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COMPUTATION DEMANDS

HPC and Al application growth in the past decade

*Large-Scale Deep Learning



1. Al drives Computational Demands

THE ERA OF LARGE-SCALE DEEP LEARNING

e 2015 marked the start of a new erain
large-scale Al models

® Models like AlphaGo had much higher
computational power than other models
of that time

® OpenAl noted that compute capacity
has been doubling approximately every
3.4 months

Training compute (FLOPs)

Publication date

These advancements continue to push the demand for computing power



1. Al drives Computational Demands

NOTABLE Al MODELS
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Deep Learning Era
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Publication date ()

- -m 2025: Grok-x (speculation)
—- $20K GPU X 200,000 = $4B
— 92 days of training

= 2022: GPT-4 (speculation)
- $8K GPU x 25,000 = $200M
— 90 days of training

= 2012: AlexNet
- $500 GPU x 2 = $1K
— 5 days of training



SCALING UP MODELS

Driven by empirical observations
and supported by theory




1. Al drives Computational Demands

IN 2020, IT WAS SHOWN THAT SCALING MODELS COULD
IMPROVE TASK-AGNOSTIC, FEW-SHOT PERFORMANCE

= Small models (=> 1 billion param.) couldn't
Zero-shot One-shot Few-shot
| . . - understand tasks from prompts alone

EEASAEELEIN * | arge models demonstrate improved

Natural Language L g = e
Procpt ability to learn a task from contextual
) ai information
3 \ — Thanks in part to using more data during
g No Prompt pretralﬂlﬂg

1.3B Params Model Name
GPT-3 Small
GPT-3 Medium 350M
Number of Examples in Context (K) GPT-3 Large 760M
. . . . . GPT-3 XL 1.3B
Task: give the model a word distorted by some combination of scrambling, addition, or GPT-3 2.7B 27B
deletion of characters, and askto recover the original word. GPT-3 6.7B 6.7B
GPT-3 13B 13.0B

GPT-3 175B or “GPT-3" 175.0B



1. Al drives Computational Demands

SCALING LAWS

« Refers to relations between functional properties of interest (i.e., test loss, performance
metric for fine-tuning tasks) and properties of the architecture or optimization process
(e.g., model size, data, or training compute)

» These laws can help inform the design and training of DL models, as well as provide
insights into their underlying principles



SCALING LAWS

= Predictable power laws
— Test loss drops as a power law with parameters, data, and compute

= Quantified returns
— For text models, doubling parameters cuts loss by = 5 %; doubling data by = 7 =10 %

— Vision models gain even more per doubling.

= Scalability across regimes

— The power-law exponents stay constant across ~7 orders of magnitude (results from small runs
extrapolate accurately to trillion-parameter scale)

L=(D/5.4+1013)-0.09 . —— L =(N/8.8-1013)~0.076
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Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding




FOUNDATION MODELS



2. Foundation Models

WHAT MAKES A MODEL FOUNDATIONAL?

Train the model once (slowly) and use it many times ("quickly")

Generic
scalable pre-training

’

Uses general data types:
text, images, or combined text-images

Simple loss functions
(e.g., predicting the next token
in autoregressive models)

Self-supervised training:
scalable without human-labeled data

Farm in China

Farm in California

After pre-training, models can handle a wide range of
different tasks, even with minimal data
(zero-shot or few-shot)

Performance improves as model size, data, and compute
scale up. Larger scales lead to better transferability

Emergent abilities, like in-context learning and reasoning,
become noticeable at larger scales



2. Foundation Models
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Key Points Applications Key Factors for Success

Focus on both new model ideas and top-quality data.

Language: Writing and understanding text

Training with large amounts of varied data
(e.g., GPT, BERT, T5)

I 1|
I 1|
I (I
I 11
I 1|
Pre-trained models can be used for 1 . -
many tasks while saving energy. I P (e.g., over 100 million examples).
: Vision: Recognizing images and extracting features : :
I |
I (I
I |
I .

; Building large-scale models with billions of parameters.
(e.g., ResNet, ViT, DINO)

Models learn patterns from a lot of

data without needing labels. . . L .
Using massive training samples for long-term learning

Combined Language and Vision: Image interpretation (e.g., over 300 billion tokens).

and generation (e.g., CLIP, Stable Diffusion).

Can be quickly customized for specific tasks,
even with limited labeled data.



2. Foundation Models

GEOSPATIAL AlFOUNDATION MODELS FOREO

2021

2022

2023

Beginning of foundation Models developed for EO and Earth science applications

Language model based on Earth science literature

SSL4EO-L, a large model trained on LandSat imagery (Microsoft TorchGeo team)

ClimaX, foundation model designed for weather and climate science ClimaX

ClimSim, dataset for Al emulators of atmospheric storms, clouds, turbulence, rainfall, radiation

PRESTO, pretrained transformer focussing on time-series

Prithvi, generalist geospatial Al foundation model (image classification, object detection)

... and EarthPT, SkySense, VITO-DINO, EarthGPT, SkySenseGPT, Clay, Hypersigma, CORSA, ...



GEOSPATIAL FOUNDATION MODELS FOREO

Beginning of FMs in EO Benchmarking: GEO-Bench, PANGAEA

Distributed training for EO SSL4EQO Prithvi-EO Multimodality
Larger dataset: e.g., BigEarthNet DOFA, TerraMind




2. Foundation Models

PRITHVI-EO-2.0 AND TERRAMIND

A community effort

Prithvi-EO-2.0: A Versati i-Temporal TerraMind: Large-Scale Generative Multimodality for Earth Observation
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FAST-EO PROJECT

FOSTERING ADVANCEMENTS IN FOUNDATION MODELS VIA UNSUPERVISED AND SELF-
SUPERVISED LEARNING FORDOWNSTREAM TASKS IN EARTH OBSERVATION

@) JULICH CYIY - FAST-EO




TerraMind: Large-Scale Generativ
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benchmarks for EO like PANGAEA. The pretraining dataset,
the model weights, and our code will be open-sourced under

a permissive license

1. Introduction

Earth observation (EO) increasingly benefits from multi
modality because of the important integration of comple
mentary information from different data sources. This be-
comes particularly relevant as data from specific satellite
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missions can be unavailable for a specific time or location
due to low revisiting times or weather phenomena like cloud
coverage, Vice versa, for the computer vision domain, EO
data is an important playground for the development of new
approache ailable data of
very high quality and complexit ble modalities
range from sensors of different satellite missions to relevant
complementary information like digital elevati
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the Copernicus Sentinel-1 (S-1) and Sentinel-2 (5-2) mis
sions. our dataset contains task-specific modalitics such as
land use/land cover (LULC) and normalized difference v
etation index (NDVI) maps, metadata like digital elevation
M) and geographic coordinates, and natural lan
form of captions. To the best of our knowledge.

TerraMind represents the first truly gencrative, multimodal
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HOW TO CREATE A FOUNDATION MODEL?

Simplified workflow

1) Gather data at scale
2) Train foundation model one time and evaluate

3) Fine-tune model for multiple downstream tasks

4) Inference (operational)



SUPERCOMPUTING



WHAT ARE SUPERCOMPUTERS
USED FOR*?

*Also Beyond Al &



3. Supercomputing

ENGINE OF SCIENTIFIC PROGRESS.
TACKLE PRESSING SOCIETAL PROBLEMS

o ‘\\\‘\«'\w\y'ﬂ b4 g
Be o @
K &g
/

Chemistry Medicine Climate Society

Used for data-intensive and computation-heavy scientific and engineering applications



3. Supercomputing

COMMON TRENDS IN
SCIENTIFIC COMMUNITIES

= More Digital Twins

1 = More Al for science :
: - Foundation models _:
B E)a_ta_a_s;n:ilgtion and interpretation
= Tighter link to experiments and data sources
- Streaming data

— Jointly analysing data from different sources

= Challenges around dealing with and moving large data volumes
— Rather than about compute power



3. Supercomputing

SUPERCOMPUTING FOR FOUNDATION MODELS
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HEAVY WORKLOADS
PYTORCH DDP, FSDP LIGHTER-WEIGHT
WORKLOADS

PARAMETER-EFFICIENT
TUNING

NOT RESOURCE-HUNGRY
DEPLOYMENT AT SCALE
EDGE COMPUTING

NEEDED

POSSIBLE



TERRAMIND WAS PRE-TRAINED ON JUWELS

« TerraMindv1-B (500B tokens)
« 6 days on 32 NVIDIA A100 GPUs

e TerraMindv1-L (1 trillion tokens)
« 10 days on 32 NVIDIA A100 GPUs

= TerraMindv1-B
TerraMindv1-L ] ) ]
Scaling behavior comparing v1-B

and v1-L models for the first 350B
tokens on the validation loss of
optical S-2 L2A data.

Overall, TerraMind-L outperforms
TerraMind-B after approximately
10% of the training schedule of the

Ranking in November 2020
(TOP500 (7 World, 1 Europe), Green500 (1in TOP100) TOP10 Al (4)

@) JULICH |5 (i Mellanox  AtOS %A large model.
[ ] o
Bulk

100 200
Tokens [in billions]




WHAT ACTUALLY IS A
SUPERCOMPUTER?



3. Supercomputing

HIGH-PERFORMANCE COMPUTING SYSTEMS

node node node  node — node

node — node node — node — node =" High number of compute nodes

= \Vast amounts of memory
hode — node node  nhode node  node

node  nhode node node node node

HPC == tightly coupled parallel workloads



3. Supercomputing

WHAT IS INSIDE
COMPUTE NODES?

node node

I

a
: *:,i:f 3 node  node
DA g O e .




3. Supercomputing

node ' node

node ' node

HPC SYSTEMS ARE ACCELERATED

= |ast decade

— More and more GPUs installed in HPC
machines

— More and more HPC machines with GPUs
— More and more GPUs in each system

(%]
=
w
-
[
>
wv

= Future

— GPUs selected as technology for enabling
Exascale

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 '24

— Even larger GPU machines with larger GPUs



3. Supercomputing

JURECA
Copyrigl«\t - Forscl«ungszentrum Julich
httes:// www.Fz—juelicL\.o(e/ en/ias/jse/systems/ supercomputers/:\ureca

Compute Com ute Com ute Compute
Node o) [ Node s/ [ o'eg """" Nb"e

m\ r(‘.ow:;(w‘te_ COw\put omput Compute.
N SA ”éa.é.... aas's .”.0 .............................. No. 4
You! L_o.i.J ;
hﬂ €« = Co»iput Compu‘t Comput Compu‘t
Log%n \ .a.e.---- S ...A.l.oa.é .......... N.éa.e: .......... 6-. e
Node :
rCo»i(ol.d‘\:e. rComp_u‘l.’.e. Comput Compu‘t
Node o) ™" Node e Kfode “Wode
) ] 7 J

077

JUST
‘ Copyrigl«t - Forscl«ungszentrum Julich
| . https:// www.'Fz—juehcl«.o(e/ en/ias/jsc/systems/storage-systems/just

Credit: Stefano Maurogiovanni (Julich Supercomputing Centre, Germany)



3. Supercomputing

PETA TO EXA-SCALE SYSTEM

System performance growth in the past decade

HPC: 50x in FP64 FLOPS (Post-Moore) AI: 538x in FP16 FLOPS (Huang's Law)
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3. Supercomputing




3. Supercomputing

Al CONTINENT ACTIONPLAN EU lsiiichies Investaliinitiative to mobillss-€200

billion of investment in artificial intelligence*

5 Pillars for Europe to become the Al Continent
1. Building a large-scale Al computing infrastructure
Increasing access to high-quality data
Promoting Al in strategic sectors
Strengthening Al skills and talents

el s G e

Simplifying the implementation of the Al act

and adoption




3. Supercomputing

HPC POWERIN THE EU IS PUBLICLY ACCESSIBLE

In 2024 Europe hosts 30% of the world’s top ten supercomputers

= European network of cutting-edge supercomputers deployed
by the European High-Performance Computing Joint
Undertaking (EuroHPC JU)

— EuroHPC was launched in 2018 and co-funded by the EU,
Member States, and private actors.

= TOP500 (November 2024, global ranking)
— LUMI (#8)
— Leonardo (#9)
— MareNostrum 5 ACC (#11)

European High Performance Computing Joint Undertaking (EuroHPC JU), "EuroHPC Supercomputers”, https://eurohpc-ju.europa.eu/supercomputers_en



3. Supercomputing

Al Factories

European Digital Innovation Hubs

Apply Al Strategy will cover the way
EU strategic sectors will benefit most

Al CONTINENT ACTION PLAN

Area: Computing infrastructure

Single Market for Al

Al Factories Al Gigafactories Cloud and Al
development Act
« Objective: train and finetune Al « Objective: train and develop « Objective: boost research in
models complex Al models highly sustainable infrastructure
« Budget: €10 billion from 2021 to « 4x more powerful than Al Factories « Encourage investments
2027 « £20 billion mobilised by InvestA!  Triple the EU's data centre
« At least 13 operational Al « Deploy up to 5 Gigafactories capacity in the next 5-7/ years

factories by 2026



3. Supercomputing

EUROHPC AIFACTORIES
To triple the current EuroHPC Al computing capacity

= Facilitate access to Al provided by HPC facilities

= Dynamic ecosystems that foster innovation, “®m Al Factories

@ AIF Hosting Countries

collaboration, and development in the field of Al

AIF Partner Countries

Remaining EuroHPC

= Support startups, industry, and researchers to Particpating States
develop cutting-edge Al models and applications.

EUROHPC Al FACTORIES ECOSYSTEM

BRAIN++ (86) SERETTS
New Al-optimised

Supercomputer
st o= BSCAIF
o= Barcekra
New Al-optimized
Supercomputer
Al-ready Al Upgraded
percompul Supercomputer
L JAIF (0F) ] L AI2F (FR) J
Al-ready Al-teady
Supercomputer upercomput




THE JUPITER AIFACTORY (JAIF)

Modular JUPITER - Hybrid Training/Inference Al System

JUPITER and JARVIS - JAIF Hardware/Software Ecosystem
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JUPITER inference system (JUPITER
Advanced Research Vehicle for Inference
Services), a cloud-based Al inference platform

&~” hessian.Al

\

I‘ NVIDIA GH200 UU

< |

S ———
yF—— ’

Hardware -
Compute

—

’}',—‘7{.\ m
Inference Accelerator* H

. )

Contact: jaif@fz-juelich.de

Storage

| Hardware - ||



mailto:jaif@fz-juelich.de
mailto:jaif@fz-juelich.de
mailto:jaif@fz-juelich.de

JUPITER: FIRST EUROPEAN EXASCALE SYSTEM

JU Pioneer for Innovative and Transformative Exascale Research (JUPITER)

Performance of 1 million smartphones (a stack as tall as Mount Everest)



=
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~6000 nodes of JUPITER




3. Supercomputing

JUPITER BOOSTER _—

~6000 nodes, ~24 000 GPUs, 224 000 network devices

= GPU : 4 x NVIDIA H100 Grace-Hopper flavor 96 GB memory per GPU
= CPU: 4 x NVIDIA Grace, 4 x 72 cores; 4 x 120 GB LPDDR5X memory
= Network : 4 x NVIDIA Mellanox InfiniBand NDR200, 4 x 25GB/s

AR | Bundesminsteriam
A | firBildung
und Forschung

Ko and Wissenschatt /2
,

SIPE/ARL



JUPITER RANKS 4TH ON THE TOPS0OOLIST AND IS

EUROPE'S FASTEST SUPERCOMPUTER

June 2025

L1500 CERTIFIC
| The List
JUPITER Booster, an EVIDEN BullSequana XH3000 System at
EuroHPC/F2) Jiilich, Germany

is ranked

Rmax Rpeak Power
System Cores (PFlop/s) (PFlop/s) (kW)

11,039,616 1,742.00 2,746.38 29,581

among the World’s TOPS00 Supercomputers .
United States

on the TOPS00 List published at the ISC High Performance, June 10, 2025

9,066,176 1,353.00 2,055.72

United States

9,264,128 1,012.00 1,980.01

United States
4 4,801,344 793.40 930.00 13,088
EVIDEN

Germany

B4 ‘ . FE
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DATA-PARALLEL TRAINING FLOW

= Each GPU processes a different data shard through forward and backward passes in parallel
= After backward pass, gradients are averaged across GPUs (All-Reduce) before synchronizing model updates

GPU-0 Data-0
Replica of
the same GPU-1 Data-1
model on

GPU-2 Data-2
all GPUs

GPU-3 Data-3

Fwd-1: Forward pass for mini-batch 1 (model on GPU is processing the first batch of data to compute predictions and loss)
Bwd-1: Backward pass for mini-batch 1 (GPU computes gradients for the first batch by backpropagating the loss)

A-R: All-Reduce operation (collective communication step where all GPUs average their gradients (ensure that each model replica ends
up with the same gradients for the weight update)



MODEL PARALLELISM

Pipelining
= Model parallelism splits a single model across multiple GPUs
— Each GPU handling a portion of the model’s layers during forward and backward passes.

= Pipeline parallelism enables overlapping computation across GPUs
— Can suffer from idle time if not carefully scheduled, as shown in the lower example.

Pipe-Parallel Training Flow

GPU-0 Data-0
GPU-1 “

Model split across
GPUs

Pipe-Parallel Training Flow
GPU-0 Data-0 IDLE Update |
GPU-1 IDLE TEa




MODEL PARALLELISM

Tensor Parallelism

= Tensor parallelism splits individual tensor operations (like matrix multiplications) across GPUs
— Enable finer-grained parallelism within a single layer
= Row-wise and column-wise strategies partition tensors differently

— Requiring intermediate communication steps to assemble the final output
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ZERO REDUNDANCY OPTIMIZER

= 7/eRO progressively partitions model states (parameters, gradients, and optimizer states) across GPUs
to reduce memory redundancy and scale training efficiently.
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= PyTorch Fully Sharded Data Parallel (FSDP) implements ZeRO-3

— Highest memory efficiency by fully sharding all states
— But activations remain undivided and must still fit in memory



TOOLS FORDISTRIBUTED DEEP LEARNING

= 2013- DistBelief (Google) first large-scale parameter-server architecture

= 2015 -TensorFlow PS & SyncReplicas standardised PS + all-reduce hybrids
= 2016- MXNet KVStore flexible data/model parallel key-value store

= 2017 - Horovod (Uber) ring-allreduce over MPI/NCCL; drop-in for TF & Keras

O PyTorch

= 2018- PyTorch DDP gradient bucketing; NCCL backend becomes default

, = 2019 - Megatron-LM (NVIDIA) tensor & pipeline model-parallelism for > 10B-param LMs
NVIDIA.
= 2020 - DeepSpeed (Microsoft) ZeRO optimizer sharding, 8-bit optimisers

DeepSpeed = 2021 - PyTorch FSDP fully-sharded data-parallel: near-linear scaling

RayTrain = 2022- Alpa / Colossal-Al automatic 3-D parallel + memory optimisation

= 2023- Ray Train 2.x elastic autoscaling clusters; heterogeneous resources

(DL NI = 2024 - VLLM / Paginated KV-cache inference-oriented distributed serving




TOOLS FORDISTRIBUTED DEEP LEARNING

Is that all?
= Parallelism techniques = Memory 2 Compute 2 Communication trade-off
— (expert parallelism, ...) = Every scaling trick pushes stress along triangle
= Flash Attention
= Kernel Fusion Memory

Hyperparameter Optimization

Inference & deployment

Communication Compute



4. Distributed Deep Learning

LEARN MORE

GCS .

Gauss Centre for Supescomputing TRAININGS/WORKSHOPS

TRAININGS/WORKSHOPS

Joint Initiative GCS and NHR “Al - From Laptop to Supercomputer” - Every Thursday Q&A Café from 14:00 to 15:00.
To join, click the following link: http://go-nhr.de/ai_on_hpc_vconf

Alle Veranstaltungen ab heute, 19.6.2025 < 2025700
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Supercomputing-Academy: Natural Language Processing (Online) 16 18 19 20
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Details >
Montag, 23. Juni 2025

High-performance computing with Python (training course, online)

. Juni 2025 bis Freitag, 27. Juni 2025 | 09:00 Uhr bis 13:00 Uhr




THANK YOU FOR YOUR ATTENTION



