

OFF-SHORE GAS LIFT COMPRESSOR WELDING RUPTURES

APPLICATION Floating production storage and

offloading (FPSO)

COMPRESSOR TYPE Reciprocating compressor – 3 stg.

SERVICE Gas lift compressor

NAMEPLATE POWER 1050 kW

DISCH. PRESSURE 120 bara

Examples of inadequate supports for piping and instruments

CHALLENGE:

SUDDEN WELDING RUPTURES ON MINOR BRANCHES

- high vibrations since the first start-up
- skid design failed to consider alternating forces
- poor support design

SOLUTION:

- acoustical study revealed the necessity for:
 - restriction orifices
 - new support installation

CRITICAL VIBRATIONS LOWERED BELOW THE SWRI DANGER VALUE. NO FAILURES OCCURRED SINCE MODIFICATIONS

HIGH PIPING VIBRATIONS

END USER HDPE plant

COMPRESSOR TYPE n°2 Reciprocating compressors – 3 stg.

SERVICE C_2H_2 feed gas

NAMEPLATE POWER 355 kW

DISCH. PRESSURE 29 bara

CHALLENGE:

UNEXPECTED TRIPS FOR GAS LEAKAGE

- welding ruptures of the inlet nozzle on piping
- acoustic resonance and poor piping clamping

SOLUTION:

- installation of restriction orifices
- > stiffening of the existing piping structure
- > optimization of clamps disposition

CONTINUOUS RUN AVOIDING UNSCHEDULED TRIPS

Cylinder internal, piston and bands

EXCESSIVE RIDER BAND WEAR

APPLICATION Paper mill

COMPRESSOR TYPE Reciprocating compressor – 1 stg.

SERVICE 30 MW Gas turbine fuel supply

NAMEPLATE POWER 500 kW

DISCH. PRESSURE 37 bara

CHALLENGE:

FORCED MAINTENANCE EVERY 3 MONTHS

> rapid wearing of PTFE piston sealing elements

SOLUTION:

- high performance PEEK material suggested
- scheduled temperature monitoring program

COMPRESSOR HAS REACHED 8000 HOURS WITH THE SAME PISTON RINGS, AND IS STILL RUNNING

GAS TURBINE START-UP FAILURE

APPLICATION Natural gas extraction plant

MACHINE TYPE Two Double-shaft Heavy-duty Gas Turbines

SERVICE Power generation

NAMEPLATE POWER 5 MW

Bearing Vibration Spectrum

CHALLENGE:

TURBINE COULD NOT START

high vibrations, both low and high frequency, after maintenance stop

SOLUTION:

- substitution of some bearings with 4-lobe types (low-frequency vibrations)
- trim balancing (for synchronous vibration)

TURBINE COULD START AND RUN REGULARLY

New bearing

Damaged bearing pad and impeller

load

IGC START-UP FAILURE

APPLICATION Steel mill

COMPRESSOR TYPE Integrally geared centrifugal compressor - 3 stg.

SERVICE Furnace air compressor

NAMEPLATE POWER 4000 kW

DISCH. PRESSURE 50 bara

CHALLENGE:

BEARINGS DESTROYED AFTER FIRST START-UP, FOR TWO TIMES

- high vibrations
- major damages to bearings and impeller

SOLUTION:

- increased clearances on new bearings
- check of the rotor design
- check of the new bearing arrangement

COMPRESSOR STARTED AND STILL WORKING REGULARLY

Sketch of casing bow

Try Rew blades he in front and back forth

Rubbing of blades

Bottom half cylinder insulation blanket thickness

STEAM TURBINE FAILURE

END USER Floating Storage & Regasification Unit (FSRU)

MACHINE TYPE Steam Turbine

SERVICE Power generation

NAMEPLATE POWER 10 MW

CHALLENGE:

TURBINE TRIP DURING COMMISSIONING START-UP

- severe damages to the rotors
- casing bow (non uniform expansion), resulting from an insufficient thermal insulation of the casing

SOLUTION:

- > re-calculation of the thickness of the thermal insulation
- suggested correct procedure for turbine warm-up
- revised seals radial clearance

TURBINE STARTED AND STILL WORKING REGULARLY

Ruined packing rings

Rod wearing

EXCESSIVE PACKING SEAL WEAR

APPLICATION Refinery

Reciprocating compressor - 2 stg. COMPRESSOR TYPE

SERVICE Penex process compressor

NAMEPLATE POWER 90 kW

DISCH. PRESSURE 80 bara

CHALLENGE:

ROD PACKING ELEMENTS LIFE WAS < 1000 HOURS

- recurrent rod scratching
- chromium on the rod surface

SOLUTION:

- roughening treatment to increase the transfer film capacity
- suggested high performance PEEK material

ROD PACKING ELEMENTS LIFE WAS BROUGHT TO ~8000 HOURS

INGRESSO	26	13.5	25	
META*	255	200	15	
USCITA	40	24	26	220
TUBI LATERALI (Basso/Alto)	170/16		150/22	
BASAMENTO LATO COMPRESSORE	1.5	11	6.0	*
BASAMENTO META'	4.5	1.2	5.0	56
BASAMENTO LATO OPPOSTO	1.0	-d	4.8	

Cooler vibration

FEM analysis made to optimize cooler structure reinforcement

VIBRATIONS OF AN LDPE HIGH PRESSURE COOLER

APPLICATION Low Density Polyethylene Plant

COMPRESSOR TYPE Reciprocating compressor – 2 stg.

SERVICE LDPE process secondary compressor

NAMEPLATE POWER 5800 kW

DISCH, PRESSURE 3200 bara

CHALLENGE:

RUPTURES ON PIPES AND SUPPORTS (EVERY 2-3 MONTHS)

- high vibrations (up to 250 mm/s rms)
- supporting structure inadequacy
- any modification had to be performed in just one week

SOLUTION:

- optimized modifications verified with FEM
- foundations reinforced through grouting
- follow-up survey to confirm root cause analysis and resolution

ALL VIBRATIONS LOWERED BELOW SWRI DANGER VALUE.

NO FAILURES OCCURRED SINCE MODIFICATIONS

| Companies | Comp

Modified P&I

Lube oil tank sketch

GAS TURBINE CABINET EXPLOSION

APPLICATION Gas extraction plant

MACHINE TYPE Heavy-duty Gas Turbine

SERVICE Centrifugal compressor drive

NAMEPLATE POWER 10 MW

EXPLOSION IN THE TURBINE CABINET

- failure of oil trap level control loop
- vent line clogged

SOLUTION:

- lube oil tank fill-up procedure
- > lube oil vent system modified

EVENT DID NOT OCCUR ANYMORE

Turbine Cabinet

Bearing failures

New bush design

STIRRER BEARING RUPTURE

APPLICATION Low Density Polyethylene Plant

MACHINE TYPE Stirrer of an autoclave reactor

CHALLENGE:

BEARING HAD TO BE SUBSTITUTED EVERY 3 MONTHS

> reported also one catastrophic rupture

SOLUTION:

- new bush design
- superbolt style tightening method
- detailed tightening procedure

TWO INSPECTIONS IN THE LAST YEAR REVEALED THAT BEARING WAS STILL FINE

INSTALLATION PRINCIPE

BEFORE TEMPORARY FILTER SPOOL PIECE 8" SEE DWG 544-840-001 SENS FLUIDE FLOW

Temporary strainer schematic

TEMPORARY STRAINER CLOGGING

APPLICATION Refinery

COMPRESSOR TYPE Centrifugal compressor

SERVICE Mild Hydrocracking make-up compress

NAMEPLATE POWER 900 kW

DISCH. PRESSURE 90 bara

ΔP ON A TEMPORARY STRAINER QUICKLY ROSE TO ~1.3 BAR

customer could not stop production before scheduled maintenance

SOLUTION:

- finite element analysis and a buckling analysis
- > maximum sustainable pressure drop ~ 4 bar

CUSTOMER STOPPED AFTER ONE YEAR AS SCHEDULED

FEM analysis results

Correlation between rotation speed and vibration

RECIP. COMPRESSOR HIGH VIBRATION (DIAGNOSTIC)

APPLICATION Gas extraction plant

COMPRESSOR TYPE Reciprocating compressor – 1 stg.

SERVICE Gas compression LP

NAMEPLATE POWER 700 kW

DISCH, PRESSURE 30 bara

CHALLENGE:

PERIODICAL HIGH VIBRATION

- > correlation between rotation speed and high vibration
- mechanical resonant frequencies

SOLUTION:

keep rotation speed over a minimum level

AVOIDED POSSIBLE FAILURES CAUSED BY HIGH VIBRATIONS

Vibration trends

Cylinders

RECIP. COMPRESSOR HIGH LOAD (DIAGNOSTIC)

APPLICATION Petrochemical plant

COMPRESSOR TYPE Reciprocating compressor – 2 stg.

SERVICE HC Polymerization

NAMEPLATE POWER 1800 kW

DISCH. PRESSURE 40 bara

CHALLENGE:

TWO CYLINDER-DISTANCE PIECE TIE-RODS FOUND BROKEN

- high cylinder vibrations
- high pin load caused by higher suction pressure

SOLUTION:

- 2nd stage cylinder bore diameter modified
- high-resistance rolled thread tie-rods
- volume bottles size increased

VIBRATIONS AND PIN LOAD RETURNED TO THE ALLOWABLE VALUES

RECIP. COMPRESSOR COUPLING FAILURE (DIAGNOSTIC)

APPLICATION Gas extraction plant

COMPRESSOR TYPE Reciprocating compressor – 3 stg.

SERVICE Gas reinjection

NAMEPLATE POWER 1600 kW

DISCH. PRESSURE 150 bara

CHALLENGE:

INCREASING DRIVER FRONT BEARING VIBRATION

found damaged coupling

SOLUTION:

coupling substitution

AVOIDED UNSCHEDULED STOP AND POSSIBLE CATASTROPHIC FAILURES

