

CST MAINTENANCE CONSULTANCY APPROACH

Dedicated team of experienced engineers to:

- support end users
- improve machinery performance
- maximize productivity

Best three-party co-operation team:

- CST specialized Maintenance Engineering Group
- User's engineers
- OEM / Packager

Impact of Poor Maintenance on Plant Operation

- "U.S. Industry spends more than \$200 billion each year on maintenance of plant equipment"
- The results of ineffective maintenance management represent a loss of more than \$60 billion each year in the U.S."
- "The dominant reason for this ineffective management is the lack of factual data"

by Keith Mobley (President and CEO of Integrated Systems Inc.)
"An Introduction to Predictive Maintenance"

EVOLUTION OF MAINTENANCE

CST SERVICE PROGRAMS

Routine diagnostics

Field support for machinery operation analysis and troubleshooting

Failure analysis

Vibration integrity design services: acoustic, torsional, stress and dynamics

- Remote Monitoring & Diagnostics through Tele-Assistance
- On board advanced diagnostic systems

Recurring problem solving

- Asset lifecycle management
- Machinery "Healthcare Packages"
- Revamping,
 Rehabilitation and
 Modernization of
 existing machinery

FIELD SUPPORT & TROUBLESHOOTING

- Field inspections and measurements (vibrations, pulsations, power, throughput, telemetry, thermography, acoustic emissions, experimental modal analysis, etc.)
- Portable diagnostics
- Problem solving and root cause failure analysis
- Analysis of
 - machinery-process interface
 - recurrent mechanical faults
 - performance problems

PULSATION ANALYSIS

- Simulation of pressure pulsation effects generated by reciprocating piston motion
- Three-dimensional finite element modeling
- Prediction of acoustic resonances

CYLINDER/MANIFOLD MODAL ANALYSIS

MECHANICAL ANALYSIS

- Dynamic analysis focused on structure stiffening
- Forced response simulation
- Best structure design to minimize vibrations
- On-site surveys to perform RCAs and confirm resolution

ROTORDYNAMIC ANALYSIS

- Modal analysis to determine Torsional Natural Frequencies (TNFs)
- Forced response analysis to accurately predict vibration and stress
- Oil film instability of rotor-bearing system

1000.0 | 100

TORSIONAL

LATERAL

BEARING

PLANT OPTIMIZATION ACTIVITY

- AspenONE suite of products (Hysys, Flare.net)
- Heat and material balance
- Dynamic simulation for transient analysis (blow down, PSV opening, startup and shutdown)

FLARE HEADER VERIFICATION

FROM WELL TO PIPELINE SIMULATION

BLOWDOWN PRESSURE SIMULATION

ASSET HEALTHCARE PROGRAMS

HEALTHCARE PACKAGES

Remote monitoring and diagnostics

Asset management

Equipment and maintenance optimization

- Overcoming recurrent failures
- > Machinery and process optimization
- KPI improvements

ASSET LIFECYCLE MANAGEMENT

- Machine component lifetime assessment and comparison with "best in class"
- Updating of machine instrumentation and supervision system
- Machine component redesign and modernization
- Installation of diagnostic systems
- Predictive maintenance consultancy
- Data driven maintenance management (DM2)

EQUIPMENT OPTIMIZATION

Engineering for revamping, rehabilitation & modernization of existing units:

- Adapting the machine to new operating conditions
- Restoring after damage
- Technology upgrade
- Unit uprate to achieve higher throughput

After rehabilitation

REMOTE MONITORING & DIAGNOSTICS

- Simple and reliable performance monitoring
- Use of onboard instrumentation
- KPI monitoring
- Proactive maintenance approach
- > MTBF and reliability analysis
- Reduction of machine downtime and maintenance costs

RM&D: Analysis flow diagram

Primary measurements

- · inlet gas pressures and temperatures
- · final gas pressure
- · inlet cooling oil temperature
- inlet cooling water temperature

Secondary measurements

- interstage pressures
- discharge temperatures
- · outlet cooling oil temperature
- outlet cooling water temperature
- valve cover temperatures
- vibrations

RM&D: How the program works

- Weekly batch e-mail transmission from user to CST of onboard instrumentation readings (through a preset electronic form)
- Data analysis:
 - Algorithms with diagnostic rules and performance estimation routines
 - Immediate highlights of possible critical situations
 - Weekly/Monthly report including trend analyses and maintenance suggestions
 - Proposal for troubleshooting intervention if necessary
- Reliability improvement plans proposal within a Proactive Maintenance Program

HEALTHCARE PACKAGES: BENEFITS FOR THE END USER

- Reliability and efficiency audits to combine
 - data collecting and analysis
 - investment suggestions

- Improve equipment performance through
 - MTBF reduction
 - KPI improvement
- Maintenance rationalization and costs reduction

SOFTWARE TOOLS

COMMERCIAL

☐ SOLID WORKS® 3D Modeling □ SIMULATION® Finite Element Analysis □ MOTION ® Rigid Body Dynamic Analysis □ ANSYS® Fluid Structure Interaction (FSI) □ ANSYS MECHANICAL ® Finite Element Analysis □ FE-SAFE® Fatigue Strength Analysis □ AMESIM® 1-D Multi-Physics Simulation □ MATLAB® Numerical Analysis Environment □ XLRotor[®] Rotor Dynamic Analysis ☐ Hysys[®] Process Plant Optimization Software

PROPRIETARY

- □ ReciPerf Compressor Performance Simulator □ CSThermo Gas mixtures physical properties □ BearingPerf Bearing Design □ DamPerf API618 5th ed. Preliminary Design of Pulsation Dampers □ CSTors Shaft line Torsional Analysis □ CylOpt Cylinder Fluid Dynamic
 - Sizing SCAT Design Point Performance □ Casey Operability Range Definition ☐ TM Pulse API 618 Damper Performance Verification ☐ CFD Pulse CFD 1-D Pressure Pulsation Analysis of Compression Units □ TurboPerf Multistage Performance Curves Verification

Optimization

Competence at work for Service and Innovation

www.cstfirenze.com