved credible Registry GHG Calculation method that Regen 
Registry recognises and accepts, in accordance with the Credit Class. 
8.6.CREDITABLE CARBON CHANGE 
The total creditable carbon change (tCO2e) in the project area for a given reporting period is 
calculated as the net change in SOC stock between the current monitoring period and the 
previous monitoring period with the highest total SOC stock, minus total deductions.  
One EcoCredit will be issued per tCO2e positive creditable carbon change. Of the total 
creditable carbon change, 20% will be placed in a buffer pool to whilst the remaining 80% is 
available for trade.  

9. DATA REPORTING 
9.1.REPORT 
After each monitoring round, a report will be submitted to the Regen Registry including a 
description of the methods used for soil sampling, analysis of samples, as well as the 
equations and references that were used. The reported results for each section of this 
Methodology will be accompanied by the supporting data. In the case of GIS or remote 
sensing data the SOC maps will be included as images within the report for illustrative 
purposes. The original vector and raster files will be kept by ecometric ltd. Any 
documentation containing calculations and statistical analysis will also be retained. 
9.2.MONITORING REPORT 
The monitoring report will include: 

D = L + E #( SEQ Equation \* ARABIC 8)

Yield Leakage  = (5 Year Average Yield × 0.9) − Project Average Yield #( SEQ Equation \* ARABIC 9)

Leakage Deduction  =  Yield Leakage × Crop Area × Crop Average Emissions #( SEQ Equation \* ARABIC 10)
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1. Sampling stratification design. This states the average strata size and sample 
numbers per stratum employed in the monitoring round.  

2. Method of assigning strata boundaries and core locations including, GIS file 
format used, sample labelling system and minimum GNSS absolute accuracy 
of the sampling team georeferencing equipment.  

3. Soil sampling contractor and sampling equipment type used in the monitoring 
round including GNSS accuracy. 

4. Coordinate reference system used for geoprocessing. 
5. Sampling date. 
6. Selected laboratory, laboratory accreditation, laboratory tests used. 
7. AI training method summary. 
8. Method used to quantify AI error and the mean associated error for the 

monitoring period. 
9. Contact information of the independent contractor used to gather GHG 

emissions data and calculate total project area GHG emissions.  
10. AI SOC results. Field level results to include, where possible: 

• Field area (ha). 
• Monitoring interval crop type. 
• Gross mean SOCS (t/ha).  

For all monitoring rounds after baseline, tabulated results will list previous 
monitoring rounds to allow comparison.  

11. Gross and net SOCS change between monitoring rounds (tSOC) and (tCO2e). 
12. GHG emissions summaries and full report references for relevant monitoring 

rounds. 
13. Yield related leakage reported against 5-year average crop yields.   
14. Credit statement, with total creditable credits separated into buffer credits 

(20%) and tradeable credits (80%).  
Where appropriate, the relevant information may be presented in alternative formats e.g. a 
monitoring report and a supporting credit statement, either in separate files or combined into 
a single file. 
9.3.PUBLICLY REPORTED DATA 
The supporting data that will be publicly displayed on the Regen Registry is shown in Table 
2: 
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Table 2 Public Data 

9.4.NON-PUBLIC DATA 
The additional commercially sensitive data will not be displayed publicly but will be made 
available to auditors, verifiers, diligence agencies and ratings agencies on application. 

Table 3 Non-Public Data 

10.DATA STORAGE 
All data used during the analysis will be stored for 5 years after the completion of the project. 
This data includes: 

1. All raster and vector data used in geospatial analysis to generate results for 
any section of the methodology. 

2. A copy of all laboratory reports. 

Folder Sub Folder Contents File Type Number of Files

Public data Project Plan .docx or .pdf 1

Emissions Report .pdf 1

Emissions Report Methodology .pdf 1

Monitoring Report .docx or .pdf 1

Folder Sub Folder Contents File Type Number of Files

AI Data Image Remotely Sensed 
Images

.tiff/.tif As required

Network Training 
Data

Training Data .csv As required

Trained Network Network Settings .mat 1

Project Area Network 
Result 

.csv 1

Emissions Harvest Report 
Raw Data

Emissions Calculator 
Input Data

.docx 

.pdf 

.xlsx

Variable, by diversity of 
farming system and 
operations

Historic Yields and 
Cropping. 

Historic 5-Year 
Management Plan.

.xlsx 1

Monitoring Season 
Cropping Plan

.xlsx 1. May be omitted if 
included in 5-year 

Land Registry Land Registry Titles .pdf Variable, by farm size

Report Monitoring Report .pdf 1

Sampling Results Sample Results .xlsx 1

Individual Laboratory 
reports

.csv Variable, by project size 
and laboratory 
reporting interval
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3. All the relevant field data from the soil sample collection process (dates, tools, 
procedures, sample locations). 

4. Documentation outlining calculations and results of statistical analysis. 

11.DATA VERIFICATION 
All data and information collected during the monitoring reporting as stated in para 5.1.1, 
including all publicly reported data as outlined in para 5.1.2 and non-public data as outlined 
in para 5.1.3 will be made available to the verifier. 
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