
API Security
Reference
Architecture for a
Zero Trust World

R E F E R E N C E A R C H I T E C T U R E

3 Zero Trust API Access Reference Architecture2

Contents
Executive Summary
 Context
 Pillars of Zero Trust for APIs
 Requirements of Zero Trust for APIs

Zero Trust Introduction
 APIs: The New Network
 Before Widespread API Use

 The Universal Attack Vector

Leveraging the NIST Zero Trust Architecture
 Why NIST Framework?
 Key Tenets of NIST Zero Trust Translated for APIs
 Pillars of Zero Trust for APIs
 ZT Requirements for APIs

ZT for APIs Core Components
 Policy Decision Point (PDP)
 Policy Enforcement Point (PEP)
 API Context
 Trust Algorithm and Context
 Dynamic Policy Inputs for API Protection

ZT for API Deployment Models

3
4
4
5

6
6
7
8

9
9
10
12
15

17
17
18
18
19
20

22

3 Zero Trust API Access Reference Architecture3

Zero Trust is a cybersecurity framework that challenges the traditional approach of
assuming trust within a network and instead operates on the principle of “never trust,
always verify.” It establishes that all users, devices, and applications, irrespective of
their location, are potentially untrusted entities and access to resources is granted
based on continuous verification of identity, context, and security posture. The core goal
of Zero Trust is to enhance security by minimizing the potential attack surface, reducing
the risk of data breaches, and mitigating the impact of cyber threats. While network-
centric measures have been effective in safeguarding critical assets, the application
layer has yet to receive comparable attention from those adopting Zero Trust.

Traceable’s reference architecture addresses securing the application layer with Zero
trust principles.

The type of attacks that used to occur at the browser, the application layer, at the
network layer, at the infrastructure layer have started to all converge at the API layer.
You can execute a DDoS attack, a bot attack, an injection attack, a remote code
execution, all via an API.

Every type of attack that developed in the lower tiers of virtualization (OS, server,
network, device, database, etc) can now be done at Layer 7. DDoS attacks couldn’t be
leveraged to attack a database - one being a network attack surface and the other a
data layer attack surface. But, APIs can be used as a conduit for DDOS-type attacks,
data exfiltration, account takeovers, fraudulent account creation, token theft attacks,
and more.

APIs will continue to be an attractive target because of their frequent association with
customer-facing applications where access to financial transactions makes a breach
more profitable for threat actors because they can attack at scale.

Executive Summary

APIs are the Universal Attack Vector.

Without API security, you can not achieve Zero Trust security.

3 Zero Trust API Access Reference Architecture4

Context

1. ZT works: Zero Trust has helped many organizations, including the US
Government, to secure their digital assets.

2. ZT not focused on apps: However, Zero Trust architectures and most adoption
efforts are more network-focused than application layer-focused, with no
information about APIs.

3. Apps have changed: The application layer has evolved since Zero Trust was first
defined (microservices, cloud-native, APIs, IdMs, etc)

4. Apps = APIs: Modern applications are built using APIs as the conduit between all
components and all users. APIs are becoming the next layer of the network (eg.
communications, data movement)

5. ZT for APIs undefined: It is undefined how to secure APIs using Zero Trust
concepts. Although APIs are part of the application layer they have different
security requirements and need separate definitions.

Pillars of Zero Trust for APIs

1. Data/Resources: what you are protecting

2. Conduits (APIs): the pathways to what you are
protecting

3. Identity: who you are protecting it from

4. Entity: used by who you are protecting it from

5. Visibility & Analytics: Context is key to success

6. Automation & Orchestration: Fast decisions and
actions required

7. Governance: All actions auditable and reportable

3 Zero Trust API Access Reference Architecture5

Requirements of Zero Trust for APIs

Data / Resources

Conduits (APIs)

Identity

Entity

Visibility & Analytics

Automation &
Orchestration

Governance

• Data identification and classification: Automatic identification of
sensitive data and data sets

• Keep an updated inventory of all APIs: Enables understanding
and management of attack surface.

• Detect & block high-risk APIs: The security and integrity of the
APIs themselves is important to keep them managed.

• Flexible PEP + DCP distribution: A protection mesh of flexibly
distributed PEP’s and data collection points.

• In-depth user authN/authZ tracking: Tracks users across
transactions, IP changes, token changes, and across time.

• Entity risk assessment: Evaluate risk attributes of source and/or
target entities.

• Complete transaction visibility: Ability to see North/South, East/
West, and inside encrypted TLS transactions.

• Gather all API transactional data for full context: Monitoring and
recording all API transactions.

• Data & resource access policy framework: Granular data access
policies.

• Security posture contributor and consumer: Contribute to and
consume from XDR, SIEM, and SOAR.

• All actions on API requests are auditable: Validation of proper
system functioning and proper protection.

Pillar Requirements

36 Zero Trust API Access Reference Architecture

Zero Trust
Introduction

Zero Trust is a cybersecurity framework that challenges

the traditional approach of assuming trust within a

network and instead operates on the principle of “never

trust, always verify.” It establishes that all users, devices,

and applications, irrespective of their location, are

potentially untrusted entities, and access to resources

is granted based on continuous verification of identity,

context, and security posture. The core goal of Zero

Trust is to enhance security by minimizing the potential

attack surface, reducing the risk of data breaches, and

mitigating the impact of cyber threats.

While Zero Trust has made significant progress in

enhancing security, its focus and execution have been

primarily on network-level and identity access controls.

The framework emphasizes continuous monitoring of

network traffic, user behavior, and application activity

to detect anomalies and potential security incidents.

Granular access controls, least privilege principles,

and micro-segmentation are employed to limit lateral

movement within the network and contain potential

breaches.

Modern applications now heavily rely on APIs.

They have become the conduits of the modern-day

application landscape and serve as the fundamental

mechanism through which applications communicate,

exchange data, and integrate with external services.

Just like plumbing pipes or electrical lines that

route and transport resources, APIs facilitate the

flow of information, functionality, and services

between applications, enabling the development of

interconnected and interoperable software ecosystems.

With their ability to connect and extend the capabilities

of applications, APIs have become the backbone of

modern-day applications.

With the reach of APIs across the application stack,

a new, larger, and more pervasive attack surface has

emerged. While securing the network layer and below is

necessary to get better security from Zero Trust, it is no

longer sufficient.

As technology marches on, each layer of the OSI

model becomes more solved and commoditized and

the remaining layers take them for granted. At this

point, this is true up to the application layer. Modern

applications assume presentation, session, transport,

network, etc will work as expected, and they focus on

APIs: The New Network

While these network-centric measures

have been effective in safeguarding

critical assets, the application layer has

yet to receive comparable attention from

those adopting Zero Trust.

7 Zero Trust API Access Reference Architecture

routing communications and handling security at their own layer, as the OSI stack was designed.

The rich opportunities for growth and exploitation are now flourishing at the application layer, as the

layers below more or less dutifully deliver. This doesn’t mean that we no longer need to secure the other

layers (we absolutely do), but there is a new frontier of battle where security practices have not yet

matured, and it needs our attention. That is the APIs of the application layer. The application layer itself

has had security’s focus for a while now (eg. WAF’s), but as already discussed, it is now driven by APIs.

Before widespread API use, an attacker would have to learn to attack each layer they were trying to get

through. They would have to learn different attacks for different attack vectors at each layer of the stack.

And also learning how to get around each of the different security technologies that typically protected

each attack vector. There was no single pipe that would shuttle them to their soft gooey target.

Before Widespread API Use

Universal Attack Vector before API use

8 Zero Trust API Access Reference Architecture

The Universal Attack Vector

The type of attacks that used to occur at the browser, the application layer, at the network layer, at the

infrastructure layer have started to all converge at the API layer. You can do a DDoS attack, a bot attack,

an injection attack, a remote code execution, all via an API.

Every type of attack that developed in the lower tiers of virtualization (OS, server, network, device,

database, etc) can now be done at Layer 7. DDOS attacks couldn’t be leveraged to attack a database -

one being a network attack surface and the other a data layer attack surface. But, APIs can be used as a

conduit for DDOS-type attacks, data exfiltration, account takeovers, fraudulent account creation, token

theft attacks, and more.

APIs have created a Universal Attack Vector.

API’s are now the UniversalAttack Vector.
Every Attack Vector and Method is in one place

39 Adhere to FFIEC Guidelines with TraceableZero Trust API Access Reference Architecture9

Leveraging the NIST
Zero Trust Architecture

For the creation of the first Zero Trust reference architecture for APIs, we looked at many different

architectures/frameworks for Zero Trust. While some of those ideas are synthesized into our ZT API

Access architecture, the majority of concepts and alignment is to the NIST Zero Trust Architecture

(documented in NIST Special Publication 800-207)

We have leveraged mostly off of NIST ZT Architecture because it is the reference architecture that is

vendor-neutral, publicly available, and in widespread adoption by Government entities such as CISA,

DOD, DISA, NSA, and GSA, NCCoE, as well as leading cybersecurity vendors.

Why NIST Framework?

NIST ZT Conceptual Model

10 Zero Trust API Access Reference Architecture

NIST identifies that for Zero Trust, it is focused on Enterprise access between Enterprise controlled

assets, and not anonymous, cloud-based access, as those can not necessarily be locked down or

verified. However, NIST does also acknowledge the ability to potentially apply these tenets to non-

Enterprise assets assuming that there is a relationship that allows implementation of ZT policies on the

non-Enterprise owned assets.

“These tenets apply to work done within an organization or in collaboration with one or more partner

organizations and not to the anonymous public or consumer-facing business processes. An organization

cannot impose internal policies on external actors (e.g., customers or general internet users) but may be

able to implement some ZT-based policies on nonenterprise users who have a special relationship with

the organization (e.g. registered customers, employee dependents, etc.).”

Following are the key Zero Trust tenets proposed by NIST and how they apply when looking at ZT

for APIs.

“All data sources and computing
services should be considered
as valuable resources” and
therefore protected as such.

All communication should be
secured regardless of network
location or perceived safety
of the location. This applies to
whether the communication is
external or internal.

“Trust in the requester is
evaluated before the access is
granted. . . . authentication and
authorization to one resource
will not automatically grant
access to a different resource.”

(NIST means network session
here)

The majority of communications between clients, services,
storage, and 3rd parties, whether enterprise owned or not,
are using APIs and therefore should have all communications
secured via ZT principals. Relevant for all connections including
North/South connections, East/West (internal) connections, 3rd
party, and how they all connect to each other.

For APIs this means that internal and external APIs should all
be treated as external APIs (ie. it doesn’t matter where on the
network they are coming from or going to). There should not be
a concept of an “internal” API that doesn’t need to be secured
as diligently. All APIs should be authenticated, authorized, and
encrypted.

API and application sessions are better aligned with the business
needs and user behavior than transport/network sessions. Thus,
for APIs, this means that every session should require and persist
authN and authZ. The AuthN could be through session cookies,
tokens such as JWT, etc.

Key tenets of NIST Zero Trust translated for APIs

Key Tenet

Consider every
data source and
computing device
as a resource.

Keep all
communication
secured regardless
of network location

Grant resource
access on a per-
session basis

1.

2.

3.

NIST ZT Definition Meaning in ZT for APIs

11 Zero Trust API Access Reference Architecture

“includes the observable state
of client identity, application/
service, and the requesting
asset—and may include other
behavioral and environmental
attributes.”

(what NIST refers to here as
“requesting asset” we’ll refer to
as an entity.)

“The enterprise evaluates the
security posture of the asset
when evaluating a resource
request. . . Assets that are
discovered to be subverted, have
known vulnerabilities, and/or are
not managed by the enterprise
may be treated differently”

(what NIST refers to here as
“requesting asset” we’ll refer to
as an entity.)

“All resource authentication
and authorization are dynamic
and are strictly enforced before
access is allowed. This should
be done in a constant cycle of
obtaining access, scanning and
assessing threats, adapting, and
continually re-evaluating trust
in ongoing communication.”

“Collect as much information as
possible about the current state
of assets, network infrastructure,
and communications and use it
to improve security posture.”

Continuous visibility in real-time is required to secure any
communications channel and therefore visibility to API behavior
and dynamic API policy controls are required.

For relevance with APIs for each potential criterion that goes
into the dynamic policy, see the “Dynamic Policy Inputs for API
Protection” section below.

For APIs, a policy decision for whether a request should go
through should also include dynamic information about the
requesting system (asset / entity). Such information can help
make a better determination if the request is malicious or not,
by considering such inputs as the overall security position of
the requesting entity (is it known to be compromised or full of
vulnerabilities?), the type of system it is (is it a bot or known
anonymous proxy?), the IP reputation (is it using an IP known to
be used for malicious activity?), etc.

For APIs, this means that all API requests should be properly
authenticated and authorized before an API call is processed.

This also means checking every API endpoint and call for
authentication, encryption, authorization, and exploits of
vulnerabilities, including reevaluating access rights within a user
session.

The majority of communications between clients, services,
storage, and 3rd parties, whether enterprise owned or not,
are using APIs and therefore should have all communications
secured via ZT principals. Relevant for all connections including
North/South connections, East/West (internal) connections, 3rd
party, and how they all connect to each other.

Moderate access
with a dynamic
policy

No asset is
inherently trusted

Rigorously enforce
authentication and
authorization

Gather data for
improved security

4.

5.

6.

7.

12 Zero Trust API Access Reference Architecture

Pillars of Zero Trust for APIs

Zero Trust API Access pillars are defined in alignment with Zero Trust architectures derived from the NIST

ZT framework, such as CISA, GSA, and DOD. However, there are differences based on adaptation to the

unique properties and requirements of APIs.

Data and resources are a primary focus of protection

for any Zero Trust efforts. With APIs, protecting these

is even more important. APIs punch through other

layers of technologies in the stack and their associated

protections, and land the user right at the data or

resource they want access to. But not all data and

resources are equal. It is important to know the sensitivity

level of different data sets, as well as the value, cost and

impact of resources, should they be compromised.

Make sure to inventory your data and identify which is

sensitive, and to what level. Make sure that if you have

resources that are costly or have some other high impact

on your company that your business logic flows around

them including safety nets such as intelligent rate limiting.

Make sure that all transactions that lead to your sensitive

data or costly resources are properly authenticated,

authorized, and encrypted.

APIs are communication critical infrastructure for

applications. When Zero Trust says “secure the

application”, APIs are an often overlooked yet critical

piece of doing that. But they are NOT the network

itself, nor subject to the same restrictions, barriers,

or protection as the network. These APIs are like the

telephone or cable lines shuttling the Internet to you,

hanging above, or buried under, the roadways (ie.

networks). A roadblock wouldn’t stop the Internet from

getting to you. Conduit integrity needs to be separately

Data / Resources

Conduits (APIs)

analyzed, understood and managed. This also means

being able to collect data and take action in the locations

where the conduits run.

Make sure you know where all of your exposed APIs are.

Make sure you can continually track and validate the

security posture of all your APIs. Make sure you have

a way to block the traffic of known bad or dangerous

APIs. Test APIs before they get exposed to production so

vulnerabilities can be proactively dealt with.

Pillars of Zero Trust for APIs Diagram

13 Zero Trust API Access Reference Architecture

Securing API transactions requires knowing who is

requesting resources. Identity (of either a human user or

an NPE (non-person entity) typically comes from looking

at authentication details. However, with APIs, subsequent

requests don’t necessarily include the same identity

information, but instead a proxy for the authenticated

identity, such as a bearer token. It is important to be able

to track the identity of an API requestor across multiple

API requests/responses to get a full understanding of if

they are properly authenticated and what they are doing.

Make sure that your Zero Trust tools are able to

authenticate and authorize identities, but also able

to track those identities even if they aren’t part of the

authentication and authorization process.

An entity is a system, device, or server that a request is

originating from (the source) or in the case of 3rd party

APIs, that the request is going to (the target). NIST calls

these “enterprise-owned assets” but for Zero Trust at the

API level, we need to broaden the scope. This is because

many API calls come in and go out to non-enterprise-

controlled systems, such as 3rd party APIs. Regardless,

knowing about the security posture of those calling or

called systems is still important.

With entities, it is important to understand information

about them such as where they are coming from,

what type of client they are, what their overall security

posture is, etc because this is context that provides

more information than just a user ID for the policy engine

to make a proper determination with. For example, a

known user requesting banking information, but from

an entity that registers as a bot with an IP address that

Visibility and analytics provide context, which is critical

for successful security. This is especially true for APIs.

For example, an API call to “checkout” might look normal

without context, but not if I can see that it was called 100

times in a row without the user ever adding anything to

their shopping cart.” Better context comes from being

able to see all the North/South AND East/West traffic

so that an end-to-end picture of transactions can be

analyzed. Along with this is being able to see within

encrypted traffic to analyze potential malicious payloads,

not just seeing the meta-data about the traffic.

Another example of the importance of visibility and

analytics is being able to capture and analyze all

traffic, good and bad because you can’t track a user

as thoroughly if you only see their activity occasionally.

Identity

Entity

Visibility & Analytics

has a critical risk rating, should probably not be sent the

requested data.

Make sure that any entities you control are secure (OSs

updated, apps patched, configurations checked, etc), and

to the extent possible, that the entities you call also have

good security posture. Set your ZTAA policies to check for

unwanted client attributes in addition to just a userID or

email address.

14 Zero Trust API Access Reference Architecture

Automation & Orchestration

This would be like trying to solve a crime but only being

able to see the crime scene as quick flashes in 5-minute

intervals. The context that visibility and analysis provide

connects the dots.

Make sure the data collected for your policy decisions

aren’t just from one traffic ingress/egress point (unless

it’s a small app and that’s truly the only place all APIs go

through). Make sure that you are able to see API traffic

between your services too. The deeper the data you can

see, and the wider the window of time you can analyze

the data, the more intelligent decisions can be made by

the policy engine.

Automation and orchestration are important for any

security tool given the speed and sophistication with

which attacks can happen over large numbers of

disparate systems. This is especially true for APIs

which are typically used to glue together services at

scale across the network. Manual and uncoordinated

responses can no longer keep up. Automation and

orchestration should happen within your API security

systems, and also to external systems, such as SIEM and

SOAR for more widely coordinated responses.

Automation enables action to be efficiently and quickly

taken on unacceptable API calls. One example of this is

the policies that enable the Zero Trust components (PDP,

PEP) to make proper decisions and take proper action,

given an undesirable API transaction has been requested

or is happening. Some systems have built-in policies that

tell them how and when to take action. Others enable

the users to configure policies to match their automation

and orchestration needs. Either way, an effective Zero

Trust API Access implementation should be able to

automate its responses to unacceptable API traffic.

Most application security tools used today do not have

adequate API data collection or intelligence built into

them. This is where orchestration can add value. By

sharing API-centric data with SIEM and SOAR systems

the whole security system can become more aware of

issues found at the API level. Additionally, by integrating

and orchestrating with control points (PEPs) that are not

API aware (like WAFs), API intelligence can effectively be

added to those control points.

Use automation & orchestration to execute your manual

security process to make sure that policy-based API

security actions are executed across your disparate

application components with speed and at scale.

15 Zero Trust API Access Reference Architecture

ZT Requirements for APIs

Data identification and classification: Automatic identification and
classification of sensitive data and data sets (such as HIPAA, GDPR, and PCI-
DSS). Identifies sensitivity level of data types and sets. Customizable. Enables
API risk assessments and sensitive data awareness in policies.

Keep an updated inventory of all APIs: You can not protect what you don’t
know about. Since APIs are invisible, yet easy to add, API sprawl happens
easily. An unknown API endpoint is a risky API endpoint. It is critical to keep a
constant update on what APIs you have exposed, and how much risk each API
endpoint presents. Enables understanding and management of attack surfaces.

Detect & block high-risk APIs: APIs are application-critical infrastructures that
manipulate the data and make requests for resources. Therefore the security
and integrity of the APIs themselves are important to keep managed. A ZTAA
solution should be able to find and track all APIs, scan them for vulnerabilities
that affect proper authentication and authorization, and block any attacks on
such vulnerabilities.

Flexible PEP + DCP (data collection point) distribution: A protection
mesh - Cloud-native and API-based apps are often highly distributed with
varied architectures and varied organizational friction points. This requires
flexibly distributed PEP’s and data collection points to support many different
deployment scenarios (eg. agent-gateway, enclave-based, resource portal,
sandboxing).management of attack surfaces.

In-depth user authN/authZ tracking: Auto recognizes all authentication and
authorization types and tracks users across transactions, IP changes, token/
session changes, and across time. Identifies token issues. Critical for using
identities to validate access rights.

Entity risk assessment: Evaluate risk attributes of source and/or target entities
in policy decision-making. Examples of relevant attributes include IP Type, IP/
IP Reputation, geo-location, ASN, connection type, user agent, region, and
security posture (eg. EDR). Enables multi-dimensional and contextual decision-
making.

1.

2.

3.

4.

5.

6.

(In Transit, Governance)

(API Integrity)

(User, Service)

(Source, Target)

Data / Resources

Conduits (APIs)

Identity

Entity

16 Adhere to FFIEC Guidelines with TraceableZero Trust API Access Reference Architecture16

Complete transaction visibility (N/S, E/W, TLS): North/South, East/West API
call sequences AND how they all connect. This includes being able to see inside
encrypted TLS transactions, preferably without requiring an added decryption
termination point, which adds friction to implementation. Enables full coverage
and visibility of all communication channels.

Data & resource access policy framework: Granular data access policies
based on sensitive data classification, granular source-based attributes,
and requesting identities or domains. Enables precise & manageable policy
definitions to protect data and resources.

Gather all API transactional data for full context: Monitoring and recording all
API transactions no matter where they connect from or to, whether thought to
be good or bad, and storing them, over time, bringing full context for every API
endpoint. Enables more context and more intelligent decision-making by the
PDP when processing policies.

Security posture contributor and consumer: Share API-level security posture
assessments to external XDR, SIEM, SOAR systems. Enables the addition
of API-specific signals to higher level Zero Trust visibility points for better
automation and orchestration. Consume external posture signals in policy
decision-making. Enables better API-level policy decisions.

7.

9.

8.

10.

(Coverage, Capture, Correlate)

(Coverage, Capture, Correlate)

Visibility and Analytics

Automation & Orchestration

317 Zero Trust API Access Reference Architecture

ZT for APIs Core Components

Policy Decision Point (PDP)

For APIs, the PDP uses dynamic policy data to determine
if an API call should be allowed to go through and/or
if a response is allowed to happen. Because APIs are
consumed and can be abused in far more complex ways
than traditional non-API communications, the policy should
use dynamic data which includes a deep understanding of
each application’s business logic and its typical behavior.

Key to maintaining ZT at the API layer is the policies
that are set and how rich the data is with which they
determine decisions.

Consists of the Policy engine (PE), responsible for
making and logging the decision to grant access
to a resource for a given subject, and the Policy
administrator (PA), responsible for establishing
and/or shutting down the communication
path between a subject and a resource, via
communicating to the PEP. PDP is in the
control plane.

Policy Decision Point (PDP)

Core Components Meaning at API Layer

18 Zero Trust API Access Reference Architecture

Policy Enforcement Point (PEP)

API Context

For APIs, any in-line system (of the communication path
in the data plane) which handles the API traffic, and which
can alter the transmission of that traffic (eg. API gateway,
WAF, proxy, load balancer, mesh, an in-language
agent, etc).

For APIs, in a resource-based deployment, the Trust
Zone is as small as possible, allowing only the running
of the approved API call. This is the ideal smallest
practical trust zone you can have.

This system is responsible for enabling,
monitoring, and eventually terminating
connections between a subject and an enterprise
resource. . .

This is a single logical component in ZTA which
can be a single portal component that acts as a
gatekeeper for communication paths.

Beyond the PEP is the trust zone.

Policy enforcement point (PEP)

Core Components Meaning at API Layer

When we say context or context-sensitive when talking about APIs and ZT-associated policy decisions,

we are talking about the metadata and data of each call. The more data a system has about each API

call, the better it will be at identifying patterns and indicators of malicious activity. This data might include

information such as changes, ownership, risk assessments, behaviors, attributes, integrity, metrics, and

classifications.

For example, knowing that a particular API

endpoint, such as checkout, is not usually

called without the user first going to their

cart and adding something, and that when

the checkout API is called, it’s usually done

only once. The context-sensitive policy and

Trust Algorithm that is processing it can use

this baseline to identify an untrustworthy

event, such as a sudden barrage of individual

“checkout” calls.

19 Zero Trust API Access Reference Architecture

Trust Algorithm and Context

The trust algorithm in ZT is the process by which

policies and policy inputs are calculated into a pass/

block decision. The output of which is passed by the

PDP to the PEP for enforcement. The Trust Algorithm

(TA) therefore plays a critical role in determining the

effectiveness of your ZT implementation, followed only

by your policies and the inputs provided to them.

“[In a] ZTA deployment, the policy engine [(PE, part of the PDP)] can be thought of as the brain and the

PE’s trust algorithm as its primary thought process. The trust algorithm (TA) is the process used by the

policy engine to ultimately grant or deny access to a resource.“ (NIST Special Publication 800-207 Zero

Trust Architecture - Rose, Borchert, Mitchell, Connelly - 2020 - Section 3.3, pg 17)

A more sophisticated TA will incorporate context into its processing, as described by this passage from

one of the key books on ZT, “Zero Trust Security”:

“Singular versus contextual: A singular TA treats each request individually and does not take the

subject’s history into consideration when making its evaluation. This can allow faster evaluations, but

there is a risk that an attack can go undetected if it remains within a subject’s allowed role. A contextual

TA takes the subject or network agent’s recent history into consideration when evaluating access

requests. This means the PE must maintain some state information on all subjects and applications

but may be more likely to detect an attacker using subverted credentials to access information in a

pattern that is atypical of what the PE sees for the given subject. This also means that the PE must be

informed of user behavior by the PA (and PEPs) that subjects interact with when communicating.

Analysis of subject behavior can be used to provide a model of acceptable use, and deviations from

this behavior could trigger additional authentication checks or resource request denials.” (NIST Special

Publication 800-207 Zero Trust Architecture - Rose, Borchert, Mitchell, Connelly - 2020 - Section 3.3.1,

pg 20)

“Ideally, a ZTA trust algorithm should be contextual” (NIST Special Publication 800-207 Zero Trust

Architecture - Rose, Borchert, Mitchell, Connelly - 2020 - Section 3.3.1, pg 19)

Because APIs in combinations make up the business logic, out in the open, they invite manipulation and

therefore need to be secured differently than singular network or web calls. This means that the context,

of previous calls, of sequences, of the user, is a key input to making proper security policy decisions

for APIs.

20 Zero Trust API Access Reference Architecture

Dynamic Policy Inputs for API Protection

NIST’s intent Includes the user
account (or service identity)
and any associated attributes
assigned by the enterprise to
that account or artifacts to
authenticate automated tasks.

For APIs, user identity comes from the authenticated user of
the API session, or their IP address (as a fallback) if they are not
authenticated. Additionally, the policy should consider the status
of a particular ID such as whether it is marked as stolen, or from
a compromised domain. Authentication type should be looked
at for known weak authentication, which might affect the level of
access given. This extends to the token state if a token-based
authentication/authorization is used, such as if it is expired or from
a different source. Additionally, the scope/roles assigned to the ID
should be taken into consideration looking to make sure that they
match defined parameters. For APIs, the ability to detect and stop
business logic attacks, in addition to authentication and authorization
attacks (such as Broken User Authentication, Broken Object Level
Authorization, and Broken Function Level Authorization) relies on the
ability to track user activity over time and transactions so this input is
even more important for ZT at the API level.

Policy Input

User/Service Identity

NIST APIs

NIST’s intent here is for
understanding the state of
the system/client initiating the
connection. This includes device
characteristics such as software
versions installed, network
location, time/date of request,
previously observed behavior,
and installed credentials.

For APIs, the notion of asset state is about the system they are
making the request from such as the reputation of the software
they are using to make the API calls (eg. user agent and browser
version), where the asset is making the request from, such as
known sanctioned countries, and that the security posture of the
requesting asset is, for example, what an endpoint protection tool
such as SentinelOne or Eset might determine.

Asset Risk
Assessment

21 Zero Trust API Access Reference Architecture

NIST’s intent here includes but is
not limited to, automated subject
analytics, device analytics,
and measured deviations from
observed usage patterns.

NIST’s intent includes factors
such as requestor network
location, time, and reported
active attacks.

NIST’s intent is that for highly
sensitive data more restricted
access to that data might be
imposed than for non-sensitive
data.

NIST’s intent is that only the
minimal required permissions are
given to a user such that they
are restricted to only necessary
visibility and accessibility.

NIST does NOT identify this
as a policy consideration for
ZT. Traditional ZT touches
on applications (layer 7) but
does not dive deeper into how
to implement ZT within the
applications.

For APIs, behavioral attributes should focus less on the device
and more on the user and API usage patterns. Example patterns
to consider include typical API call sequence patterns, frequency
of API endpoint usage, typical roles of the users who use the
endpoint, and typical parameter usage patterns.

For APIs, environmental and network attributes that should be
taken into consideration include information such as the geo-
location of the calling asset, its IP address, and its IP reputation,
and even the ASN it’s coming from. It’s also valuable to look at
what environment the request is going to (eg. an API request to
a production environment might be considered higher risks than
to development environments), and the time of the requests (eg.
an application might only expect traffic during an event). Another
environmental factor that can be valuable to include in ZT policies
is whether there are active attacks in the environment being called,
or doing the calling. And finally, but not least, it is recommended
that implicit rate limits be configured on the called APIs.

For APIs, in order to make secure policy decisions about an API
call that accesses data, it is important to know what type of data
it is (eg. is it a name, address, credit card number, social security
number, etc), whether the data maps to any data sets that have
compliance requirements (such as PCI, HIPAA, GDPR, etc) and
what the sensitivity score/level of the data is.

For APIs, this means that once a requestor is authenticated AND
authorized, they can only access, provide, or update the data
which they requested and that they are authorized to get/change.
Ideally, the ZT for API PDP/PEP combo can detect AND block the
vulnerabilities that lead to violation of least privilege principles,
such as mass assignment, excessive data exposure, basic user
authentication errors, broken object-level authorization, and
broken function-level authorization.

In ZT for APIs, the APIs are a combination of the application
workload and the access pipes themselves. For the PDP to
make smart zero trust policy decisions for APIs, it is important
to understand the risk posture of those “pipes” (APIs) such as if
they are unencrypted, external, and not authenticated. It’s also
important to understand if the API and its usage conforms with
documented expectations (eg. that the called API is known and
called correctly). Finally, and importantly, just as for ZTNA it is
important to understand the patch state of the firmware on your
network gear, it’s important to know what vulnerabilities the called
API has.

Behavioral Attributes

Environmental/
Network Attributes

Data Attributes

Least Privilege
Principles

API Endpoint
Attributes

322 Zero Trust API Access Reference Architecture

ZT for API
Deployment Models

Cloud-native application architectures are by nature distributed, with services oftentimes spread across

multiple clouds and potential control points. This requires not only a centralized PDP, which Zero Trust

architecture calls for, but more importantly widely distributed PEPs and data collection points.

3

Traceable is the industry’s leading API Security company that helps organizations achieve API protection in a
cloud-first, API-driven world. With an API Data Lake at the core of the platform, Traceable is the only intelligent
and context-aware solution that powers complete API security – security posture management, threat pro-
tection and threat management across the entire Software Development Lifecycle – enabling organizations to
minimize risk and maximize the value that APIs bring to their customers. To learn more about how API security
can help your business, book a demo with a security expert.

About Traceable

