

PUBLIC

Code Assessment

of the Superswap Router

Smart Contracts

June 30, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 16

4 Terminology 17

5 Open Findings 18

6 Resolved Findings 19

7 Informational 25

8 Notes 26

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Velodrome team,

Thank you for trusting us to help Velodrome with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Superswap Router according
to Scope to support you in forming an opinion on their security risks.

Velodrome implements an update to the Uniswap Universal Router contract with changes to support
velodrome V2, Concentrate Liquidity Pools (CL), bridging tokens and executing arbitrary cross chain
actions.

Our audit focused on critical subjects such as allowances management, integration with xVELO and
xERC20 bridges, and interchain account integration for cross-chain actions. Allowance management
security was found to be high, as previous concerns regarding arbitrary approvals have been addressed.

In addition, we reviewed general subjects including the correctness of Velodrome pools integration and
the general functional correctness of the Router. The security of these general areas was also evaluated
to be high, as previous issues with amount calculation for Uniswap V2 have been resolved.

The two notes, Router Allowance Trust Risk and Interchain Account Trust Risk, highlight significant
differences in the trust model of the Superswap Router compared to the Uniswap Router. These
differences should be carefully considered by users of the router, and when updating the router.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code Corrected 2

Low -Severity Findings 0

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Superswap Router repository based
on the documentation files.

The following directories were included in the scope of the assessment:

• contracts/base/

• contracts/interfaces/

• contracts/libraries/

• contracts/modules/

• contracts/types/

• contracts/UniversalRouter.sol

This audit was a diff audit of the codebase with base commit
8bd498a3fc9f8bc8577e626c024c4fcf0691f885. This means that in the scope of this assessment,
the system at this base commit is trusted to be functional and secure, and only the changes made after
this commit are considered for the audit.

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 20 April 2025 df14477d2e24dd26e413cc6a52a4f5702c74fd3a Initial Version

2 20 May 2025 ae1cf680bde32137a1f66e579c7c4dce378e9619 Fixes

3 10 June 2025 96d7469daf0228b895969ef9144b3da63604ae48 Version 3

For the solidity smart contracts, the compiler version 0.8.29 was chosen.

2.1.1 Excluded from scope
Anything that is not explicitly mentioned in the scope section above is excluded from the scope of this
audit. This includes, but is not limited to:

• lib/

• contracts/test/

• contracts/deploy/

• node_modules/

The system at the base commit is trusted and considered out of scope for this audit.

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Velodrome adapts the Uniswap Universal Router contract with changes to support velodrome V2,
Concentrate Liquidity Pools (CL), bridging tokens and executing arbitrary cross chain actions. In the
following sections, we will provide an overview of the system architecture, followed by a description of the
new and updated commands.

2.2.1 Overview of the architecture
The Universal Router is a contract that allows users to execute a sequence of commands in a single
transaction. Commands include swapping in Velodrome or Uniswap pools, transferring tokens to and
from the caller, bridging tokens, and executing cross-chain actions. The contract is designed to be
modular, allowing for easy addition of new commands in the future.

The only entry point is the execute function. This function is responsible for executing the sequence of
commands passed to it.

execute(bytes calldata commands, bytes[] calldata inputs, uint256 deadline)
execute(bytes calldata commands, bytes[] calldata inputs)

If a deadline is provided, the transaction will revert if it is not executed before the deadline.

The contract work as a Virtual Machine (VM) that executes the provided sequence of commands, with for
each command, specific input parameters.

2.2.1.1 Command Structure
A command is encoded in one byte.

0 | 1 2 | 3 4 5 6 7

f | r | command

Where:

• f is a bit flag that signals whether the command should be allowed to revert without the whole
transaction failing.

• r are two unused bytes, which are reserved for future use.

• command is a 5 bits identifier that represents the command itself according to the following table:

0x00: V3_SWAP_EXACT_IN
0x01: V3_SWAP_EXACT_OUT
0x02: PERMIT2_TRANSFER_FROM
0x03: PERMIT2_PERMIT_BATCH
0x04: SWEEP
0x05: TRANSFER
0x06: PAY_PORTION
0x07: TRANSFER_FROM
0x08: V2_SWAP_EXACT_IN
0x09: V2_SWAP_EXACT_OUT
0x0a: PERMIT2_PERMIT

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

0x0b: WRAP_ETH
0x0c: UNWRAP_WETH
0x0d: PERMIT2_TRANSFER_FROM_BATCH
0x0e: BALANCE_CHECK_ERC20
0x10: V4_SWAP
0x11: V4_INITIALIZE_POOL
0x12: BRIDGE_TOKEN
0x13: EXECUTE_CROSS_CHAIN
0x21: EXECUTE_SUB_PLAN

Any command that is not listed in the table is considered invalid and will cause the transaction to revert.

2.2.1.2 Command Inputs
When calling the execute function, the caller must provide a sequence of inputs that correspond to the
commands being executed. Each element of the bytes array is an ABI-encoded set of parameters for the
command. The order of the inputs must match the order of the commands in the bytes array.

2.2.1.3 Message Sender
As the router is designed to allow reentrancy into itself, the contract cannot depend on msg.sender to
identify the original caller of a command chain. Instead, the system maintains a reference to the initial
caller with the Lock contract. Throughout this report, we refer to this address as the sender. When
referring specifically to the actual msg.sender of a call, we will use the terms caller or
message sender for clarity.

2.2.2 Transfer from
The TRANSFER_FROM (0x07) command enables the router to transfer tokens from the sender to a
specified recipient. It accepts the following parameters:

address token; // Address of the token to transfer
address recipient; // Address of the recipient
 // - 0x01 for the sender
 // - 0x02 for the router itself
uint256 value; // Amount of tokens to transfer
 // - 1<<255 for the sender's entire balance

The command attempts to call token.transferFrom() to move tokens from the sender to the
recipient. This requires the sender to have previously granted the router sufficient allowance. If one of the
following conditions occur, the router falls back to using a Permit2 transferFrom call:

1. The call to transferFrom fails (e.g., insufficient allowance provided by the sender).

2. The call succeeds but either:

• The returned data decodes to false, or

• The returned data cannot be ABI-decoded to a boolean.

In such cases, if the sender has approved the router via Permit2 and have enough funds, the router will
utilize the Permit2 allowance to complete the transfer. Otherwise, the transaction will revert.

This command is a more versatile version of PERMIT2_TRANSFER_FROM (0x02), as it supports both
normal ERC20.transferFrom on top of Permit2 and the special case where value == 1<<255,
allowing the transfer of the sender's entire balance.

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.3 VeloV2 pools support
The universal router previously supported Uniswap V2 pools through the V2_SWAP_EXACT_IN (0x08)
and V2_SWAP_EXACT_OUT (0x09) commands. The updated version of the system now includes support
for Velodrome V2 pools.

Both commands now include an additional boolean argument, isUni, which determines whether the
swap path should use Uniswap or Velodrome V2 pools.

Velodrome V2 pools can be categorized as either stable or volatile, making their paths more
complex compared to Uniswap paths. Depending on the value of isUni, the logic has been adapted to
decode routes accordingly:

• For Uniswap:

token0 || token1 || token2 || ... || tokenN

• For Velodrome:

token0 || is_stable || token1 || is_stable || token2 || ... || tokenN

Additional logic adjustments include:

• Pool Address Computation: Depending on the value of isUni, the computation uses either the
Uniswap factory address and Uniswap pool's initcode hash or the Velodrome factory address and
Velodrome pool's initcode hash.

• Fee Handling: For Uniswap, the fee is fixed at 0.3%. For Velodrome, the fee is dynamically fetched
from the factory contract.

• Output Amount Calculation: Velodrome stable pools use a different invariant compared to
Uniswap pools. The logic has been updated to accommodate this new invariant.

2.2.4 Slipstream pools support
The universal router previously supported Uniswap V3 pools through the V3_SWAP_EXACT_IN (0x00)
and V3_SWAP_EXACT_OUT (0x01) commands. The updated version of the system introduces support for
Velodrome Slipstream pools, which have an interface similar to Uniswap V3 pools.

Both commands now include an additional boolean argument, isUni, which specifies whether the swap
path should be done through Uniswap V3 pools or Velodrome Slipstream pools.

The main change in the swap logic is the computation of the pool's address for a given token pair.
Depending on the value of isUni, the computation uses either the Uniswap V3 factory address and
Uniswap pool's initcode hash or the Velodrome Slipstream factory address and Velodrome pool's
initcode hash. For Uniswap, the computation relies on the fee parameter, while for Velodrome, it uses
the tickSpacing parameter.

The data passed to pool.swap() is also modified to include the isUni flag, which help to ensure that
the callback's caller is the correct pool.

2.2.5 Bridging tokens
The BRIDGE_TOKEN (0x12) command allows the router to bridge tokens to another chain. It accepts the
following parameters:

uint8 bridgeType; // Type of bridge to use
address recipient; // Address of the recipient on the target chain
 // - 0x01 for the sender
address token; // Address of the token to bridge

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

address bridge; // Address of the bridge contract
uint256 amount; // Amount of tokens to bridge
uint256 msgFee; // Fee to be paid to the bridge contract
uint32 domain; // Domain ID of the target chain
bool payerIsUser; // Indicates if the payer is the sender or the router

At the time of writing, the supported bridges are as follows:

0x01 - Hyperlane xERC20 Bridge
0x02 - XVELO Bridge

For both bridges, if payerIsUser is true, the router first transfers the tokens to itself. It then approves
the bridge contract to spend the tokens. The logic for each bridge is detailed below.

2.2.5.1 Hyperlane xERC20 Bridge
In the Hyperlane xERC20 bridge case, the bridge contract is a HypXERC20 contract. This contract
handles the bridging of a specific xERC20 token. If necessary, the user should wrap the token
beforehand.

Interaction in the Universal Router:

The router interacts with the bridge by calling bridge.transferRemote() with the following
parameters:

• The destination domain (a Hyperlane domain ID)

• The recipient's address

• The amount to be bridged

• msgFee as msg.value

• The sender as the refund address

• The default hook provided by the bridge

• The default destination gas limit provided by the bridge

Sending the message:

Uppon call, the Hyperlane's HypXERC20 bridge burns the xERC20 tokens from the UniversalRouter,
and then formats a message for the Hyperlane Mailbox contract. The message includes:

• The recipient address (To which the remote bridge will mint the corresponding amount of xERC20
tokens)

• The token amount being bridged

• Metadata (empty bytes in this case)

If a router for the destination domain was registered by the bridge owner, the message is dispatched
through using the dispatch function of the Mailbox contract, with msgFee as msg.value. If no router is
registered, the transaction reverts. The destination router should be the corresponding HypXERC20
instance on the destination chain. The Mailbox contract formats the message containing:

• The destination domain

• The recipient address (the address of the remote HypXERC20 contract)

• The message body

The Mailbox hook is called to quote the fee required for dispatching the message. The smaller of the
quoted fee and the actual msg.value sent by the HypXERC20 contract is used. If the value is
insufficient, the hook should revert. The postDispatch function is called for both the required hook and

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

the hook from the HypXERC20 contract. Any remaining msg.value not sent to the first hook is
forwarded to the second.

Relaying the message to the destination:

The relayer receives the dispatched message and calls the process function on the destination domain.
This function extracts the recipient address, which is the HypXERC20 contract in this domain. A two-step
process is performed, first verifying the message, and then letting the HypXERC20 contract handle it.

To verify the message, the Mailbox query the HypXERC20 for its interchainSecurityModule. If
none is defined, the default Interchain Security Module is used. The Mailbox then calls verify() on the
selected Interchain Security Module. The verification should ensure the message is genuine.

In case the verification succeeded, the message is marked as delivered, and the
HypXERC20.handle() is called. Finally, the HypXERC20 contract mints the specified amount of tokens
to the recipient.

2.2.5.2 XVELO Bridge
The XVELO Bridge consists of a RootTokenBridge contract on Optimism and LeafTokenBridge
contracts on other target chains. The RootTokenBridge contract accepts ERC20 tokens, wrapping
them into xERC20 tokens for bridging. On leaf chains, LeafTokenBridge contracts expects tokens to
already be xERC20 tokens.

Interaction in the Universal Router:

Tokens are bridged by calling bridge.sendToken() with the following parameters:

• msgFee as msg.value

• The recipient's address

• The amount to be bridged

• The destination domain

• The sender as the refund address

Sending the message:

If the source chain is Optimism, the RootTokenBridge contract encodes a message containing:

• The recipient address (for the bridged token)

• The token amount

The RootTokenBridge contract transfers tokens from the UniversalRouter to itself, deposits them
in the xERC20 Lockbox to mint xERC20 tokens. These tokens are immediately burned, and the message
is dispatched to through the dispatch function of the Mailbox contract. The following parameters are
passed to the Mailbox:

• fee as msg.value forwarded from the UniversalRouter.

• The destination domain

• The recipient address (LeafTokenBridge address, same as RootTokenBridge)

• The message body

• The metadata

• The RootTokenBridge hook

If the msg.sender (in this case the UniversalRouter) is in the sponsoring whitelist, the bridge covers
the Mailbox fee.

The dispatch function in the Mailbox contract works similarly to the Hyperlane case.

Relaying the message to the destination:

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

On the destination chain, a relayer calls the process function on the Mailbox in the destination domain.
After verification with the ISM, The handle function of the LeafTokenBridge ensure the caller is the
RootTokenBridge and mints the bridged amount of xERC20 tokens to the recipient.

Bridging from a Leaf chain to the Root chain:

The bridging process from a LeafTokenBridge to a RootTokenBridge is similar, with the following
differences:

• transaction sponsorship is not possible

• and only xERC20 tokens can be bridged. When the token reaches the RootTokenBridge, it is
converted to its ERC20 counterpart by withdrawing from the Lockbox and sent to the recipient.

2.2.6 Execute cross chain actions
The EXECUTE_CROSS_CHAIN (0x13) command enables the router to perform cross-chain actions using
Hyperlane's Interchain Account Router (ICA) functionality. It accepts the following parameters:

uint32 domain; // Hyperlane domain ID of the target chain
address icaRouter; // Address of the local ICA router
address remoteRouter; // Address of the remote ICA router
bytes32 ism; // Address of the Interchain Security Module (ISM) to use
bytes32 commitment; // Commitment of the action to be executed
uint256 msgFee; // Fee to be paid to the bridge
address hook; // Address of the hook contract to be called by the mailbox
bytes hookMetadata; // Metadata to be passed to the hook contract

The universal router has no restrictions on these parameters and simply forwards the call to the
icaRouter, using the sender as the salt.

2.2.6.1 Interchain Account
Interchain Accounts are built on top of the Hyperlane protocol and enable cross-chain execution of
arbitrary calls on the destination chain.

The Interchain Account Router (ICA Router) is the main contract that manages Interchain Accounts. It is
deployed on multiple chains, with each instance communicating with others through the Hyperlane
protocol.

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Destination ChainOrigin Chain

ICA Router

callRemote

Maibox

dispatch

ICA Router

handle

Maibox

process

Sender
sender's ICA

multicall recipientrecipientrecipientsverify

Destination ChainOrigin Chain

ICA Router

callRemote
CommitReveal

Maibox

dispatch

ICA Router

handle

Maibox

process

Sender
verify

sender's ICA

setCommitment

recipientrecipientrecipients

Message's ISM

verify

Commitment read
ISM

verify

commit

reveal

Message's ISM

verify

Cross chain "direct" execution

Cross chain delayed execution with commitment

revealAndExecute

1.

2.

3.

4.

1.

2.

3.

4.
5.

1.

2.

3. 4.
5.

Users interact with the ICA Router in two main ways:

Sending a Cross-Chain Action

From the source chain, users can call callRemote, callRemoteWithOverrides, or
callRemoteCommitReveal to send a cross-chain action. The following parameters must be provided:

• The domain of the destination chain.

• The call(s) to perform on the destination chain (or a commitment to be revealed later).

• The remote icaRouter address (optional; if none is provided, a default one for the destination
domain is used).

• A hook to be called by the mailbox on the source chain (optional; a default one can also be used but
is not mandatory).

• A salt to generate the Interchain Account address (optional; a default one will be used).

• Metadata to be passed to the hook contract on the source chain (optional).

Two types of messages can be sent:

• Calls: Sent using callRemote or callRemoteWithOverrides. The message contains the call
data to be executed on the destination chain. The ICA Router encodes the message of type CALLS
and sends it to Mailbox.dispatch().

• Commitments: Sent using callRemoteCommitReveal. Two messages are sent: one for the
commitment and one for the reveal.

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

• The first message, of type COMMITMENT, contains the commitment (salted hash of the
calldata) to be revealed later.

• The second message, of type REVEAL, does not contain the calldata but instead includes
the address of a CCIP Read ISM contract to be called on the destination chain, along with
the commitment. (If none is provided, the default one is used on the destination chain.)

Relaying a Cross-Chain Action

Once the action is sent, it must be relayed to the destination chain. As with any Hyperlane message, the
action must be relayed through Mailbox.process(), which, after verification by the ICA Router's ISM,
calls icaRouter.handle().

The handle function first retrieves the Interchain Account from the message. The address of this
account is generated using create2 with the following salt:

keccak256(
 abi.encodePacked(_origin, _owner, _router, _ism, _userSalt)
);

Where:

• _origin is the domain of the source chain.

• _owner is the address of the sender.

• _router is the address of the ICA Router on the source chain.

• _ism is the address of the ISM passed in the message.

• _userSalt is the (optional) salt passed in the message by the sender.

This ensures that the Interchain Account is unique to any combination of the above parameters. If the
account does not exist, it will be created at that point. An Interchain Account is a simple ownable multicall
contract, owned by the ICA Router.

There are three types of messages that can be received by the router:

• CALLS: Sent using callRemote or callRemoteWithOverrides. The message contains the call
data to be executed on the destination chain. The ICA Router calls
interchainAccount.execute() with the calls to be executed.

• COMMITMENT: Sent using callRemoteCommitReveal. The message contains only a
commitment to the calls to be executed, which must be revealed on the destination chain. In this
case, the computed Interchain Account stores the commitment for later use during the reveal
process.

• REVEAL: When revealing a message, the pre-image of the commitment (call data and salt) is
passed to Mailbox.process() as metadata.

1. The mailbox forwards the metadata to the icaRouter's ISM through verify(). In that
case, the ISM is the icaRouter itself.

2. The icaRouter forwards the metadata to the CCIP Read ISM, which verifies the
pre-image and calls ica.revealAndExecute() with it.

3. icaRouter.handle() in that case does nothing.

2.2.6.2 Application of the ICA to the Superswap Router
The Superswap Router leverages the ICA Router to execute cross-chain actions, using the
commitment-reveal mechanism to mitigate frontrunning.

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

When the EXECUTE_CROSS_CHAIN command is called, the Superswap Router interacts with the
icaRouter. The userSalt provided is the address of the Superswap Router's sender, ensuring that
the Interchain Account is uniquely tied to both the Superswap Router and the sender.

Using the commitment-reveal mechanism, the Superswap Router sends both the COMMIT and REVEAL
messages to the destination chain via the mailbox. Meanwhile, the sender is required to supply the
pre-image of the commitment to an off-chain Velodrome Gateway.

Messages received by the mailbox on the source chain are processed by the off-chain Hyperlane relayer,
which performs the following actions:

• Commit Message: The relayer calls Mailbox.process() on the destination chain to verify the
message and store the commitment.

• Reveal Message:

1. The relayer calls CCIPReadISM.getOffchainVerifyInfo() to retrieve the off-chain
location of the commitment's pre-image.

2. It fetches the pre-image from the Velodrome Gateway.

3. Finally, it calls Mailbox.process() on the destination chain, passing the pre-image as
metadata.

Once the reveal process is complete, the command is executed on the destination chain.

2.2.7 Changes in Version 2
Version 2In of the system, no significant changes were made, instead fixes for the findings of this report

were applied.

2.2.8 Changes in Version 3
Version 3In of the system, the BRIDGE_TOKEN command was updated to use the special value

CONTRACT_BALANCE (1<<255) to bridge from the payer, a value equal to the balance of the token in the
router.

2.3 Trust Model
The Universal Router has no permissioned roles and is not upgradeable. It is the responsibility of the
caller to ensure that the command sequence to be executed is valid and does not lead to a loss of funds.
Any funds left in the router at the end of a transaction can be withdrawn by anyone; users should hence
be careful not to leave any funds in the router.

Any external dependencies (Hyperlane) are expected to be secure and are trusted, the Hyperlane
features used in the router are not yet developed, the Hyperlane dependency is expected to be bumped
to a newer version in the future and the interface of Hyperlane should be reviewed accordingly then.

Bridging Tokens:

• Bridges are out of scope of the audit; they are expected to be secured and work as intended. If a
bridge is compromised, users' funds can be stolen.

• Tokens are expected to be bridged only to EVM-compatible chains using the BRIDGE_TOKEN
command.

• For XVELO, the root bridge is deployed on Optimism, and the leaf bridges are deployed on other
EVM-compatible chains.

• The gasFee is paid by the sender, and the transaction will revert if the fee is not sufficient.

• The bridging command is expected to interact only with ERC-compliant tokens that are not malicious
and present no specific risks or unusual behaviors (e.g., rebasing, transferring a different

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

amount than requested, fee-on-transfer, double entry points, non-compliant interface, or hooks).
Their xERC20 counterpart is expected to follow the same rules.

Execute Cross-Chain:

• Hyperlane's Interchain Account (ICA) system is expected to be secured and work as intended. If the
system is compromised, users' funds can be stolen.

• Cross-chain messages are expected to be sent only to EVM-compatible chains using the
EXECUTE_CROSS_CHAIN command.

• The xVELO bridge allows whitelisted addresses to have their fees covered by the system. However,
it should be noted that a whitelisted address will not receive sponsorship when using the xVELO
bridge through the Superswap Router if the latter is not whitelisted.

• Any parties involved in relaying cross-chain transactions are trustworthy (e.g., the relayer and the
payload gateway storing the pre-image of commitments).

• Although funds may remain in users' ICA, this is not expected behavior.

• Commitments are expected to be salted with fresh and random values, if the salt is predictable, a
commitment can be revealed by a third party and the calls can be frontrun.

Allowances and ICA Router Salt:

• Users are expected to approve the router (directly or through Permit2) to spend their tokens. The
security of this mechanism relies on the router never spending tokens from an address that is not the
sender. If this assumption is violated, the router can be tricked into spending tokens from an address
that is not the sender. This is detailed in Router Allowance Trust Risk.

• Similarly, with the ICA Router, the Superswap Router is expected to only provide as salt the address
of the message sender. If not, the router can be tricked into allowing access to the Interchain
Account of another address. This is detailed in Interchain Account Trust Risk.

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code CorrectedArbitrary Approval Can Be Obtained From the Router

• Code CorrectedIncorrect AmountIn Calculation Causes Swap Failures With Uniswap V2

Low -Severity Findings 0

Informational Findings 7

• Code CorrectedAmbiguous Sender Parameter in BridgeRouter.prepareTokensForBridge

• Code CorrectedAmbiguous CONTRACT_BALANCE Constant

• Code CorrectedDuplicate Function _f and _k

• Code CorrectedIncorrect Path Length Condition

• Code CorrectedIncorrect Recipient Emitted in Dispatcher Events

• Code CorrectedOutdated Dependencies

• Code CorrectedPotential Gas and Code Size Optimization

6.1 Arbitrary Approval Can Be Obtained From the
Router
Design Medium Version 1 Code Corrected

CS-VELO-SR-001

In the Superswap router contract, it is possible to obtain an arbitrary approval from the router contract to
transfer out any amount of any token. If a malicious actor manages to be called by the router as part of
the transaction of a honest actor, they can use this approval to transfer any amount of tokens left in the
router by the sender, in the middle of their transaction.

Obtaining an Arbitrary Approval from the Router:

In the BridgeRouter contract, before calling the bridge contract, a token approval is given to the bridge
contract itself to allow it to pull the tokens from the router.

function prepareTokensForBridge(address _token, address _bridge, address _sender, uint256 _amount, address _payer)
 private
{
 if (_payer != address(this)) {
 payOrPermit2Transfer({token: _token, payer: _sender, recipient: address(this), amount: _amount});
 }
 ERC20(_token).safeApprove({to: address(_bridge), amount: _amount});
}

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Given that neither the token nor the bridge contract is verified, this allows anyone to give themselves an
approval to transfer any amount of any token from the router.

For example, one could deploy a contract with the same interface as the xERC20 bridge but with a
dummy transferRemote() function that does nothing, and call the Superswap router with the bridge
command:

• For a token often used in the router, like USDC

• With a very large amount

• payerIsUser set to false

This allows the attacker to get an arbitrary approval to transfer any amount of USDC from the router
contract to their own contract.

Exploiting the Allowance

In several instances, the router can call arbitrary addresses with unbounded gas, for example with the
command TRANSFER:

function pay(address token, address recipient, uint256 value) internal {
 if (token == Constants.ETH) {
 recipient.safeTransferETH(value);
 } else {
 ...
 }
}

This means that if an honest actor uses the TRANSFER command or any such command triggering a call
to an arbitrary address with the attacker as the recipient, the attacker can use the approval they
obtained to transfer any amount of tokens that were left in the router to themselves.

Note that this attack vector is new, as before, the router would never give approval to untrusted
recipients. Additionally, it was and is not possible to reenter the router itself to transfer out the funds due
to the reentrancy lock held by the honest actor.

Code corrected:

Approvals are reset to zero after the external call to the bridge contract to remove dangling approvals.

6.2 Incorrect AmountIn Calculation Causes Swap
Failures With Uniswap V2
Correctness Medium Version 1 Code Corrected

CS-VELO-SR-002

The getAmountIn() function calculates insufficient input amounts for Uniswap V2 swaps, resulting in
failed swap operations.

The implementation of getAmountIn deviates from the standard Uniswap V2 formula in its calculation
methodology, leading to precision loss and insufficient input amounts.

function getAmountIn(uint256 fee, uint256 amountOut, uint256 reserveIn, uint256 reserveOut, bool stable)
 internal
 pure
 returns (uint256 amountIn)

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

{
 if (reserveIn == 0 || reserveOut == 0) revert InvalidReserves();
 if (!stable) {
 amountIn = (amountOut * reserveIn) / (reserveOut - amountOut);
 amountIn = amountIn * 10_000 / (10_000 - fee) + 1;
 } else {
 revert StableExactOutputUnsupported();
 }
}

The function performs the calculation in two separate steps:

1. First calculates the amount without considering the fee

2. Then applies the fee adjustment as a secondary operation

This approach introduces compound rounding errors due to multiple integer division operations, whereas
the standard Uniswap V2 formula combines these calculations:

function getAmountIn(uint256 amountOut, uint256 reserveIn, uint256 reserveOut)
 internal
 pure
 returns (uint256 amountIn)
{
 if (reserveIn == 0 || reserveOut == 0) revert InvalidReserves();
 uint256 numerator = reserveIn * amountOut * 1000;
 uint256 denominator = (reserveOut - amountOut) * 997;
 amountIn = (numerator / denominator) + 1;
}

Example:

For an Uniswap V2 pool with reserves:

• reserve0 = 99000000000003045425

• reserve1 = 99000000000000000000

And amountOut = 49499999999999999092

The incorrect calculation yields 99297893681046180333 which is insufficient for the swap.

Code corrected:

Version 2In , the getAmountIn function was updated to use the original Uniswap formula for calculating
amounts when interacting with Uniswap pools (isUni == true).

6.3 Ambiguous Sender Parameter in
BridgeRouter.prepareTokensForBridge
Informational Version 1 Code Corrected

CS-VELO-SR-003

In the prepareTokensForBridge function of the BridgeRouter contract, when _payer is not the
contract, the payOrPermit2Transfer call uses the _sender parameter as the payer instead of the
_payer parameter:

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

function prepareTokensForBridge(address _token, address _bridge, address _sender, uint256 _amount, address _payer)
 private
{
 if (_payer != address(this)) {
 payOrPermit2Transfer({token: _token, payer: _sender, recipient: address(this), amount: _amount});
 }
 ERC20(_token).safeApprove({to: address(_bridge), amount: _amount});
}

Although in current usage _payer always equals _sender, using _sender here is misleading and
prevents removing the now-redundant _sender parameter.

Code corrected:

The _sender parameter was removed and the payOrPermit2Transfer call was updated to use the
_payer parameter instead.

6.4 Ambiguous CONTRACT_BALANCE Constant
Informational Version 1 Code Corrected

CS-VELO-SR-004

In the dispatch function of the Dispatcher contract, within the Commands.TRANSFER_FROM branch,
when value equals ActionConstants.CONTRACT_BALANCE, the code retrieves the token balance of
the payer (msgSender()) rather than the contract address, which is correct but misleading given the
constant name.

Code corrected:

Version 2In , a new constant named TOTAL_BALANCE was added to the Constants contract and is being
used in the TRANSFER_FROM command handler. This constant is an alias of
ActionConstants.CONTRACT_BALANCE.

6.5 Duplicate Function _f and _k
Informational Version 1 Code Corrected

CS-VELO-SR-005

In the UniswapV2Library, the _k and _f functions are identical.

Code corrected:

The _k function was removed, and its usage was replaced with the _f function.

6.6 Incorrect Path Length Condition
Informational Version 1 Code Corrected

CS-VELO-SR-006

In the getAmountInMultihop function of the V2SwapRouter contract, multi-hop Velodrome paths
(when isUni is false) are validated using the Uniswap implementation of v2HasMultipleTokens,
which checks:

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

function v2HasMultipleTokens(bytes calldata path) internal pure returns (bool) {
 return path.length >= Constants.V2_MULTIPLE_TOKENS_MIN_LENGTH; // ADDR_SIZE * 2
}

However, Velodrome path segments include an extra boolean (indicating stable pools) between each
token pair, so the minimum length should be ADDR_SIZE * 2 + 1. Using the Uniswap threshold
causes invalid Velodrome multi-hop paths to be accepted.

Code corrected:

Version 2In , the hasMultipleRoutes() function was introduced to handle Velodrome paths, the
function getAmountInMultihop() was refactored accordingly.

6.7 Incorrect Recipient Emitted in Dispatcher
Events
Informational Version 1 Code Corrected

CS-VELO-SR-007

In the dispatch function of the Dispatcher contract, the UniversalRouterSwap event emit the
recipient value. However, this value is taken directly from the decoded input instead of using the
value returned by map(recipient). This occurs in the following command branches:

• Commands.V3_SWAP_EXACT_IN

• Commands.V3_SWAP_EXACT_OUT

• Commands.V2_SWAP_EXACT_IN

• Commands.V2_SWAP_EXACT_OUT

Code corrected:

The event was updated to use the value returned by map(recipient) instead of the raw value from the
decoded input.

6.8 Outdated Dependencies
Informational Version 1 Code Corrected

CS-VELO-SR-009

The following dependencies are outdated:

• @hyperlane-xyz/core: currently using 5.12.0, latest available is 7.1.4

• @openzeppelin/contracts: currently using 5.0.2, latest available is 5.3.0

• @uniswap/v3-core: currently using 1.0.0, latest available is 1.0.1

Code corrected:

The dependencies were updated to the latest versions.

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

6.9 Potential Gas and Code Size Optimization
Informational Version 1 Code Corrected

CS-VELO-SR-010

Below is a non-exhaustive list of potential gas and code size savings:

• In the _veloSwap function of the V2SwapRouter contract, the first route segment is decoded twice
by calling routes.veloRouteAt(0).veloDecodePair() before the loop and
routes.veloRouteAt(0).decodeRoute() inside the loop when i == 0.

• In the pairAndToken0For function of the V2SwapRouter contract, the call to sortTokens is
duplicated in each of the two branches, it could be moved outside the if/else statement.

Code corrected:

Version 2In , the _veloSwap function reuses the input, output, and stable variables instead of
re-declaring them. The pairAndToken0For function calls sortTokens() once outside the if/else
block, avoiding duplication.

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 TOKEN_BRIDGE Always Uses the Balance of
the Router
Informational Version 3 Acknowledged

CS-VELO-SR-011

In the Dispatcher contract, the BRIDGE_TOKEN command is used to bridge tokens from the router to a
recipient. The command allows for a special value CONTRACT_BALANCE (1<<255) to be used as the
amount, which indicates that the entire balance of the token in the router should be bridged.

address sender = msgSender();
address payer = payerIsUser ? sender : address(this);
recipient = recipient == ActionConstants.MSG_SENDER ? sender : recipient;
if (amount == ActionConstants.CONTRACT_BALANCE) amount = ERC20(token).balanceOf(address(this));

However, if the payerIsUser flag is set to true, the command will use the sender's address as the
payer, but still use the router's balance as the amount to bridge. This might lead to unexpected behavior
depending on the user's balance and approval for the token.

Acknowledged:

The Velodrome team has acknowledged this finding and answered:

The behaviour aligns with the existing behaviour of the UniversalRouter.

7.2 Missing Payer Check in v3SwapExactInput
Informational Version 1 Acknowledged

CS-VELO-SR-008

In the v3SwapExactInput function of the V3SwapRouter contract, when
amountIn == ActionConstants.CONTRACT_BALANCE, the token balance is always read from
address(this) without confirming that the payer is the contract:

if (amountIn == ActionConstants.CONTRACT_BALANCE) {
 address tokenIn = path.decodeFirstToken();
 amountIn = ERC20(tokenIn).balanceOf(address(this));
}

Acknowledged:

Velodrome acknowledged this informational issue.

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Interchain Account Trust Risk
Note Version 1

Users not only grant the Universal Router unlimited token allowances (see Router Allowance Trust Risk),
but also implicitly place trust in it to manage their interchain accounts on each destination chain.

The primary safeguard for funds in an Interchain Account is that the salt is hard-coded to the
msgSender() when invoking the Interchain Account Router:

IInterchainAccountRouter(icaRouter).callRemoteWithOverrides{value: msgFee}({
 _destination: domain,
 _router: remoteRouter,
 _ism: ism,
 _callsCommitment: commitment,
 _hookMetadata: hookMetadata,
 _salt: TypeCasts.addressToBytes32(msgSender()),
 _hook: IPostDispatchHook(hook)
});

However, similarly to the risks described in Router Allowance Trust Risk, if an attacker could manipulate
the salt parameter (e.g., through a hash collision or function name reuse), they might send a transaction
to the Interchain Account Router that enables them to take control of the Interchain Account. This would
allow the attacker to execute arbitrary transactions on the destination chain, including transferring funds
out of the Interchain Account.

For instance, if the ICA Router implements a function named transferFrom or a function with a
selector colliding with transferFrom, an attacker could potentially use the TRANSFER_FROM command
to invoke router.transferFrom(). In such a scenario, it might be possible to provide a custom salt
not tied to the caller, thereby gaining access to the remote Interchain Accounts of other users.

In the current implementation, no such collision was found, but this risk should be carefully evaluated with
every modification made to the router.

8.2 Router Allowance Trust Risk
Note Version 1

Users of the Universal Router must grant it token allowances for each token they trade. In practice,
frontends often grant infinite allowances (either directly or via Permit2) and do not automatically revoke
them. This effectively entrusts the router with unlimited token allowances.

The router allows calls to transferFrom and enables execution of external calls to arbitrary contracts
with unchecked calldata. If an attacker manipulates the router into calling a function that consumes the
allowance of another user, they could potentially drain his funds.

While the current implementation does not expose any direct way to exploit another user's allowance,
two realistic risk scenarios exist. These should be carefully evaluated with every modification to the
router:

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

1. Unrestricted transferFrom Usage:

Any call that consumes ERC-20 allowances granted to the router (e.g., transferFrom) must
enforce that the from argument always equals msgSender(). If this check is missing or
bypassed, a malicious user could exploit this to drain another user's allowance.

2. Function Selector Collisions in External Calls:

The router is trusted by users not to call ERC-20 functions that consume their allowances
unless they are the caller.

However, the router makes unchecked external calls to arbitrary contracts using fixed function
selectors. This could be exploited if a function selector collision occurs between such a call and
any ERC-20 contract.

Such collisions could arise from identical function selectors (hash collisions), bridge contracts
reusing ERC-20 function names, or exotic ERC-20 implementations with matching functions.

External calls where both the target contract address and function parameters are
user-controlled, such as sendToken in executeXVELOBridge, are particularly vulnerable to
such collisions.

For example:

ITokenBridge(bridge).sendToken{value: msgFee}({
 _recipient: recipient,
 _amount: amount,
 _domain: domain,
 _refundAddress: sender
});

In this scenario, if any ERC-20 token contract used with the router implements a sendToken
function, or if a selector collision occurs, an attacker could pass a token contract as bridge
and craft calldata to invoke its sendToken function using the user's allowance, thereby
draining their tokens.

Recommendations:

• In future versions of the router, it should be ensured that any function call consuming allowances
validates the from address.

• Calls with user-controlled targets should be ensured not to collide with standard ERC-20 methods.

• Users of exotic ERC-20 tokens should be aware of the risks associated with matching functions, as
these could lead to allowance drainage.

Velodrome - Superswap Router - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Overview of the architecture
	2.2.1.1 Command Structure
	2.2.1.2 Command Inputs
	2.2.1.3 Message Sender

	2.2.2 Transfer from
	2.2.3 VeloV2 pools support
	2.2.4 Slipstream pools support
	2.2.5 Bridging tokens
	2.2.5.1 Hyperlane xERC20 Bridge
	2.2.5.2 XVELO Bridge

	2.2.6 Execute cross chain actions
	2.2.6.1 Interchain Account
	2.2.6.2 Application of the ICA to the Superswap Router

	2.2.7 Changes in Version 2
	2.2.8 Changes in Version 3

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 Arbitrary Approval Can Be Obtained From the Router
	6.2 Incorrect AmountIn Calculation Causes Swap Failures With Uniswap V2
	6.3 Ambiguous Sender Parameter in BridgeRouter.prepareTokensForBridge
	6.4 Ambiguous CONTRACT_BALANCE Constant
	6.5 Duplicate Function _f and _k
	6.6 Incorrect Path Length Condition
	6.7 Incorrect Recipient Emitted in Dispatcher Events
	6.8 Outdated Dependencies
	6.9 Potential Gas and Code Size Optimization

	7 Informational
	7.1 TOKEN_BRIDGE Always Uses the Balance of the Router
	7.2 Missing Payer Check in v3SwapExactInput

	8 Notes
	8.1 Interchain Account Trust Risk
	8.2 Router Allowance Trust Risk

