

R. S. Kuzu, T. Brunschwiler, G. Cavallaro, J. Nalepa, 5, C. O. Dumitru, A. Zappacosta, D. E. Molina, R. Kienzler, J. Jakubik, B. Blumenstiel, Paolo Fraccaro, Felix Yang, R. Sedona, S. Maurogiovanni, E. Scheurer, A. Wijata, L. Tulczyjew, D. Marek, J. Sadel, S. Ofori-Ampofo, N. Dionelis, N. Longepe

FAST-EO Project Overview

- ✓ Mission: Build foundation models for Earth Observation using self- and unsupervised multimodal learning
- ✓ 4M4EO Framework: Fuse optical, SAR, hyperspectral, metadata & text into one masked modeling pipeline
- Exascale Training: Leverage JUPITER supercomputer for large-scale model training
- ✓ Open Ecosystem: TerraTorch for end-to-end data prep, training & evaluation
- ✓ Applications: Addressing regression, classification, and segmentation problems, involving text captioning in some of the applications

UC1: Weather & Climate Disaster Analysis

UC2: Detection of Methane Leaks

UC3: Observation of Changes in Forest Above-Ground Biomass

UC4: Estimation of Soil Properties

UC5: Detection of Semantic Land Cover Changes

UC6: Monitoring Expansion of Mining Fields into Farmlands

TerraMind – our first foundation model with cross-modal understanding

FAST-EO / ESA Contract No. 4000143501/23/I-DT

TerraMind

TerraMind represents the first any-to-any generative, and large-scale multimodal model for Earth observation pretrained on 500 billion tokens from global geospatial data.

The model digests inputs at pixel-level, token-level, and as sequences, simultaneously.

TerraMind outperforms other deep learning models for Earth observation in downstream applications and unlocks any-to-any generation and Thinking-in-Modalities (TiM) finetuning and inference.

Evaluation on PANGAEA bench

TerraMind is evaluated on PANGAEA bench with a diverse set of modalties and downstream tasks – with a frozen encoder.

It outperforms all other evaluated geospatial foundation models and even fully fine-tuned UNet and ViT models.

TerraMind benefits from multi-modal inputs and the new Thinking-in-Modalities approach for improved performance results.

MS CLIP – Zero-shot applications via contrastive learning

Vision Language Models enable interactive applications based on natural language.

CLIP is the most promindent model with zero-shot classification and text-to-image retrieval capabilities.

Retrieved images based on image-text similarity

Classification with solar farm vs. others

FAST-EO / ESA Contract No. 4000143501/23/I-DT

MS CLIP

CLIP¹ is trained with Contrastive Learning on 400M image-text pairs.

But the model does not generalize well on domain specific tasks.

Continous pre-training with additional channels for EO domain adoption.

MS CLIP — Zero-shot evaluation

MS CLIP outperforms all baselines and EO-specific VLMs.

MS CLIP improves classification accuracy by +6.77% on average and retrieval by +4.63% mAP compared to the second-best model.

Benefit of multi-spectral data as our RGB-CLIP only performs on pair with other EO VLMs.

Downstream Applications

Climate impact analysis

Building a large-scale, multi-modal, multitemporal dataset for predicting various disaster types. Release in Q2 – stay tuned!

Detection of Methane Leaks

Fine-tuning TerraMind to detect methane leaks in airborne and satellite imagery, thereby surpassing the benchmarks.

Model	ACC	SPE	SEN	F-Score	MCC	
FM – 12 bands	0.841	0.823	0.869	0.853	0.676	
Baseline – 432 bands	0.680	0.380	0.990	0.760	0.460	

FAST-EO / ESA Contract No. 4000143501/23/I-DT

Downstream Applications

Forest Biomass Change Monitoring

Investigating how terrain topography affects the detection of forest biomass changes and seeking improvements for mountainous regions using the TerraMind model.

Estimation of Soil Properties

Fine-tuning the TerraMind model to regress soil properties, achieving a HYPERVIEW score of 0.7943 and securing 1th place in the benchmark.

Model HYPERVIEW Score

TerraMind

ResNet50

Prithivi

ViT

TerraMind & KNN

0.8374

0.7943

0.8483

0.8444

0.8958

20

100

Downstream Applications

Detection of Semantic Land Cover Changes

Curating the 335,125-patch Sen4Map Sentinel-2 timeseries dataset and fine-tuning Geo-FMs for semantic land-cover change detection—establishing robust benchmarks with Random Forest, pixel-based Transformers, ViTs, and Video ViTs.

-	Classes	Random Forest	Transformer (pixel-based)	ViT	VViT	Prithvi-EO 1.0-100M	Prithvi-EO 2.0-300M	Prithvi-EO 2.0-600M
	Artificial land	0.49	0.57	0.53	0.59	0.59	0.63	0.64
	Bareland	0.20	0.24	0.20	0.25	0.27	0.34	0.39
	Broadleaves	0.69	0.73	0.69	0.75	0.75	0.76	0.77
	Conifers	0.76	0.80	0.78	0.81	0.81	0.83	0.84
	Cropland	0.80	0.83	0.78	0.83	0.84	0.85	0.85
	Grassland	0.69	0.73	0.68	0.73	0.74	0.75	0.76
	Shrubland	0.29	0.42	0.31	0.43	0.43	0.53	0.52
	Water	0.61	0.63	0.60	0.65	0.65	0.68	0.67
	Wetlands	0.60	0.67	0.61	0.70	0.72	0.74	0.75
	W.A. F-score	0.67	0.72	0.67	0.72	0.74	0.76	0.76
	Overall Accuracy	0.68	0.73	0.68	0.73	0.74	0.77	0.77

FAST-EO / ESA Contract No. 4000143501/23/I-DT

Monitoring Expansion of Mining Fields into Farms

Artisanal gold-mining segmentation using Sentinel-1, Sentinel-2, and DEM data—achieving a mean IoU of 0.76 surpassing the benchmarks. Stay tuned for the improved results with TerraMind 1.0 soon!

S. Ofori-Ampofo, A. Zappacosta, R. S. Kuzu, P. Schauer, M. Willberg and X. X. Zhu, "SmallMinesDS: A Multi-Modal Dataset for Mapping Artisanal and Small-Scale Gold Mines," in *IEEE Geoscience and Remote Sensing Letters*, doi: 10.1109/LGRS.2025.3566356

Next Steps for FAST-EO

- ✓ Develop and Open-Source TerraMesh+
- ✓ Integrate Advanced SAR Capabilities
- ✓ Embed Trust and Governance Tools
- ✓ Optimize for Edge and Cloud Deployment
- ✓ Demonstrate End-to-End Operational Workflows

