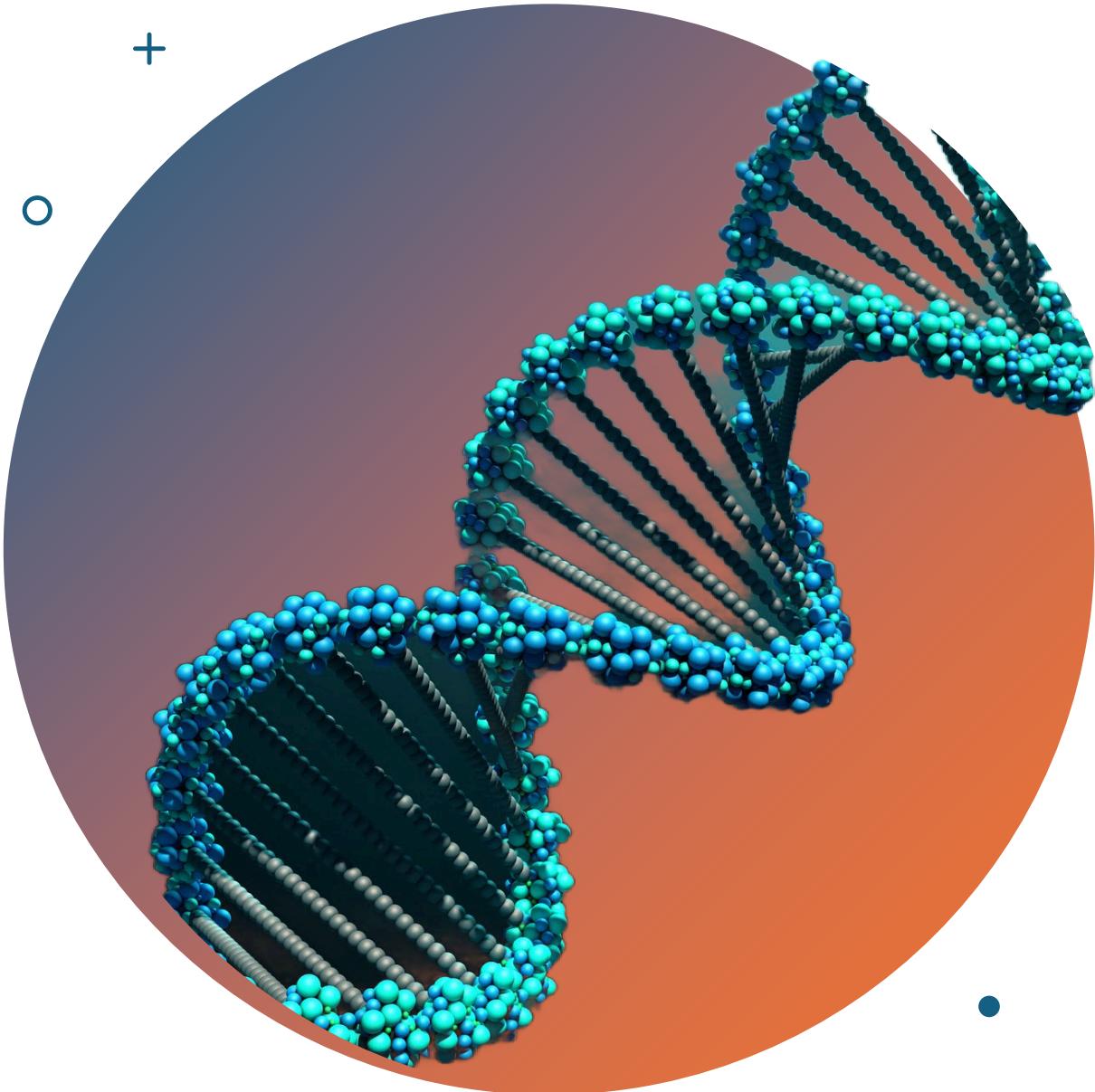


Hard Truths and Soft Tissues - Best Practices in Men's Integrative Health

Dr. Eric Marsden ND

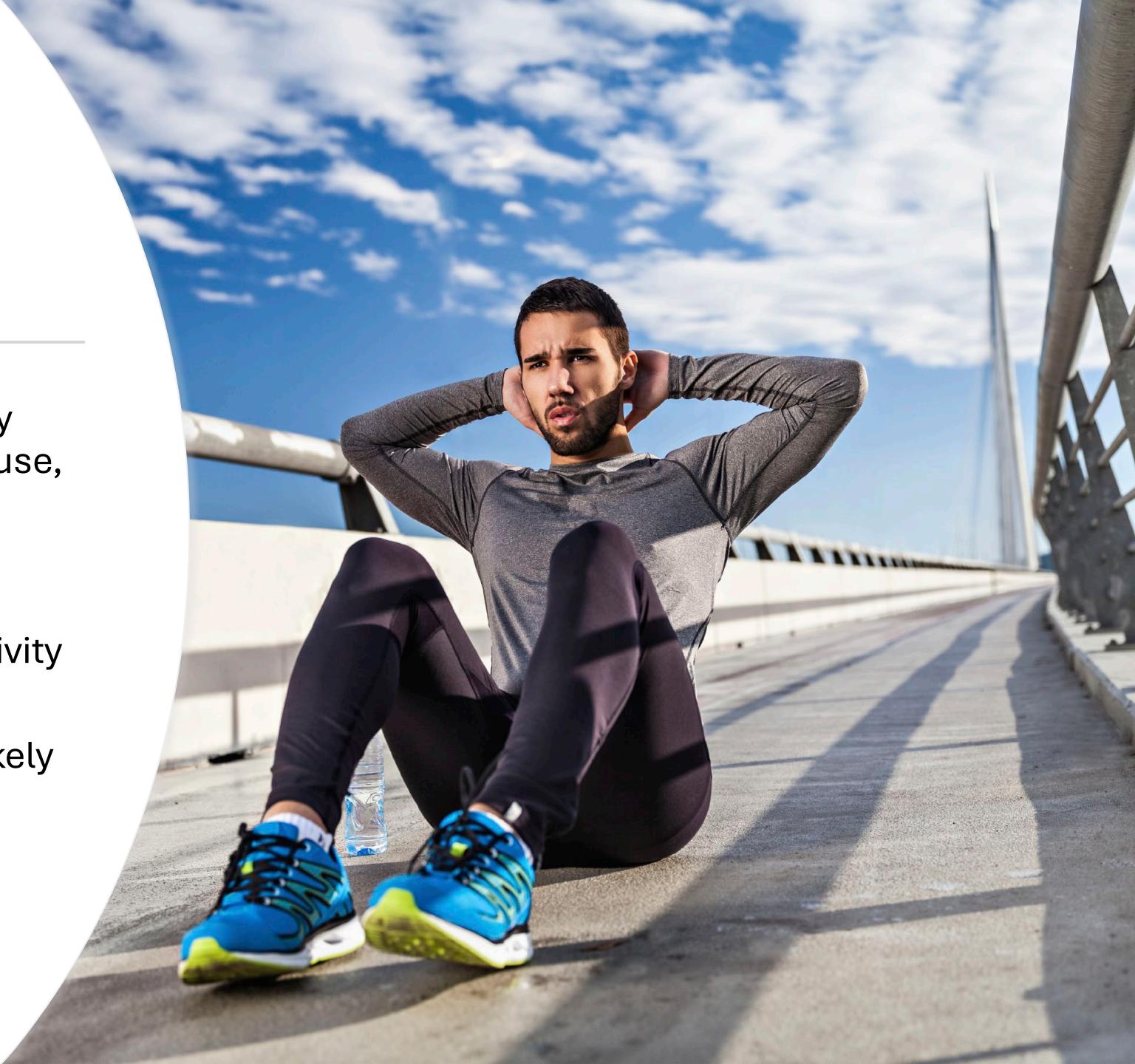


Learning Objectives

- Understand the evolving landscape of men's health across the lifespan
- Identify key drivers of hormonal, metabolic, and cardiovascular dysfunction
- Integrate evidence-based lifestyle, nutraceutical, and medical strategies
- Apply a personalized, systems-based framework to male patient care
- **Key Concepts**
 - Men's health as a *systems issue*, not a single hormone problem
 - The intersection of endocrinology, cardiometabolic health, inflammation, and lifestyle
 - Why conventional care often under-addresses early dysfunction

Background and Context

Biology
Behaviour
Environment



Biological Aspects

- Genetic Risk Factors: Higher prevalence of X-linked conditions, increased risk for conditions like cardiovascular disease, prostate cancer, and hemophilia.
- Hormonal Differences: Testosterone linked to muscle mass and aggression but also higher metabolic syndrome risk; lower estrogen may contribute to cardiovascular vulnerability.
- Aging Pathways: Faster aging markers in men, including telomere shortening, Epigenetic biomarker proxies and chronic inflammation patterns.

Behavioural and Lifestyle Aspects

- Health Behaviors: Men more frequently engage in smoking, excessive alcohol use, and have higher rates of substance misuse.
- Diet and Exercise: Lower rates of fruit/vegetable intake and physical activity adherence.
- Healthcare Avoidance: Men are less likely to seek preventive care, attend regular check-ups, or report symptoms early.

Psychosocial and Cultural Aspects

- Norms of Masculinity: Ideals around stoicism, dominance, and self-reliance deter health-seeking behaviors.
- Emotional Suppression: Men often internalize stress, leading to unaddressed anxiety and depressive symptoms.
- Socialization: From a young age, boys are taught to "tough it out," which becomes internalized in adulthood.

Structural and Environmental Aspects

- Socioeconomic Status: Men in lower-income brackets face higher exposure to stressors and occupational hazards.
- Men are much less likely to complete post secondary/tertiary education
- Occupational Risks: Higher engagement in physically dangerous jobs (e.g., construction, military, mining), leading to injury and chronic pain.

Mental Health and Suicide Risk

- Prevalence: Depression may be underdiagnosed due to atypical symptom presentation in men (e.g., irritability, anger).
- Suicide Statistics: Men are 3–4 times more likely to die by suicide than women; highest risk among middle-aged and elderly men.
- Barriers: Stigma, lack of culturally sensitive mental health services, and fear of appearing weak.

Epidemiology & Key Health Challenges in Men

- **Trends & Risks**
 - Earlier onset of metabolic syndrome, obesity, and insulin resistance
 - Rising hypogonadism diagnoses (true vs functional)
 - Cardiovascular disease as the leading cause of mortality
 - Mental health, stress, burnout, and declining testosterone trends
- **Clinical Insight**
 - Many “age-related” issues are modifiable with early intervention

Cardiometabolic Sphere

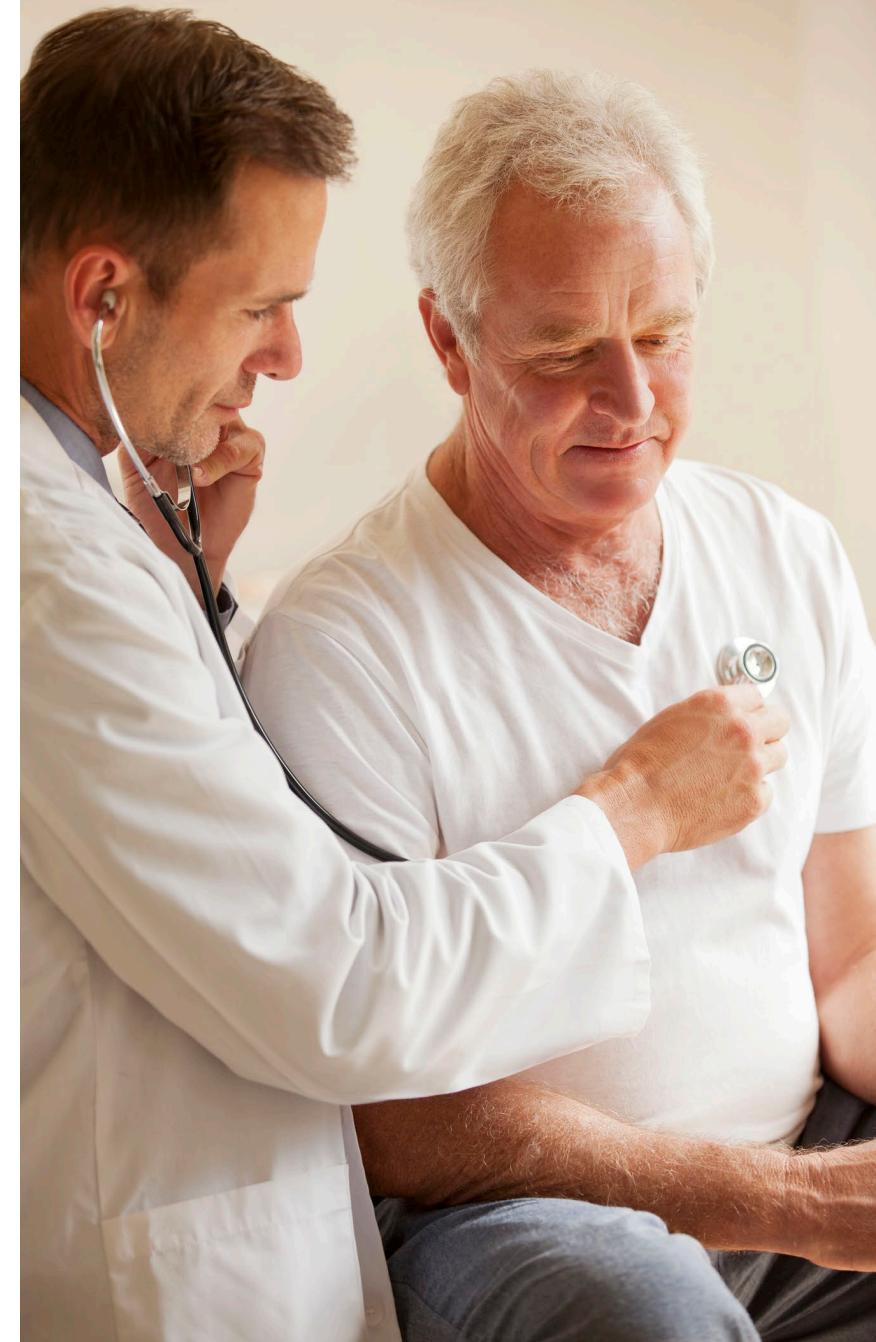
+

•

○

Timing of Cardiometabolic Disease

Aspect	Evidence Pattern
Risk factor development	Men often show earlier insulin resistance & fasting dysglycemia; women show different patterns (e.g., IGT)
Metabolic Disease Prevalence	Mixed; some populations show higher rates in women, others in men; age alters sex differences
Onset age	Men may develop cardiometabolic complications earlier; women catch up post-menopause
Progression severity	Some data show women have steeper increase in risk factors during prediabetes (varies by race)



Clinical Implications

- Screen earlier for metabolic and cardiac dysfunction
 - Begin age 20-25 for those with higher risk
 - 30-35 for low to moderate risk
- Use advanced tools to screen to avoid missing clinically significant early trends
 - More comprehensive metabolic and cardio biomarkers

Risk Determination – Who is a higher risk patient

- 2 or more of the following:
 - BMI over 25 (northern Euro non-power athlete)
 - Hip: Waist circumference
 - Elevated blood pressure
 - Family history of cardiometabolic disease, PCOS, etc.

Screening Testing for Cardiometabolic

- Basic
- Physical:
 - BMI, hip waist, Body Composition
 - Blood pressure
- Lab:
 - Fasting glucose
 - Fasting insulin (HOMA-IR)
 - Lipids
 - Apo B
 - Lipo A (especially if family history))
 - HsCRP
 - Fibrinogen

A Note About Blood Pressure Measurement

Initial Office BP Measurement:

- Use **validated automated devices**, ensuring the patient is seated, rested, and using proper technique.
- If BP is $\geq 140/90$ mmHg, confirm with out-of-office testing.

Confirmatory Methods:

- **Ambulatory Blood Pressure Monitoring (ABPM) – Gold Standard**
 - Measures BP every 15–30 minutes over 24 hours.
- Detects:
 - **White coat hypertension** (elevated office, normal ABPM)
 - **Masked hypertension** (normal office, elevated ABPM)
 - **Nocturnal hypertension**
- **Daytime average $\geq 135/85$ mmHg or 24-hour average $\geq 130/80$ mmHg** confirms HTN.
 - **Home Blood Pressure Monitoring (HBPM) – Practical Alternative**
 - **Take 2 readings, morning and evening, over 7 days** (discard day 1).
 - Average of readings $\geq 135/85$ mmHg confirms hypertension.
 - Use **validated, upper-arm cuff devices**.

Epigenetic Biomarker Proxies (EBP) Assessment

- **Risk Prediction & Early Detection**
 - Epigenetic changes occur before overt clinical disease.
 - Methylation patterns of genes like **ABCA1**, **APOE**, **NOS3** associate with dyslipidemia, hypertension, and atherosclerosis.
- **Pathophysiological Insights**
 - Reveal how lifestyle, aging, and environmental factors (e.g., smoking, diet, pollution) drive CVD risk.
 - Help understand inflammatory, oxidative stress, and endothelial dysfunction pathways.
- **Dynamic & Reversible Markers**
 - Unlike fixed genetic variants (SNPs), epigenetic marks can change with **interventions** (e.g., diet, exercise, medications), making them **targets for personalized therapy**.
- **Disease Stratification & Prognosis**
 - Certain **DNA methylation clocks (epigenetic age)** predict cardiovascular mortality and biological aging.
 - miRNA profiles (e.g., **miR-133**, **miR-208**) can differentiate stable vs. unstable coronary artery disease.
- **Therapeutic Monitoring**
 - Epigenetic profiles may track response to statins, antihypertensives, or lifestyle interventions.

Functional Testing

- Physical Performance Testing (Older adults)
 - Grip Strength
 - Push up capacity
 - Gait speed (4m space)
- ECG – not recommended in asymptomatic low risk adults
- Echocardiogram - not recommended in asymptomatic low risk adults
- Stress ECG/Echo – not recommended in asymptomatic low risk adults

Gait Speed – Basic 4-Meter Gait Speed Test

Setup

- Mark a **4-meter** walking path on the floor.
- Allow a **1-meter acceleration and 1-meter deceleration zone** on each end if space allows, to reduce variability from start/stop motion.
- Person should wear usual footwear and use assistive devices (e.g., cane) if normally used.

Instructions to Participant

- “Walk at your usual pace from here to the end.”
- Don’t encourage to walk faster or slower.

Procedure

- Position patient with both feet just behind the starting line.
- Start the stopwatch **when the first foot crosses the starting line.**
- Stop the stopwatch **when the first foot crosses the 4-meter finish line.**
- Record the time in seconds.

Calculation

$$\bullet \text{ Gait Speed (m/s)} = \frac{4 \text{ meters}}{\text{Time in seconds}}$$

Anatomical Testing: CACs and CCTAs

- Coronary Artery Calcium Score & Coronary CT Angiography (CCTA)
- Calcium score detects calcified plaques in arteries whereas CCTA detects both soft and hard plaque and flow
- Both utilize radiation so caution is advised

Coronary Artery Calcium Score

- **Supported Use:**
 - **Refines cardiovascular risk** beyond traditional calculators
 - Guides decisions on **statin therapy** or lifestyle intensification
 - CAC = 0 → Very low 5-year event risk
 - CAC >100 → High event risk; intensify prevention
- **Not Recommended For:**
 - Routine screening in **low-risk or asymptomatic** general population
 - Repeating serial CAC scans without new risk factors/symptoms
- **Guidelines:** ACC/AHA endorse CAC for risk reclassification

Coronary CT Angiography

- **Appropriate Use:**
 - Evaluation of **stable chest pain** in symptomatic individuals
 - Risk stratification in **high-risk metabolic or diabetic patients**
 - Identifies **non-calcified, obstructive plaques** and high-risk features
- **Not Recommended For:**
 - **Routine screening** of asymptomatic individuals
 - Population-level screening due to radiation, cost, and overdiagnosis
 - **Evidence:** CCTA improves outcomes in *diagnostic pathways* (e.g., SCOT-HEART)
- **Not yet validated** for broad use in primary prevention

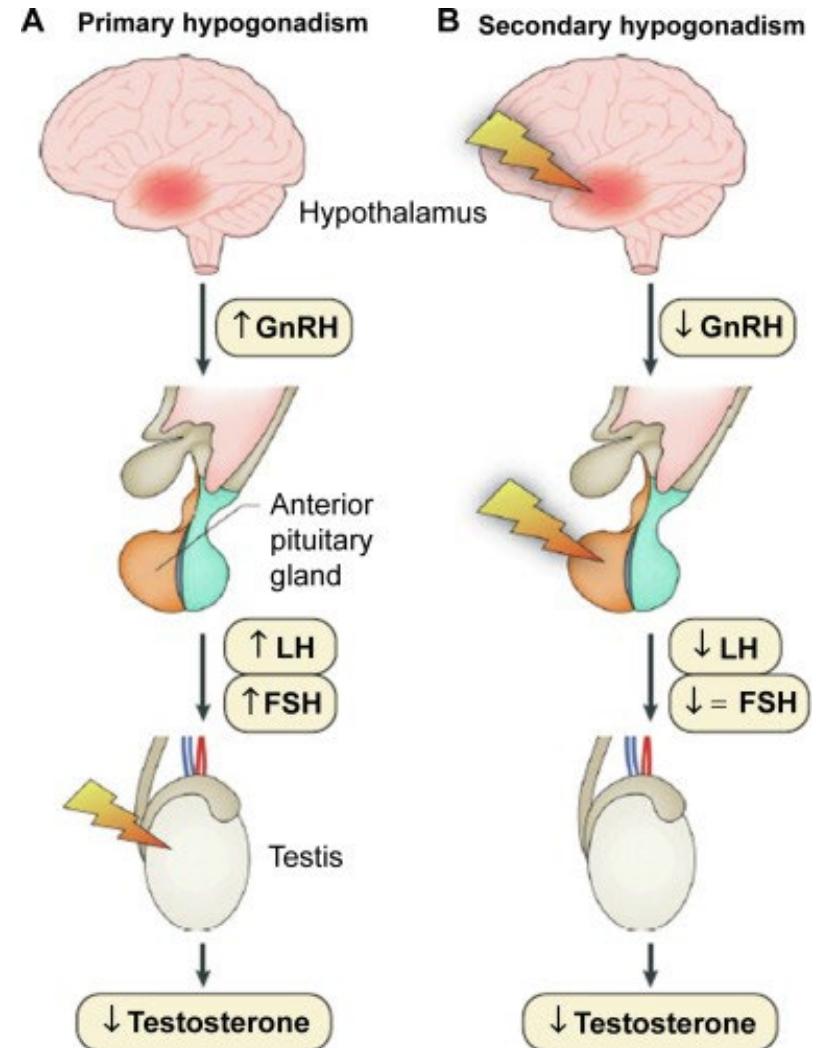
Endocrine Sphere

+

•

○

—


+

•

○

Hypogonadism - True

- Primary
 - Klinefelter syndrome (47,XXY)
 - Cryptorchidism
 - Testicular trauma or orchitis (e.g., mumps)
 - Chemotherapy or radiation
 - Aging-related Leydig cell failure
- Secondary
 - Congenital GnRH deficiency (e.g., Kallmann syndrome)
 - Pituitary adenomas
 - Traumatic brain injury
 - Infiltrative diseases (e.g., hemochromatosis, sarcoidosis)

Hypogonadism – Functional (reversible)

- Obesity: Adipose tissue increases aromatization of testosterone to estradiol, which can suppress LH secretion via negative feedback.
- Type 2 diabetes mellitus (T2DM) and metabolic syndrome
- Chronic illness: e.g., kidney disease, liver cirrhosis, HIV
- Inflammatory states: Elevated cytokines (e.g., IL-6, TNF- α) may inhibit the HPG axis
- Medications: Opioids, glucocorticoids, anabolic steroids
- Psychosocial stress and depression
- Aging (late-onset hypogonadism): Often overlaps with functional hypogonadism and may be multifactorial

Hypogonadism – Assessment (Clinical Suspicion)

- Reduced libido and erectile dysfunction
- Fatigue and reduced vitality
- Loss of muscle mass and strength
- Decreased bone density
(osteopenia/osteoporosis)
- Mood changes, depression, or
irritability
- Anemia (normochromic, normocytic)
- Infertility or gynecomastia

Laboratory Assessment

- Testosterone (Free and Total) (am testing 7-10 am)
 - Sex Hormone Binding Globulin
 - Prolactin
 - Estradiol
 - LH/FSH
 - Thyroid Function Tests
 - Cortisol (AM/PM)

Follow-Up Assessment/Referrals

For Primary Hypogonadism:

- Karyotyping (e.g., suspect Klinefelter syndrome)
- Testicular ultrasound (if masses or trauma suspected)
- History of chemotherapy, radiation, infection (e.g., mumps orchitis)

For Secondary Hypogonadism:

- Pituitary MRI (if other pituitary hormone deficiencies or mass effects)
- Assess other pituitary hormones: TSH, prolactin, ACTH, IGF-1
- Consider iron studies (hemochromatosis)
- Evaluate for chronic illness, weight loss, steroid or opioid use

Additional Analysis

Fertility Assessment: If relevant, order semen analysis and refer to reproductive endocrinology or urology.

Bone Density Testing: Consider DEXA scan in men with long-standing hypogonadism or fractures.

Cardiovascular Risk: Screen for CV risk factors before TRT initiation.

Urological Sphere

Core Domains of Urological Health in Men

- Prostate health
- Erectile and sexual function
- Lower urinary tract function (LUTS)
- Fertility and testicular health
- Hormonal regulation (androgen axis)
- Urological oncology risk and surveillance

Prostate Health Across the Lifespan

- Benign Prostatic Hyperplasia (BPH)
 - Androgen/DHT driven growth
 - Estrogen/testosterone ratio shifts with age
 - Role of inflammation and metabolic syndrome
- Prostatitis
 - Chronic pelvic pain syndrome
 - Inflammatory vs infectious
 - Links to stress and immune dysregulation
- Prostate Cancer
 - Most common male cancer
 - Often slow-growing but biologically heterogeneous

Prostatitis – A Deeper Look

- This shifts prostatitis from being seen as “non-infectious” to often being “undetected infectious + immune dysregulation.”
- Key stealth pathogen categories:
 - Intracellular bacteria
 - Biofilm-forming organisms
 - Atypical bacteria
 - Viral persistence
 - Fungal and mycoplasma species

PSA: Utility and Limitations

- PSA is:
 - Organ-specific, not cancer-specific
- Influenced by:
 - Prostate volume
 - Inflammation
 - Infection
 - Ejaculation
 - DHT activity
- Interpretation tools:
 - PSA velocity
 - PSA density
 - Free vs total PSA
- Age-adjusted PSA ranges

Erectile Dysfunction as a Cardiovascular Marker

- ED is often a vascular disease first
- Penis arteries are smaller than coronary arteries → earlier symptom manifestation
- ED precedes cardiovascular events by ~3–5 years
 - Strong associations with:
 - Insulin resistance
 - Endothelial dysfunction
 - Inflammation
 - Low testosterone

Mechanisms of Erectile Dysfunction

- Vascular:
 - Impaired nitric oxide signaling
 - Atherosclerosis
- Neurogenic:
 - Diabetes
 - Spinal pathology
 - Hormonal:
 - Low testosterone
 - Elevated estradiol
- Psychological:
 - Stress, anxiety, depression
 - Medication-induced:
 - SSRIs, beta-blockers, finasteride

Lower Urinary Symptoms

- Common symptoms:
 - Nocturia
 - Urgency
 - Weak stream
 - Incomplete emptying
 - Frequency
- Key drivers:
 - Prostate enlargement
 - Bladder dysfunction
 - Autonomic imbalance
 - Metabolic syndrome
 - Sleep apnea

Testosterone and Urological Health

Testosterone influences:

- Prostate physiology
- Erectile function
- Libido
- Urinary tract tone
- Muscle mass and pelvic floor support

Myth:

- Testosterone causes prostate cancer

Evidence:

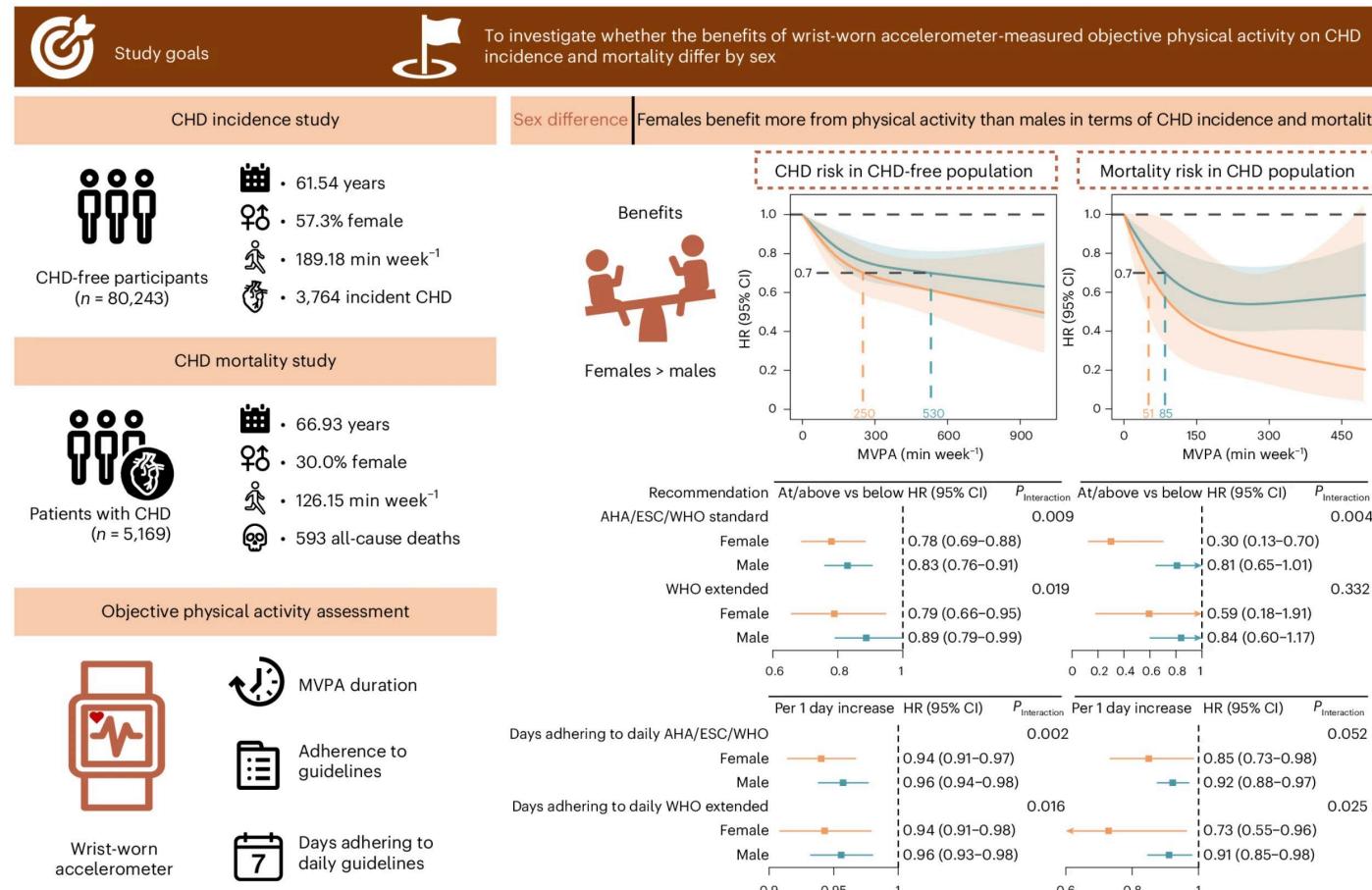
- Normal physiological levels are not associated with increased risk when appropriately monitored.

Fertility and Testicular Health

- Sperm production reflects:
 - Mitochondrial health
 - Hormonal balance
 - Toxic burden
 - Oxidative stress
- Key issues:
 - Varicoceles
 - Environmental toxins
 - Heat exposure
 - Anabolic steroid history
 - Medications (finasteride, SSRIs)

Urological Cancers

- Main focus:
 - Prostate cancer
 - Secondary:
 - Bladder cancer
 - Kidney cancer
 - Testicular cancer
- Key discussion points:
 - Screening controversies
 - Risk stratification
 - Active surveillance vs treatment
 - Role of precision biomarkers


Precision Tools for Prostate Cancer Screening

- PSA derivatives and algorithms
- Prostate MRI
- Genomic risk profiling
- Urine-based biomarkers (PCA3, SelectMDx, etc.)
- ctDNA (emerging role) (MCED)

Treatment Approaches: Cardiometabolic

•
+
o

Lifestyle – Physical Activity

Nutrition: Evidence-Based Actions

- Universal goals for cardiometabolic risk:
 - Emphasize whole foods: fruits, vegetables, legumes, whole grains, nuts, seeds.
 - Reduce processed and red meat, refined carbs, sugary beverages.
 - Moderate healthy fats (e.g., olive oil, omega-3 sources).
- Men-focused evidence/considerations:
 - Men tend to consume less plant-based diets and more processed/red meats vs. women, potentially increasing cardiometabolic risk.
 - Reducing abdominal adiposity through diet lowers metabolic syndrome risk.
 - Increased protein intake recommendations to preserve lean body mass 1.5 – 2.0 g/kg
 - Increased fiber intake important...men tend to have lower fiber to overall energy dietary intake

Supplemental Considerations

- Omega 3 fatty acids
- Berberine
- Phytosterols
- Certain probiotics
- Magnesium
- Vitamin C
- Polyphenols

Treatment Approaches: Hormonal

Testosterone supports

Fundamental Approaches to Functional Hypogonadism

- Resistance exercise & HIIT
- Healthy body weight & fat loss
- Adequate sleep
- Stress management
- Correction of nutritional deficiencies (vitamin D, zinc, magnesium)

Supplemental Approach – Ashwagandha (*Withania Somnifera*)

- Mechanism of Action:
 - Cortisol reduction
 - Antioxidant action
 - Perhaps enhance Leydig cell function
- Supplementation Guidelines:
 - Standardized extracts KSM-66
 - 600 mg/day
 - 6-8 weeks
 - Expectation 10-20% increase

Supplemental Approach – Fenugreek (*Trigonella foenum groecum*)

- Mechanisms of Action:
 - Enzyme inhibition (aromatase and 5-alpha-reductase)
 - Steroidal Precursors
- Clinical Application
 - Standardized preparations are better researched to saponins (total or specific e.g. protodioscin)
 - Dosing 500-600 mg/day

Supplemental Approach – Tongkat Ali (*Eurycoma longifolia*)

- Mechanisms of Action:
 - Increase free testosterone
 - Aromatase inhibition
 - Cortisol reduction
 - Inflammation inhibition (NFKB)
- Clinical Application:
 - Use standardized extracts to eurycomanone (usually 2%+)
 - 300-600 mg daily

Testosterone Replacement Therapy - TRT

Indications:

- Primary or secondary hypogonadism
- Symptomatic Low Testosterone including:
 - Fatigue and Low Energy Levels
 - Loss of Libido and Erectile Dysfunction
 - Mood Disorders including depression or irritability linked to hormonal imbalances.
 - Cognitive Changes including difficulty concentrating or memory impairment
- Sarcopenia in aging
Osteoporosis/Osteopenia

Contraindications:

- Prostate or breast cancer.
- Severe benign prostatic hyperplasia (BPH) with obstructive symptoms
- Uncontrolled heart failure or thromboembolic disorders
- Polycythemia
- Liver Disease
- Elevated PSA
- Severe sleep apnea
- Male infertility

TRT – Baseline evaluation

- History and Examination
 - Comprehensive physical and history taking
 - Check for: CVD, sleep apnea, hematological conditions, etc.
- Laboratory Assessment
 - PSA (Prostate-Specific Antigen)
 - Hematocrit/Hemoglobin
 - Lipid profile
 - Liver function tests
 - LH, FSH, prolactin (to assess primary vs. secondary hypogonadism)

TRT – dosing strategies

- **Topical**
- 40-120 mg transdermal daily Monday to Saturday; Escalation at 40 mg increments
- **Injection**
- **Testosterone Enanthate/Cypionate (Long-Acting)**
 - Typical dose: 50–400 mg IM every 2–4 weeks.
Most common regimen: 100–200 mg IM every 1–2 weeks.
 - Adjust based on clinical response and serum testosterone levels, aiming for a mid-normal range (300–1,000 ng/dL)
- **Testosterone Undecanoate (Very Long-Acting)**
 - Initial dose: **750 mg IM** on day 0, followed by **750 mg after 4 weeks**, then every **10 weeks** thereafter.
 - Requires monitoring for side effects, especially pulmonary oil microembolism reactions.

TRT – Things to look for during treatment

- Monitor:
 - PSA
 - Hematological parameters
 - Blood pressure
 - Lipid profile
 - Liver function tests
 - Hba1c
- If fertility is a concern, LH/FSH (better to use clomiphene or HcG in these men)
- Monitor for mood changes

Urinary Tract Support

Prostate and Beyond

Prostate Health

- Check for infections and treat appropriately
- Integrative Agents
 - *Serenoa repens*
 - *Pygeum Africanum*
 - Pumpkin Seed Oil
 - Beta-Sitosterol
 - Rye pollen extract (cernilton)
 - *Urtica dioica*

Agent	Typical Clinical Dose Range	Notes
Beta-Sitosterol	60–130 mg/day (divided)	Improves urinary symptoms; does not shrink prostate.
Pygeum africanum (source of sito-sterol)	75–200 mg/day (divided)	Standardized bark extract studied.
Saw Palmetto (Standardized to fatty acids)	160–320 mg/day (some studies up to 500 mg)	Mixed evidence on symptom relief.
Pumpkin Seed Extract/Oil	500–1000 mg/day	Used in multiple clinical trials.
Stinging Nettle Root	~450 mg/day (some regimens up to 600–1200 mg)	Some positive symptom data.
Rye Grass Pollen (Cernilton)	~126 mg 2–3×/day	Studied internationally for BPH symptoms. Also show size reduction potential.
Lycopene	15 – 60 mg/day (15 mg common in prevention trials)	May reduce or stabilize PSA

Zinc Controversy: Prostate Cancer Prevention

Biological Plausibility

- Zinc plays a crucial role in **normal prostate metabolism**
- Prostate cancer cells often show **lower intracellular zinc levels**
- Hypothesized protective role, but **mechanisms unclear in humans**

Human Studies: Inconsistent Evidence

- No strong evidence that zinc **prevents prostate cancer**
- Some studies: **neutral or slightly protective effects**
- Others: **high-dose zinc (>75–100 mg/day)** linked to **increased risk of aggressive disease**

Erectile Dysfunction Support

- Assess underlying factors to determine priority:
 - Vascular
 - Metabolic
 - Hormonal
 - Prostatic
 - Stress/Psych emotional sphere

A photograph of a smiling senior couple. The man, wearing glasses and a blue striped shirt, is in the foreground, smiling broadly. The woman, with short blonde hair, is behind him, also smiling. They are in a bright, green, grassy field.

Integrative ED Support for Mild to Moderate Symptoms

- Erections may still occur spontaneously or with stimulation.
- Difficulty may be situational (e.g., under stress or fatigue).
- Penetration is possible but may be inconsistent or not maintained.
- Satisfaction with sexual performance is often diminished.
- Psychological and relationship impacts are present but not overwhelming.
- You can use Sexual Health Inventory for Men (IIEF) scores 12+

ED: Vascular - Arginine

Good clinical evidence that it can support men with mild to moderate ED

Dosing 1.5-5g/day consider combining with beet root crystals

At higher doses can cause GI upset and lower BP (may be desired)

Caution with nitrates and anti-hypertensives

Botanical interventions for ED

Botanical Agent	Typical Dose (Historical/Clinical Use)	Clinical Evidence Strength	Type of Benefit Found (if any)
Panax Ginseng	900–3000 mg/day	Moderate	Improved IIEF scores, erectile rigidity, overall sexual satisfaction
Tribulus Terrestris	750–1500 mg/day	Low to Moderate	Mixed results; possible libido and erectile support
Saffron (<i>Crocus sativus</i>)	30–200 mg/day (extract)	Limited but Positive	Improved erectile function and satisfaction in small trials
Maca (<i>Lepidium meyenii</i>)	1500–3000 mg/day	Limited	Improved libido and subjective sexual well-being
Horny Goat Weed (<i>Epimedium</i> spp.)	Icariin 5–15 mg/day (standardized extract)	Preclinical or Traditional	Animal data suggest PDE5 inhibition; human data lacking
Fo-Ti (<i>Polygonum multiflorum</i>)	Not standardized; 3–6 g/day traditionally in decoctions	Traditional Use Only	No proven benefit in clinical trials; anecdotal claims of virility boost

Mental Health Support

The often overlooked
contributor to health
and wellbeing

How Mental Health Presents Differently in Men

- Symptoms may manifest as anger, irritability, or aggression rather than sadness
- Increased substance use or risk-taking behaviors may mask underlying issues
- Physical symptoms (e.g., headaches, fatigue, sleep disturbances) may be more commonly reported
- Social withdrawal or difficulty maintaining relationships can signal emotional distress
- Men may minimize or deny emotional difficulties, complicating diagnosis

Core Symptom Screening Tools

- PHQ-9
- GAD-7
- My Mood Monitor
- Male specific tool:
 - Male Depression Risk Scale
 - Useful in contexts where “typical” depression measures (focused on sadness) might miss men’s experiences.

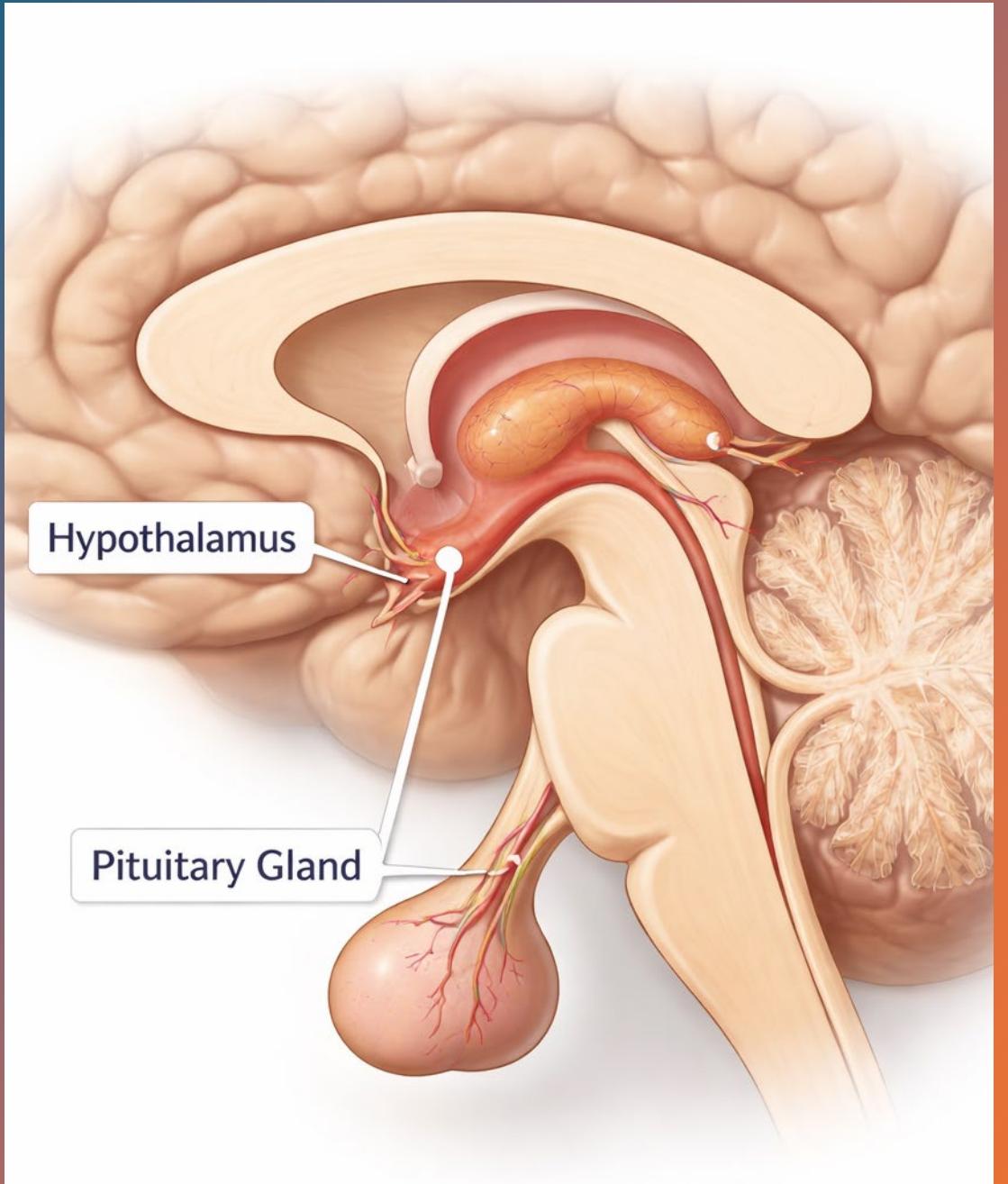
Therapeutic Interventions

Type of Intervention	Strengths	Research Status
CBT & evidence-based talk therapies	Strong evidence overall for depression/anxiety	High
Somatic Experiencing (SE)	Body-based, trauma-focused	Preliminary evidence ✓
EMDR & trauma therapies	Strong evidence for PTSD	High
Mindfulness/Interoceptive skills	Reduces stress broadly	Moderate
Yoga/breathwork	Supports regulation	Mixed & low quality

+

•

○


Trending Topic

Research based peptides

Safety and Regulatory Notes

- Injectable peptides are often sold as “research chemicals” and are not regulated like approved medications, which raises concerns about purity, dosing, and adverse effects.
- Some peptides are banned by sports authorities and carry unknown long-term risks.
- Very few are legally available in Canada through pharmacies

Growth Hormone-Releasing Peptides (GH-Secretagogues)

- Sermorelin – GHRH analogue that encourages the pituitary to release growth hormone. Historically used for growth hormone diagnostics and, off-label, in age-related hormone support.
- Ipamorelin – More selective GH secretagogue with fewer side effects (less impact on cortisol/ACTH). Often paired with other peptides.
- CJC-1295 – Longer-acting peptide that increases GH over extended periods; frequently combined with ipamorelin.
- Tesamorelin – Used clinically for HIV-associated fat redistribution; off-label for visceral fat reduction and GH support

Tissue Repair, Recovery & Structural Support

- BPC-157 – Popular in fitness communities for soft-tissue repair (tendons, ligaments), although not approved for human use and banned in sports
- TB-500 (Thymosin beta-4 fragment) – Claimed to aid tissue healing and flexibility; similar caveats apply
- Copper peptide (GHK-Cu) – Used topically in skincare for wound healing and anti-aging; its systemic use is more experimental.

Other Peptides

- Libido and Sexual Function:
 - PT-141 (Bremelanotide) – Acts on the nervous system (melanocortin receptors) to increase libido and sexual arousal. It's FDA-approved for female hypoactive sexual desire but is discussed off-label for men.
- Metabolic and Body Composition:
 - MK-677 (Ibutamoren) – Oral compound that stimulates GH and IGF-1; often discussed for increasing lean mass, improving sleep, and aiding recovery.

“Stacks”

- Growth hormone
 - Sermorelin/CJC-1295
 - Ipamorelin
 - BPC-157
 - TB-500
- Workout Recovery
 - BPC 157
 - TB-500
- Longevity
 - Epitalon
 - MOTS-c
 - GHK-Cu

Key Takeaway: Redefining Men's Health Care

- Men's health is a systems biology problem, not a single-hormone issue
- The core interconnected domains are:
 - Cardiometabolic function
 - Endocrine balance
 - Urological health
 - Mental health and stress physiology
 - Lifestyle and environmental load
- Many male conditions labeled as “aging” are actually modifiable and preventable
- Erectile dysfunction, LUTS, fatigue, and low testosterone are often early warning signs, not isolated diagnoses
- Earlier, more advanced screening changes outcomes:
 - Metabolic and vascular disease
 - Functional hypogonadism
 - Prostate risk stratification
 - Mental health vulnerability
- Integrative medicine allows clinicians to move from:
Symptom suppression → Risk interception → Physiologic optimization

The Future of Men's Integrative Care

- **The next era of men's health is:**
 - Preventive, not reactive
 - Precision-guided, not protocol-only
 - Systems-based, not siloed
- **Core clinical commitments:**
 - Screen earlier
 - Think metabolically before hormonally
 - Treat inflammation, insulin resistance, and stress physiology first
 - Use TRT, peptides, and advanced therapies responsibly and selectively
 - Integrate mental health as a foundational pillar of male vitality
- **Ultimate goal:**
 - Extend not just lifespan, but healthspan, performance, resilience, and quality of life for men

Questions?