

PUBLIC

Code Assessment

of the Sink Gauge v2

Smart Contracts

Feb 14, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 7

4 Terminology 8

5 Open Findings 9

6 Informational 10

Velodrome - Sink Gauge v2 - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Velodrome team,

Thank you for trusting us to help Velodrome with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Sink Gauge v2 according to
Scope to support you in forming an opinion on their security risks.

Velodrome implements a setup to lower the need of newly minted Velo which consequently slows down
or could even stop the inflation rate. This is achieved by using a special gauge contract. If users vote for
this gauge, the corresponding rewards will be sent directly from the voter to the minter contract. There is
also a pool without functionality and the factory contracts to correctly integrate the setup in the overall
ecosystem

We could not identify any relevant issue in the code base. In summary, we find that the codebase
provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Velodrome - Sink Gauge v2 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Velodrome - Sink Gauge v2 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the four contracts needed for the sink setup inside the Sink Gauge v2
repository.

• SinkGaugeFactory

• SinkPoolFactory

• SinkPool

• SinkGauge

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 08 Feb 2025 0dd950938a43cb69d98fcd00768b8de1a5b87c52 Initial Version

For the solidity smart contracts, the compiler version 0.8.25 was chosen.

2.1.1 Excluded from scope
All files not explicitly mentioned in scope are out of scope. Third-party libraries such as OpenZeppelin
libraries are out-of-scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview. Furthermore, in the findings section, we have added a version icon to each of the
findings to increase the readability of the report.

Velodrome's sink v2 contracts allow users to allocate their votes to the sink gauge. The sink gauges
redirect the Velo rewards back to the minter. Consequently, it is a way to reduce the need for new Velo
tokens to be minted by the minter each epoch and lower the token inflation rate. To allow users to vote
for the single gauge and to integrate the contracts correctly, the sink gauge has a pool associated with it.
However, the pool is not functional and has an empty contract. Both contracts have the associated
factory contracts, too. All four contracts have minimal functionality to integrate with the system but do not
allow users normal pool operations. Additionally, the usual reward contracts are associated with the sink
setup such that it fully integrates into voting, bribes, and rewards.

The pool is an empty contract and just has the address needed to set up the sink contracts in the system.
The factory is not a real factory that allows to deploy of multiple contracts but simply deploys the empty
pool contract and returns the pool address if queried. Additionally, it has two view functions isPair and
isPool that both simply return false.

The gauge factory, like the pool factory, implies deploying the gauge in its constructor but cannot deploy
other gauges. No other gauges can be created via the createGauge function which is the only function
that is present. The function simply returns the address of the gauge when called. The gauge has three
functions that need to be at least present to not make the relevant calls revert. left() returns always 0

Velodrome - Sink Gauge v2 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

such that it is always possible to send funds through the gauge. getReward() is an empty
implementation to avoid reverts in the call path needed. notifyRewardAmount() is the only function
that implements meaningful logic. It can only be called by the Voter contract with a non-zero amount. It
tracks the total rewards that were sent over the gauge and the rewards per epoch. Besides tracking it
simply redirects the funds from msg.sender (the Voter contract) directly to the Minter contract with a
transferFrom(). Hence, the gauge will not even hold or really "touch" the rewards re-directed over it.
Finally, a NotifyReward and ClaimRewards event is emitted.

The contracts are fully unpermissioned and the only state-changing function can be called by the Voter
contract only.

Velodrome - Sink Gauge v2 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Velodrome - Sink Gauge v2 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Velodrome - Sink Gauge v2 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Open Findings
In this section, we describe our findings. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Velodrome - Sink Gauge v2 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

6.1 No Emergency Recovery
Informational Version 1 Acknowledged

CS-VELOG2-001

In case funds are accidentally send to the contract or Ether forced into the contract, none of the contracts
has a recovery/sweep function.

Velodrome - Sink Gauge v2 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Informational
	6.1 No Emergency Recovery

