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AI* DRIVES
COMPUTATION DEMANDS

1

*Large-Scale Deep Learning

HPC and AI application growth in the past decade



THE ERA OF LARGE-SCALE DEEP LEARNING

J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn and P. Villalobos, "Compute Trends Across Three Eras of Machine Learning," 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1-8, 2022, https://doi.org/10.1109/IJCNN55064.2022.9891914

Tr
ai

ni
ng

 c
om

pu
te

 (F
LO

Ps
)

Publication date

AlphaGo

• 2015 marked the start of a new era in 
large-scale AI models

• Models like AlphaGo had much higher 
computational power than other models 
of that time 

• OpenAI noted that compute capacity 
has been doubling approximately every 
3.4 months 

1. AI drives Computational Demands

These advancements continue to push the demand for computing power



NOTABLE AI MODELS

Rio Yokota (Institute of Science Tokyo), Scaling Laws in HPC and Al: Yesterday, Today and Tomorrow, Salishan Conference on High Speed Computing, 2025, https://salishan.ahsc-nm.org/program.html

EPOCH AI, "Notable AI Models", https://epoch.ai/data/notable-ai-models

§ 2025: Grok-x (speculation) 
- $20K GPU X 200,000 = $4B
- 92 days of training

§ 2022: GPT-4 (speculation) 
- $8K GPU × 25,000 = $200M
- 90 days of training

§ 2012: AlexNet 
- $500 GPU x 2 = $1K 

- 5 days of training 

1. AI drives Computational Demands



SCALING UP MODELS

Driven by empirical observations 
and supported by theory

1. AI drives Computational Demands



IN 2020, IT WAS SHOWN THAT SCALING MODELS COULD 
IMPROVE TASK-AGNOSTIC, FEW-SHOT PERFORMANCE 

§ Small models (=> 1 billion param.) couldn't 
understand tasks from prompts alone 

§ Large models demonstrate improved 
ability to learn a task from contextual 
information
- Thanks in part to using more data during 

pretraining

T. B. Brown, B. Mann, N. Ryder, "Language Models are Few-Shot Learners", 2020, https://doi.org/10.48550/arXiv.2005.14165

Task: give the model a word distorted by some combination of scrambling, addition, or 
deletion of characters, and askto recover the original word.

1. AI drives Computational Demands



SCALING LAWS

• Refers to relations between functional properties of interest (i.e., test loss, performance 
metric for fine-tuning tasks) and properties of the architecture or optimization process 
(e.g., model size, data, or training compute)

• These laws can help inform the design and training of DL models, as well as provide 
insights into their underlying principles

1. AI drives Computational Demands



SCALING LAWS
§ Predictable power laws 

- Test loss drops as a power law with parameters, data, and compute

§ Quantified returns 
- For text models, doubling parameters cuts loss by ≈ 5 %; doubling data by ≈ 7 – 10  %
- Vision models gain even more per doubling. 

§ Scalability across regimes 
- The power-law exponents stay constant across ~7 orders of magnitude (results from small runs 

extrapolate accurately to trillion-parameter scale)

1. AI drives Computational Demands

 J. Kaplan, S. McCandlish, T. Henighan et al., “Scaling Laws for Neural Language Models,” arXiv preprint, 2020, https://doi.org/10.48550/arXiv.2001.08361   



FOUNDATION MODELS
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WHAT MAKES A MODEL FOUNDATIONAL?
Train the model once (slowly) and use it many times ("quickly")

Generic 
scalable pre-training Scaling LawsData-efficient transferability

Uses general data types: 
text, images, or combined text-images

Simple loss functions 
(e.g., predicting the next token 

in autoregressive models)

Self-supervised training: 
scalable without human-labeled data

After pre-training, models can handle a wide range of 
different tasks, even with minimal data 

(zero-shot or few-shot)

Performance improves as model size, data, and compute 
scale up. Larger scales lead to better transferability

Emergent abilities, like in-context learning and reasoning, 
become noticeable at larger scales

Farm in California 

Farm in China

Adapted from Jenia Jitsev, Open foundation models: reproducible science of transferable learning, AUTOML23, https://youtu.be/R6olskkLmjA?si=6d42xDam-TreXyoh 

2. Foundation Models



FOUNDATION MODELS

"One model for all” 
a universal model designed to 

work across various tasks 

Task A

Task B

Task C

Key Points Key Factors for SuccessApplications
Focus on both new model ideas and top-quality data. 

Pre-trained models can be used for 
many tasks while saving energy. 

Models learn patterns from a lot of 
data without needing labels. 

Can be quickly customized for specific tasks, 
even with limited labeled data.

Language: Writing and understanding text 
(e.g., GPT, BERT, T5)

Vision: Recognizing images and extracting features 
(e.g., ResNet, ViT, DINO)

Combined Language and Vision: Image interpretation 
and generation (e.g., CLIP, Stable Diffusion).

Training with large amounts of varied data 
(e.g., over 100 million examples). 

Building large-scale models with billions of parameters. 

Using massive training samples for long-term learning 
(e.g., over 300 billion tokens).

Adapted from Jenia Jitsev, Open foundation models: reproducible science of transferable learning, AUTOML23, https://youtu.be/R6olskkLmjA?si=6d42xDam-TreXyoh 

2. Foundation Models



GEOSPATIAL AI FOUNDATION MODELS FOR EO

§ Beginning of foundation Models developed for EO and Earth science applications 
Lacoste, Alexandre et al.. “Toward Foundation Models for Earth Monitoring: Proposal for a Climate Change Benchmark”NeurIPS /CCAI workshop 2021

§ Language model based on Earth science literature 
 Ramachandran, Rahul et al. “Language model for Earth science: Exploring potential downstream Applications as well as current challenges”. IGARSS 2022.

Koirala, Prasanna. “Transforming Language Understanding in the Earth Sciences”. Medium 2022. (BERT-E)

§ SSL4EO-L, a large model trained on LandSat imagery (Microsoft TorchGeo team)
Stewart, Adam et al. “SSL4EO-L: Datasets and Foundation Models for Landsat Imagery”. Arxiv 2023.

§ ClimaX, foundation model designed for weather and climate science ClimaX 
Nguyen, Tung et al. "ClimaX: A foundation model for weather and climate”. Arxiv 2023.

§ ClimSim, dataset for AI emulators of atmospheric storms, clouds, turbulence, rainfall, radiation 
Yu, Sungduk et al. "ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate simulators”. Arxiv 2023.

§ PRESTO, pretrained transformer focussing on time-series
Tseng, Gabriel et al. “Lightweight, Pre-trained Transformers for Remote Sensing Timeseries” (PRESTO). Arxiv 2023.

§ Prithvi, generalist geospatial AI foundation model (image classification, object detection)
Jakubik, J., Roy, S., Phillips, C. E., et al. “Foundation Models for Generalist Geospatial Artificial Intelligence.” Preprint Available on arXiv:2310.18660, 2023.

2021

2022

2023

… and EarthPT, SkySense, VITO-DINO, EarthGPT, SkySenseGPT, Clay, Hypersigma, CORSA, ...

2. Foundation Models



GEOSPATIAL FOUNDATION MODELS FOR EO

Beginning of FMs in EO Benchmarking: GEO-Bench, PANGAEA

A. Lacoste, N. Lehmann, P. Rodriguez,"GEO-Bench: Toward Foundation Models for Earth 
Monitoring", 2023, https://doi.org/10.48550/arXiv.2306.03831 Focus to learn more

V. Marsocci, Y. Jia, G. Le Bellier, et al., "PANGAEA: A Global and Inclusive Benchmark for 
Geospatial Foundation Models", 2025, https://doi.org/10.48550/arXiv.2412.04204 Focus to learn 
more

2. Foundation Models



PRITHVI-EO-2.0 AND TERRAMIND
A community effort 

D. Szwarcman, S. Roy, P. Fraccaro, Þ. E. Gíslason, B. Blumenstiel, R. Ghosal, P. H. de Oliveira, J. L. de Sousa Almeida, R. Sedona, 
Y. Kang, S. Chakraborty, S. Wang, C. Gomes, A. Kumar, M. Truong, D. Godwin, H. Lee, C.-Y. Hsu, A. Akbari Asanjan, B. Mujeci, D. 
Shidham, T. Keenan, P. Arevalo, W. Li, H. Alemohammad, P. Olofsson, C. Hain, R. Kennedy, B. Zadrozny, D. Bell, G. Cavallaro, C. 
Watson, M. Maskey, R. Ramachandran, and J. B. Moreno, “Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth 
Observation Applications,” in arXiv preprint, vol. 2412.02732, 2025, https://arxiv.org/abs/2412.02732‍

J. Jakubik, F. Yang, B. Blumenstiel, E. Scheurer, R. Sedona, S. Maurogiovanni, J. Bosmans, N. Dionelis, 
V. Marsocci, N. Kopp, R.Ramachandran, P. Fraccaro, T. Brunschwiler, G.Cavallaro, J. Bernabe-
Moreno, N. Longépé, "TerraMind: Large-Scale Generative Multimodality for Earth Observation", in 
arXiv:2504.11171, 2025, https://arxiv.org/abs/2504.11171

2. Foundation Models



FAST-EO PROJECT
FOSTERING ADVANCEMENTS IN FOUNDATION MODELS VIA UNSUPERVISED AND SELF-

SUPERVISED LEARNING FOR DOWNSTREAM TASKS IN EARTH OBSERVATION

FAST-EO project is funded by the the European Space Agency (ESA) Phi-Lab under the contract No. 4000143501/23/I-DT

https://www.fast-eo.eu/

2. Foundation Models



TERRAMIND: FOUNDATION MODEL FOR EO

https://huggingface.co/ibm-esa-geospatial

J. Jakubik, F. Yang, B. Blumenstiel, E. Scheurer, R. Sedona, S. Maurogiovanni, J. Bosmans, N. Dionelis, V. Marsocci, N. Kopp, 
R.Ramachandran, P. Fraccaro, T. Brunschwiler, G.Cavallaro, J. Bernabe-Moreno, N. Longépé, "TerraMind: Large-Scale 
Generative Multimodality for Earth Observation", in arXiv:2504.11171, 2025, https://arxiv.org/abs/2504.11171

2. Foundation Models



1) Gather data at scale

2) Train foundation model one time and evaluate

3) Fine-tune model for multiple downstream tasks 

4) Inference (operational)

HOW TO CREATE A FOUNDATION MODEL?
Simplified workflow

2. Foundation Models
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WHAT ARE SUPERCOMPUTERS 
USED FOR*? 

*Also Beyond AI 😅

3. Supercomputing



ENGINE OF SCIENTIFIC PROGRESS.
TACKLE PRESSING SOCIETAL PROBLEMS

Used for data-intensive and computation-heavy scientific and engineering applications

MedicinePhysics Chemistry Climate Society

3. Supercomputing



COMMON TRENDS IN
SCIENTIFIC COMMUNITIES
§ More Digital Twins
§ More Al for science

- Foundation models
- Data assimilation and interpretation

§ Tighter link to experiments and data sources
- Streaming data 
- Jointly analysing data from different sources

§ Challenges around dealing with and moving large data volumes 
- Rather than about compute power

Estela Suarez, "HPC Advancing Science: Highlights 2024, at ACM/IEEE Supercomputing Conference, 2024, https://youtu.be/aiykGz7Y8o0?si=whl8CsCOUssYDbGP

3. Supercomputing



SUPERCOMPUTING FOR FOUNDATION MODELS
3. Supercomputing

Credit: Rocco Sedona (Jülich Supercomputing Centre, Germany) 



TERRAMIND WAS PRE-TRAINED ON JUWELS

Julich Supercomputing Centre, “JUWELS Cluster and Booster: Exascale Pathfinder with Modular Supercomputing Architecture at Julich Supercomputing Centre,” Journal of large-scale research facilities, vol. 7, no. A138, 2021.

S. Kesselheim, A. Herten, K. Krajsek, J. Ebert, J. Jitsev, M. Cherti, M. Langguth, B. Gong, S. Stadtler, A. Mozaffari, G. Cavallaro, R. Sedona, A. Schug, A. Strube, R. Kamath, M. G. Schultz, M. Riedel, and T. Lippert, “JUWELS Booster – A 
Supercomputer for Large-Scale AI Research,” in High Performance Computing (H. Jagode, H. Anzt, H. Ltaief, and P. Luszczek, eds.), (Cham), pp. 453–468, Springer International Publishing, 2021.

Ranking in November 2020 
(TOP500 (7 World, 1 Europe), Green500 (1 in TOP100) TOP10 AI (4)

3. Supercomputing

• TerraMindv1-B (500B tokens) 
• 6 days on 32 NVIDIA A100 GPUs
 

• TerraMindv1-L (1 trillion tokens) 
• 10 days on 32 NVIDIA A100 GPUs

Scaling behavior comparing v1-B 
and v1-L models for the first 350B 
tokens on the validation loss of 
optical S-2 L2A data. 

Overall, TerraMind-L outperforms 
TerraMind-B after approximately 
10% of the training schedule of the 
large model.



WHAT ACTUALLY IS A 
SUPERCOMPUTER?

3. Supercomputing
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§ High number of compute nodes

§ Vast amounts of memory

§ High-speed interconnects

HIGH-PERFORMANCE COMPUTING SYSTEMS

node
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…

… …

HPC == tightly coupled parallel workloads

3. Supercomputing



WHAT IS INSIDE 
COMPUTE NODES?

node

node

node

node

3. Supercomputing



Timothy Prickett Morgan, "Top500 Supers: This Is Peak Nvidia For Accelerated Supercomputers", https://www.nextplatform.com/2024/05/13/top500-supers-this-is-peak-nvidia-for-accelerated-supercomputers

Credits: Andreas Herten (Jülich Supercomputing Centre, Forschungszentrum Jülich)

HPC SYSTEMS ARE ACCELERATED
§ Last decade

- More and more GPUs installed in HPC 
machines 

- More and more HPC machines with GPUs
- More and more GPUs in each system

§ Future 
- GPUs selected as technology for enabling 

Exascale 
- Even larger GPU machines with larger GPUs

3. Supercomputing



Credit: Stefano Maurogiovanni (Jülich Supercomputing Centre, Germany) 

3. Supercomputing



PETA TO EXA-SCALE SYSTEM
System performance growth in the past decade

Yutong Lu, "Closing Keynote: Tackling Fragmentation in Exascale Supercomputing and Beyond", ISC High Performance 2025, https://isc-hpc.com/
https://arxiv.org/abs/2504.16026
https://www.top500.org

3. Supercomputing



EUROPE IS INVESTING 
IN AI LEADERSHIP 

To support scientific advances, infrastructure 
development, and wider technology adoption.

3. Supercomputing



5 Pillars for Europe to become the Al Continent
1. Building a large-scale AI computing infrastructure
2. Increasing access to high-quality data
3. Promoting Al in strategic sectors
4. Strengthening Al skills and talents
5. Simplifying the implementation of the Al act

AI CONTINENT ACTION PLAN

European Commision, “Shaping Europe’s leadership in artificial intelligence with the AI continent action plan”,  https://commission.europa.eu/topics/eu-competitiveness/ai-continent_en 
European Commision, “AI Continent Action Plan COM(2025)165”, 2025, https://commission.europa.eu/topics/eu-competitiveness/ai-continent_en

AI Continent Action Plan, https://digital-strategy.ec.europa.eu/en/factpages/ai-continent-action-plan

3. Supercomputing



HPC POWER IN THE EU IS PUBLICLY ACCESSIBLE

§ European network of cutting-edge supercomputers deployed 
by the European High-Performance Computing Joint 
Undertaking (EuroHPC JU) 
- EuroHPC was launched in 2018 and co-funded by the EU, 

Member States, and private actors. 

§ TOP500 (November 2024, global ranking)
- LUMI (#8) 
- Leonardo (#9) 
- MareNostrum 5 ACC (#11)

In 2024 Europe hosts 30% of the world’s top ten supercomputers

European High Performance Computing Joint Undertaking (EuroHPC JU), "EuroHPC Supercomputers", https://eurohpc-ju.europa.eu/supercomputers_en

3. Supercomputing



AI CONTINENT ACTION PLAN
Area: Computing infrastructure

European Commision, “Shaping Europe’s leadership in artificial intelligence with the AI continent action plan”,  https://commission.europa.eu/topics/eu-competitiveness/ai-continent_en 
European Commision, “AI Continent Action Plan COM(2025)165”, 2025, https://commission.europa.eu/topics/eu-competitiveness/ai-continent_en

AI Continent Action Plan, https://digital-strategy.ec.europa.eu/en/factpages/ai-continent-action-plan

AI Factories Al Gigafactories Cloud and Al 
development Act

• Objective: train and finetune Al 
models
• Budget: €10 billion from 2021 to 
2027
• At least 13 operational Al 
factories by 2026

• Objective: train and develop 
complex AI models
• 4x more powerful than Al Factories
• €20 billion mobilised by InvestA!
• Deploy up to 5 Gigafactories

• Objective: boost research in 
highly sustainable infrastructure
• Encourage investments
• Triple the EU's data centre 
capacity in the next 5-7 years

3. Supercomputing



EUROHPC AI FACTORIES

§ Facilitate access to AI provided by HPC facilities
§ Dynamic ecosystems that foster innovation, 

collaboration, and development in the field of AI
§ Support startups, industry, and researchers to 

develop cutting-edge AI models and applications. 

To triple the current EuroHPC AI computing capacity

European Commision, “AI Factories”, https://digital-strategy.ec.europa.eu/en/policies/ai-factories

3. Supercomputing



THE JUPITER AI FACTORY (JAIF)
Modular JUPITER - Hybrid Training/Inference AI System

Jülich Supercomputing Centre, "Europe’s AI Booster: JUPITER AI Factory Brings Exascale Power to Business and Science", 
https://www.fz-juelich.de/en/news/archive/press-release/2025/europes-ai-booster-jupiter-ai-factory

Credits: Mathis Bode, Jülich Supercomputing Centre (Forschungszentrum Jülich)

JUPITER inference system JARVIS (JUPITER 
Advanced Research Vehicle for Inference 
Services), a cloud-based AI inference platform

Consortium

Contact: jaif@fz-juelich.de

3. Supercomputing

mailto:jaif@fz-juelich.de
mailto:jaif@fz-juelich.de
mailto:jaif@fz-juelich.de


JU Pioneer for Innovative and Transformative Exascale Research (JUPITER) 
Performance of 1 million smartphones (a stack as tall as Mount Everest) 

Jülich Supercomputing Centre (Forschungszentrum Jülich), "Supercomputer JUPITER: The Journey to Exascale", https://youtu.be/5602lI8y7YE?si=398SLbXPnFAZKCRv

JUPITER: FIRST EUROPEAN EXASCALE SYSTEM

3. Supercomputing



Credits: Andreas Herten (Jülich Supercomputing Centre, Forschungszentrum Jülich)

3. Supercomputing



JUPITER BOOSTER 

§ GPU : 4 × NVIDIA H100 Grace-Hopper flavor 96 GB memory per GPU
§ CPU: 4 × NVIDIA Grace, 4 × 72 cores; 4 × 120 GB LPDDR5X memory
§ Network : 4 × NVIDIA Mellanox InfiniBand NDR200, 4 × 25GB/s

~6000 nodes, ~24 000 GPUs, 224 000 network devices

Jülich Supercomputing Centre (Forschungszentrum Jülich), "JUPITER | The Arrival of Exascale in Europe", https://www.fz-juelich.de/en/ias/jsc/jupiter

node

3. Supercomputing



JUPITER RANKS 4TH ON THE TOP500 LIST AND IS 
EUROPE'S FASTEST SUPERCOMPUTER
June 2025

June 2025, https://top500.org/lists/top500/2025/06/
ISC High Performance 2025, https://isc-hpc.com/

3. Supercomputing



DISTRIBUTED DEEP LEARNING
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DATA-PARALLEL TRAINING FLOW
§ Each GPU processes a different data shard through forward and backward passes in parallel
§ After backward pass, gradients are averaged across GPUs (All-Reduce) before synchronizing model updates

Replica of 
the same 
model on 
all GPUs

Shen Li, "Getting Started with Distributed Data Parallel", https://docs.pytorch.org/tutorials/intermediate/ddp_tutorial.html

4. Distributed Deep Learning

Fwd-1: Forward pass for mini-batch 1 (model on GPU is processing the first batch of data to compute predictions and loss)

Bwd-1: Backward pass for mini-batch 1 (GPU computes gradients for the first batch by backpropagating the loss)

A-R: All-Reduce operation (collective communication step where all GPUs average their gradients (ensure that each model replica ends 
up with the same gradients for the weight update)



MODEL PARALLELISM

§ Model parallelism splits a single model across multiple GPUs
- Each GPU handling a portion of the model’s layers during forward and backward passes. 

§ Pipeline parallelism enables overlapping computation across GPUs
- Can suffer from idle time if not carefully scheduled, as shown in the lower example.

Pipelining

Shen Li, "Getting Started with Distributed Data Parallel", https://docs.pytorch.org/tutorials/intermediate/ddp_tutorial.html

4. Distributed Deep Learning



MODEL PARALLELISM

§ Tensor parallelism splits individual tensor operations (like matrix multiplications) across GPUs
- Enable finer-grained parallelism within a single layer 

§ Row-wise and column-wise strategies partition tensors differently
- Requiring intermediate communication steps to assemble the final output

Tensor Parallelism

Tensor parallelism, https://lightning.ai/docs/pytorch/stable/advanced/model_parallel/tp.html

4. Distributed Deep Learning



ZERO REDUNDANCY OPTIMIZER
§ ZeRO progressively partitions model states (parameters, gradients, and optimizer states) across GPUs 

to reduce memory redundancy and scale training efficiently. 

§ PyTorch Fully Sharded Data Parallel (FSDP) implements ZeRO-3
- Highest memory efficiency by fully sharding all states
- But activations remain undivided and must still fit in memory

The Ultra-Scale Playbook: Training LLMs on GPU Clusters, https://huggingface.co/spaces/nanotron/ultrascale-
playbook?section=high-level_overview#ultrascale-playbook?section=zero-1:_partitioning_optimizer_states

4. Distributed Deep Learning



TOOLS FOR DISTRIBUTED DEEP LEARNING
§ 2013- DistBelief (Google) first large-scale parameter-server architecture 

§ 2015 -TensorFlow PS & SyncReplicas standardised PS + all-reduce hybrids 

§ 2016- MXNet KVStore flexible data/model parallel key-value store 

§ 2017 - Horovod (Uber) ring-allreduce over MPI/NCCL; drop-in for TF & Keras 

§ 2018- PyTorch DDP gradient bucketing; NCCL backend becomes default 

§ 2019 - Megatron-LM (NVIDIA) tensor & pipeline model-parallelism for > 10B-param LMs 

§ 2020 - DeepSpeed (Microsoft) ZeRO optimizer sharding, 8-bit optimisers 

§ 2021 - PyTorch FSDP fully-sharded data-parallel; near-linear scaling 

§ 2022- Alpa / Colossal-Al automatic 3-D parallel + memory optimisation 

§ 2023- Ray Train 2.x elastic autoscaling clusters; heterogeneous resources 

§ 2024 - VLLM / Paginated KV-cache inference-oriented distributed serving

4. Distributed Deep Learning



TOOLS FOR DISTRIBUTED DEEP LEARNING

§ Parallelism techniques
- (expert parallelism, ...)

§ Flash Attention
§ Kernel Fusion
§ Hyperparameter Optimization
§ Inference & deployment

Is that all?

4. Distributed Deep Learning

§ Memory ⇄ Compute ⇄ Communication trade-off 
§ Every scaling trick pushes stress along triangle

Memory

Communication Compute

Credit: Rocco Sedona (Jülich Supercomputing Centre, Germany) 



LEARN MORE

https://www.gauss-centre.eu/trainingsworkshops

4. Distributed Deep Learning



THANK YOU FOR YOUR ATTENTION


