

PUBLIC

Code Assessment

of the Permissionless

Smart Contracts

Aug 01, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 System Overview 6

4 Limitations and use of report 11

5 Terminology 12

6 Open Findings 13

7 Resolved Findings 14

8 Informational 24

9 Notes 25

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Gearbox Team,

Thank you for trusting us to help Gearbox with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Permissionless according to
Scope to support you in forming an opinion on their security risks.

Gearbox implements a new governance system which aims to enable different risk curators to run their
own gearbox markets. The new system allows the migration of the legacy system into the new system.

The most critical subjects covered in our audit are the correct instantiation of all system components, the
migration logic of the legacy system, and the upgradeability, configurability, and liveness of the system.
In the current implementation, neither the current system (Shutting down a market configurator) nor the
legacy system can be fully configured (Legacy CreditManager cannot be fully configured). The migration
of the legacy system is underspecified as it's not known which components of the legacy system will
immediately be upgraded to newer versions. Moreover, the liveness of the system can be harmed in
some cases (Reverting proposals lock cross-chain governance). Finally, upgrading some components of
the system is not possible (Factory migration will fail).

The general subjects covered are functional correctness, gas consumption, testing, and documentation
and specification. Testing was very limited in the first iteration of the report. This led to a substantial
number of functional correctness issues (Timelock transactions can be executed before the ETA) that
could have been prevented. Testing was significantly improved in subsequent versions. Some of the
operations executed by Governance have very high gas requirements. Documentation is sufficient.
However, some parts are underspecified (Signatures On Different Chains).

In summary, we find that the system provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 7

• Code Corrected 7

Medium -Severity Findings 9

• Code Corrected 9

Low -Severity Findings 9

• Code Corrected 6

• No Response 3

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Permissionless repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 19 Jan
2025

6c1b6ac842b751198e82db67ce5beb4a1c079d68 Initial Version

2 27 Feb
2025

5a9a1d337f3a4f4a0cde66674f30f138f7a6ca90 First batch of fixes

3 28 Feb
2025

dad69fb90f0805907359b247b80ebb7ed5245112 Second batch of fixes

4 11 Apr 2025 6ef5000e1b642f3476946595777fb841c81af0f0 Final Version

5 14 Jul 2025 68f4a0d3812a110a5cbc0c567519740362ae78b2 RateKeeper Patch

6 25 Jul 2025 4f678ac1ee24372ad6f472e3e0b3b7db2fe1e658 RateKeeper Patch V2

For the solidity smart contracts, the compiler version 0.8.23 was chosen.

The following contracts are in scope:

factories:
 AbstractFactory.sol
 AbstractMarketFactory.sol
 CreditFactory.sol
 InterestRateModelFactory.sol
 LossPolicyFactory.sol
 PoolFactory.sol
 PriceOracleFactory.sol
 RateKeeperFactory.sol
global:
 BytecodeRepository.sol
 CrossChainMultisig.sol
helpers:
 DefaultIRM.sol
 DefaultLossPolicy.sol
 EIP712Mainnet.sol
 ProxyCall.sol
instance:
 AddressProvider.sol
 InstanceManager.sol
 MarketConfiguratorFactory.sol
 PriceFeedStore.sol
libraries:
 CallBuilder.sol

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 5

https://github.com/Gearbox-protocol/permissionless/tree/6c1b6ac842b751198e82db67ce5beb4a1c079d68
https://github.com/Gearbox-protocol/permissionless/tree/5a9a1d337f3a4f4a0cde66674f30f138f7a6ca90
https://github.com/Gearbox-protocol/permissionless/tree/dad69fb90f0805907359b247b80ebb7ed5245112
https://github.com/Gearbox-protocol/permissionless/tree/6ef5000e1b642f3476946595777fb841c81af0f0
https://github.com/Gearbox-protocol/permissionless/tree/68f4a0d3812a110a5cbc0c567519740362ae78b2
https://github.com/Gearbox-protocol/permissionless/tree/4f678ac1ee24372ad6f472e3e0b3b7db2fe1e658
https://chainsecurity.com

 ContractLiterals.sol
 Domain.sol
 NestedPriceFeeds.sol
market:
 ACL.sol
 ContractsRegister.sol
 Governor.sol
 MarketConfigurator.sol
 TimeLock.sol
 TreasurySplitter.sol
 legacy:
 MarketConfiguratorLegacy.sol
traits:
 DeployerTrait.sol
 ImmutableOwnableTrait.sol

During the assessment the following commits from Core were considered:

• V3.0 (legacy): b959c4b642ca5099d037f53464be1269071216d8

• Version 2V3.10: 66f9b8e7be833964c935cd43d1e8002b9f08d9ea before

• Version 2V3.10: 562ccc19210fe43c170c4451eb35fb786982ca43 after

Version 2After , the following contracts were added to the scope:

helpers:
 DefaultDegenNFT.sol

2.1.1 Excluded from scope
Any contracts not explicitly listed above are out of the scope of this review. Third-party libraries are out of
the scope of this review, especially LibString and SSTORE2 are assumed to work correctly. We
assume all the chains where Gearbox is going to be deployed on preserve the semantics of EVM on
mainnet.

3 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Gearbox offers a governance and deployment system for the Gearbox Protocol across EVM chains. The
system comprises the following building blocks:

• cross-chain governance

• bytecode security and versioning

• instance management

• market deployment and management

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• legacy system integration

3.1 Cross-chain governance
Through CrossChainMultisig, the cross-chain governance module is responsible for managing the
governance of the Gearbox Protocol across different EVM chains. The goal of the module is to guarantee
a consistent state across all the different chains. This is achieved by executing the same proposals on all
chains in the same order. The correct ordering is ensured by a system of hash-chain.

On Ethereum Mainnet, Gearbox DAO will vote on proposals that can ultimately be submitted to the
CrossChainMultisig. Proposals must be submitted along with the hash of the previously executed
proposal. Then, a set of trusted signers has to sign the proposal with the previous hash, when the
threshold is reached, the proposal is executed. A proposal is a set of calls with a target address and a
target chain. It is possible to target all the chains by setting the target chain to 0. Moreover, a proposal
must target all chains if its target is CrossChainMultisig. This guarantees that the state of
CrossChainMultisig is synced on all chains.

On chains other than Mainnet, the signed proposals that were executed on Mainnet (reached the
threshold) can be permissionlessly submitted to the CrossChainMultisig. The proposal will be
executed if the hash of the proposal matches the hash of the last executed proposal on the target chain
and the target chain id matches as well.

Note that multiple proposals targeting the same prevProposalHash can coexist, but only the first one
to receive enough signatures will be executed and the others will be invalidated since the
prevProposalHash will be updated.

Below is a non-exhaustive list of cross-chain governance actions:

• add and remove signers, and modify the signatures threshold on the CrossChainMultisig

• deploy system contracts on a chain, see Instance management for more details

• manage auditors and domains on the BytecodeRepository

• add an already deployed market to a market configurator through the
crossChainGovernanceProxy

• finalize the migration of a legacy market and configure its linked GEAR staking contract

Note that governance actions in general can be calls to arbitrary targets with arbitrary calldata.

3.2 Bytecode security and versioning
The BytecodeRepository contract is deployed along the instance and is owned by the
crossChainGovernanceProxy, which can ultimately be called by the CrossChainMultisig. The
BytecodeRepository holds the bytecode of almost all contracts to be used within the Gearbox
ecosystem. Each contract has a type and a version. The contract type is built as follows:
DOMAIN::POSTFIX, some domains can be marked as public domains by the governance. The version is
built as follows: XYZ where X is the major version, Y is the minor version, and Z is the patch version.

Contract developers can permissionlessly submit their bytecode to the repository, then trusted auditors
can post a signature containing the bytecode hash and the URL of their report. To be allowed to be
deployed, the bytecode must be audited by at least one auditor and must be either marked as a system
contract by the governance or be in the public domain.

The deployment of an approved contract is permissionless but is expected to be performed through
trusted callpaths (InstanceManager, MarketConfigurator, ...) for contracts used by the
Gearbox Protocol and be properly parametrized.

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3.3 Instance management
There will be at most one instance of Gearbox Protocol per chain and each instance will be controlled by
a trusted instance manager. The instance manager is the owner of the InstanceManager contract and
is responsible for managing the allowed price feeds in the PriceFeedStore. The InstanceManager
contract itself is the entry point in the system for the governance, instance manager, and treasury, as it
controls the three proxies
crossChainGovernanceProxy, instanceManagerProxy, treasuryProxy.

The InstanceManager is expected to be deployed with the governance as the primary owner. Upon
deployment of the InstanceManager, the three aforementioned proxies are deployed, as well as the
BytecodeRepository and the AddressProvider contracts. The instance can then be activated and
the ownership is transferred to the instance manager.

The governance can deploy or redeploy some system contracts through the InstanceManager that will
be recorded in the AddressProvider. Such contracts are:

• Bytecode repository

• Cross-chain governance

• The three proxies mentioned above

• Instance Manager

• Treasury

• GEAR token

• Price Feed Store

• Factory contracts (MarketConfiguratorFactory, PoolFactory, PriceOracleFactory,
InterestRateModelFactory, RateKeeperFactory, LossPolicyFactory)

• GEAR staking contract

• Bot list

3.4 Market deployment and management
Within a Gearbox instance, a market curator can create various different markets via a
MarketConfigurator contract. The contract specifies an admin which is expected to be a Timelock
controlled by a Governor contract (see Gearbox Governance) even though this is not strictly enforced. A
market configurator is deployed together with an ACL (Access Control List), a contract register, and a
treasury splitter.

Markets: The lending pool is the epicenter of a market. Even though the components of a market are
thoroughly discussed in the security review of the Core we explain them here briefly. A market consists
of:

• A pool that is always deployed with a quota keeper i.e., the contract that controls the quota for
the lending pool.

• A price oracle i.e., the entry point for price queries.

• An interest rate model which calculates the interest rate based on the pool's utilization.

• A ratekeeper contract which determines the cost of maintaining some quota for a token.

• A loss policy that determines the behavior of the market during liquidations with bad debt.

The pool, the price oracle, and the loss policy are registered in the contract register. All the components
except for the pool itself are updatable. Upon updating, a hook is invoked notifying the rest of the
components.

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 8

https://www.chainsecurity.com/security-audit/gearbox-v3-governance
https://www.chainsecurity.com/security-audit/gearbox-v3-core
https://chainsecurity.com

A market can be shut down as long as there's no debt to be repaid to the pool. When a market is shut
down, the ratekeeper is frozen if it's a Gauge i.e., a contract that determines the quota rates based on the
votes of users.

Configuration: The MarketConfigurator has the configurator role for all the contracts of the market.
The contracts are deployed through factories. When the market configurator wants to make a call to a
market component it relies on the factory of this component to construct the calldata for the call. This
requires the factory to be authorized for this component (see migration). If an action must be applied on
multiple components, then it is executed via a market hook which is a call aiming at all factories of the
market. All actions of the contract are controlled by the admin (usually a timelock) with the exception of
the emergency configuration which is invoked by the emergency admin.

Credit Suite: A market might be associated to some credit suites. A credit suite consists of an account
factory, a credit manager, a credit configurator, and a credit facade. A credit suite can be shut down as
long as it has no outstanding debt for the pool.

Migration: Whenever a new patch is available for a factory, the market can migrate to use it. As multiple
components might have been authorized for a factory (e.g., the pool factory is authorized for both the
pool and the quota keeper), all the components need to authorize the new factory.

Upgradeability: In general the following components can be changed for the market:

• Rate Keeper

• Interest Rate Model

• Price Oracle

• Loss Policy

• Credit Facade

• Credit Configurator

On the other hand, the Credit Account Factory, the Credit Manager and the Pool and the Quota Keeper
cannot be upgraded.

3.5 Legacy system migration
The market configurator system cannot be directly used for the legacy system i.e., the Gearbox markets
already deployed. In order to make the legacy system compatible with the new governance architecture,
MarketConfiguratorLegacy is introduced which extends the MarketConfigurator contract. The
contract does the following:

• It wraps the deployment of the legacy system into a market configurator i.e., creates a market
without deploying a new contract by simply authorizing the appropriate factories and targets.

• It creates an ACL which will co-exist with the already deployed legacy ACL for the contracts, as
the legacy contracts do not allow the ACL to be reset. The legacy market configurator becomes
the owner of the legacy ACL as well as a pausable and an unpausable admin.

3.6 Trust Model and Roles
• governance signers: trusted to sign only proposals coming from the DAO on Mainnet. If enough

signers collude off-chain, they can sign and execute a proposal that was not voted on Mainnet, thus
leading a non-mainnet chain to a different chain and forbidding any further updates.

• instance manager: the instance manager is the owner of the InstanceManager after activation.
They are responsible for whitelisting the price feeds of the instance they supervise in the
PriceFeedStore. They are trusted to act in the best interest of the protocol and the users. By
whitelisting a bad price feed, they can increase the risk of liquidations or loss for the system.

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

• bytecode submitters: not trusted as anyone can submit bytecode. Submitting broken or adversarial
bytecode should not hurt the system as auditors must sign the bytecode before deployment.

• auditors: trusted to guarantee the security and compatibility of the bytecode they sign with the rest of
the system. If a buggy, insecure, or incompatible bytecode is signed, the system can be at risk of
loss of funds and/or liveness if the bytecode is deployed. Moreover, auditors are assumed to sign
code that preserves the semantics of the interface that the code intends to implement.

• treasury: it can access the assets collected for the Gearbox treasury and distribute fees collected by
a market configuration. The role doesn't have to be fully trusted as it can only propose changes in
the Treasury splitter which require the consent of the risk curator.

• risk curators: they manage a MarketConfigurator through the Governor/Timelock or directly.
They are trusted to manage market parameters in the best interest of the users. By choosing bad
underlying tokens or other market parameters the risk curators can increase the risk of liquidations
and bad debt in the markets they oversee.

• emergency admins: each MarketConfigurator has an emergency admin that is not constrained
to a timelock. They can set some preset parameters to halt/pause parts of a market or credit suite.
They are trusted to act in the best interest of the protocol and the users.

3.7 Version 2
Version 2 introduces the following changes:

• CrossChainMultisig implements recovery mode. It can be enabled if enough signatures
have been collected. During recovery mode, all calls of a batch are skipped. In the fixes, the
feature was modified to only skip calls that don't target the CrossChainMultisig and it can
be enabled on a per-chain basis. The recovery mode can be disabled by calling
disableRecoveryMode().

• The handling of the system and public domains is improved. The system domains cannot have
any owner.

• DefaultDegenNFT is introduced, which is a default implementation of the DegenNFT.

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• Duplicated Events

• Overwriting Addresses

• tokenSplits() Does Not Return Default Split

6.1 Duplicated Events
Design Low Version 1

CS-GEARGOV310-001

The following events are emitted twice:

• GrantRole in MarketConfigurator is also emitted by ACL

• RevokeRole in MarketConfigurator is also emitted by ACL

6.2 Overwriting Addresses
Design Low Version 1

CS-GEARGOV310-002

AddressProvider.setAddress() allows to overwrite the value of a key-version pair. This shouldn't
be allowed as it cancels the effect of versioning i.e., maintaining all the different values of a key. This is
not important as setAddress() is permissioned and the users who can modify the address provider are
trusted by the system.

6.3 tokenSplits() Does Not Return Default Split
Design Low Version 1

CS-GEARGOV310-003

The TreasurySplitter.tokenSplits() returns the token splits for a given token, but the function
will return a zero-split instead of the default split if the token split is not initialized.

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 7

• Code CorrectedCannot Forbid an Adapter With Normal Configuration

• Code CorrectedFactory Migration Will Fail

• Code CorrectedLegacy CreditManager Cannot Be Fully Configured

• Code CorrectedOverwritten Version in AddressProvider

• Code CorrectedReverting Proposals Lock Cross-Chain Governance

• Code CorrectedTimelock Transactions Can Be Executed Before the ETA

• Code CorrectedUpdating a Rate Keeper Will Freeze the Epoch

Medium -Severity Findings 9

• Code CorrectedBatching disableRecoveryMode Can Be Problematic

• Code CorrectedRecovery Mode Message Replay

• Code CorrectedDynamic Types Must Be Hashed for EIP712

• Code CorrectedFree Choice of maxEnabledTokens Can Be Dangerous

• Code CorrectedLegacy PriceOracle Cannot Be Updated

• Code CorrectedMissing Sanity Checks on minorVersion

• Code CorrectedRate Keeper Cannot Be Updated

• Code CorrectedShutting Down a Market Configurator

• Code CorrectedThreshold Not Enforced When Removing Signer

Low -Severity Findings 6

• Code CorrectedA Transaction Can Be Canceled After Execution

• Code CorrectedAllowance Timestamp Can Be Reset

• Code CorrectedEnough Admins Check

• Code CorrectedForbidden initCode

• Code CorrectedPending Owners

• Code CorrectedWrong Specifications

Informational Findings 5

• Code CorrectedDead Code

• Code CorrectedInconsistent Sanity Check for Versioning

• Code CorrectedRedundant Chunk

• Code CorrectedUnnecessary Imports

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

• Code CorrectedWrong Variable Name

7.1 Cannot Forbid an Adapter With Normal
Configuration
Correctness High Version 1 Code Corrected

CS-GEARGOV310-009

In CreditFactory.configure(), in the callpath to forbid an adapter, the adapter is authorizing the
factory again instead of removing the authorization. Since the adapter already authorized the factory, this
will revert as calling authorizeFactory() on an already-authorized target will fail.

Code corrected:

The callpath has been corrected to unauthorize the factory.

7.2 Factory Migration Will Fail
Correctness High Version 1 Code Corrected

CS-GEARGOV310-010

When processing the targets in MarketConfigurator._migrateFactoryTargets(), the array of
targets is trimmed by one element at every iteration, and the next index to read is incremented. This
leads to an out-of-bound array access as soon as the targets array contains more than one element.

Code corrected:

The loop iterates over a copy of the array cached in memory, and the elements are removed from the
array in storage.

7.3 Legacy CreditManager Cannot Be Fully
Configured
Design High Version 1 Code Corrected

CS-GEARGOV310-016

The legacy CreditManager exposes two functions setMaxEnabledTokens() and
makeTokenQuoted(), callable by the CreditConfigurator. But when migrated under the
MarketConfiguratorLegacy, there will be no way to call those functions as
setMaxEnabledTokens() and makeTokenQuoted() are not valid calls to be encoded from the
CreditFactory. This will block further attempts to change the maximum number of enabled tokens as
well as mark an already added token as quoted once the legacy credit suite is migrated.

Code corrected:

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

The new core-v3 CreditConfiguratorV3 implements a function to make all the tokens quoted on
the legacy CreditManagers with version < 3_10. Gearbox wants the maximum number of enabled
tokens to be immutable in 3_10 and thus does not expose a function to modify this number.

7.4 Overwritten Version in AddressProvider
Correctness High Version 1 Code Corrected

CS-GEARGOV310-011

The function AddressProvider._setAddress() computes the subversions from version instead of
_version. This has the effect that the subversions will always end up with the same values (i.e., 300
and 310) even if the targeted version is 320, breaking the versioning system.

Code corrected:

The function has been refactored and merged into setAddress().

7.5 Reverting Proposals Lock Cross-Chain
Governance
Design High Version 1 Code Corrected

CS-GEARGOV310-017

The CrossChainMultisig uses Address.functionCall() to execute the proposals, which will
bubble up the revert if the inner call fails and make the whole proposal execution fail. If a proposal that
was executed on Mainnet reverts on another chain, the CrossChainMultisig of that other chain will
not be able to execute any other Mainnet governance proposal, as it would have to execute the reverting
proposal first.

This can end up in two distinct scenarios:

a. The cross-chain governance is locked forever

b. The trusted signers have to create a "fork" from the Mainnet proposals hash chain to be able to
execute new proposals

Code corrected:

The CrossChainMultisig implements a recovery mechanism that can be triggered by a threshold of
signers. While in recovery mode, the proposals are added to the proposals chain, but are not executed.
The recovery mode can be disabled later. This system allows proposals to revert without locking the
cross-chain governance or requiring a fork.

7.6 Timelock Transactions Can Be Executed
Before the ETA
Correctness High Version 1 Code Corrected

CS-GEARGOV310-012

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

In the function Timelock.executeTransaction(), the block timestamp is enforced to be smaller or
equal to the ETA instead of greater or equal. This allows a transaction to be executed only before the
ETA, which contradicts the intended functionality of the timelock.

Code corrected:

The inequality has been reversed and the function reverts if the block timestamp is strictly smaller than
the ETA.

7.7 Updating a Rate Keeper Will Freeze the Epoch
Correctness High Version 1 Code Corrected

CS-GEARGOV310-013

In RateKeeperFactory.onUpdateRateKeeper(), if the type of the new ratekeeper is a GAUGE, the
epoch is unfrozen on the old ratekeeper instead of the new one. This will keep the epoch frozen and
prevent the new ratekeeper from updating the rate. To fix the state, the factory must be updated with the
possibility to unfreeze the epoch.

Code corrected:

The epoch is unfrozen on the new ratekeeper instead of the old one.

7.8 Batching disableRecoveryMode Can Be
Problematic
Design Medium Version 2 Code Corrected

CS-GEARGOV310-027

The disableRecoveryMode() call can be batched with other transactions. However, if any transaction
in the batch fails, the recovery mode cannot be used to recover. There's no constraint that enforces that
disableRecoveryMode() cannot be batched with other transactions.

Code corrected:

If a batch contains a disableRecoveryMode() call, the CrossChainGovernance ensures this call to
be the only transaction in the batch.

7.9 Recovery Mode Message Replay
Design Medium Version 2 Code Corrected

CS-GEARGOV310-030

A recovery mode message can be replayed across different chains, leading to unintended
consequences. Consider the following scenario:

1. Chain A enters recovery mode at some point.

2. Later, Gearbox is deployed on Chain B.

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

3. Unless executeBatch is carefully constructed, a signature from Chain A can be reused to
forcefully skip batches on Chain B until the next disableRecoveryMode is called.

This could allow malicious actors to manipulate governance execution, potentially causing
inconsistencies across chains.

Code corrected:

The recovery mode message includes the target chain ID to mitigate cross-chain replay.

7.10 Dynamic Types Must Be Hashed for EIP712
Correctness Medium Version 1 Code Corrected

CS-GEARGOV310-014

Following EIP-712, dynamic types such as string and bytes must be encoded as the keccak256 hash
of their content (https://eips.ethereum.org/EIPS/eip-712#definition-of-encodedata). In
CrossChainMultisig.hashProposal(), call.Data should be hashed as its type is bytes.

Code corrected:

The dynamic types are correctly encoded EIP712 style.

7.11 Free Choice of maxEnabledTokens Can Be
Dangerous
Design Medium Version 1 Code Corrected

CS-GEARGOV310-023

The free choice of the value for maxEnabledTokens can be problematic if the value is too big and the
gas required to liquidate the account exceeds the block gas limit. This could lead to bad debt in the
protocol.

Code corrected:

This issue was fixed by a code change in the core-v3 repository. The CreditManagerV3 enforces 20
as a maximum value for maxEnabledTokens. Our report for core-v3 covers this change.

7.12 Legacy PriceOracle Cannot Be Updated
Design Medium Version 1 Code Corrected

CS-GEARGOV310-024

During the update of the PriceOracle, the old price oracle is queried with reservePriceFeeds(),
but the legacy PriceOracleV3 does not implement the function, reverting the call and blocking the
update.

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 18

https://eips.ethereum.org/EIPS/eip-712#definition-of-encodedata
https://www.chainsecurity.com/security-audit/gearbox-core-oracles-v3-10
https://chainsecurity.com

Code corrected:

The function PriceOracleFactory._getPriceFeed() was updated to call priceFeedsRaw() on
the price oracle with version lower than 3_10.

7.13 Missing Sanity Checks on minorVersion
Design Medium Version 1 Code Corrected

CS-GEARGOV310-032

When creating a new market or a new credit suite, the admin can use an arbitrary minor version for the
factories. This means that the interfaces of the various components might not match. For example, an
admin could deploy a pool using a factory with minor version 2x0 and a credit manager using version
3x0. These can happen from a market configurator with version 4x0. There's no guarantee that such a
configuration can work as expected.

Coed corrected:

The MarketConfigurator enforces the version to be 3_XY.

7.14 Rate Keeper Cannot Be Updated
Correctness Medium Version 1 Code Corrected

CS-GEARGOV310-015

When updating the rate keeper through the market configurator, the onUpdateRateKeeper is triggered
on the PoolFactory. The pool factory executes setGauge on the quota keeper. The quota keeper then
checks that all the tokens have been added to the new Rate Keeper (the Gauge). However, the tokens
are added during a later hook on the RateKeeperFactory. Therefore, the update will revert.

The issue was found by Gearbox during an independent review.

Code corrected: The tokens are now added as part of the install hook after the new rate keeper has
been constructed.

7.15 Shutting Down a Market Configurator
Correctness Medium Version 1 Code Corrected

CS-GEARGOV310-031

When shutting down a market configurator, the configurator is added to the
_shutdownMarketConfiguratorsSet by the following snippet.

if (_shutdownMarketConfiguratorsSet.add(marketConfigurator)) {
 revert MarketConfiguratorIsAlreadyShutdownException(marketConfigurator);
}

Note, however, that EnumerableSet.add returns true when an element is successfully added to the
set. In this case, the revert will be executed, rendering a market shutdown impossible.

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Code corrected:

The condition was updated to revert if the market configurator is already in the set.

7.16 Threshold Not Enforced When Removing
Signer
Design Medium Version 1 Code Corrected

CS-GEARGOV310-025

When a signer is removed from CrossChainMultisig, the function does not enforce that enough
signers are left to meet the threshold. If the threshold cannot be met, proposals cannot be executed
anymore.

Code corrected:

The remaining number of signers after a removal is enforced to be at least the threshold.

7.17 A Transaction Can Be Canceled After
Execution
Design Low Version 1 Code Corrected

CS-GEARGOV310-019

It is possible to call Timelock.cancelTransaction() on a transaction that has already been
executed, which will emit the CancelTransaction event.

Code corrected:

The function returns early if the transaction is in the queue.

7.18 Allowance Timestamp Can Be Reset
Design Low Version 1 Code Corrected

CS-GEARGOV310-018

The function PriceFeedStore.allowPriceFeed does not revert if the price feed is already allowed
for use with the token. This allows the function to be called again to reset the allowanceTimsetamp to
the current block timestamp.

Code corrected:

The function reverts if the price feed is already allowed for use with the token.

7.19 Enough Admins Check
Design Low Version 1 Code Corrected

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

CS-GEARGOV310-022

In the Governor, if ownership was renounced when an admin (queue or execution) is removed, there is
no check enforcing that at least one admin remains. There is also no check to enforce that at least one
execution admin is set when permissionless execution is disabled. If all the admins are removed or if
permissionless execution is disabled and no execution admin is set, the governor will be locked forever.

Code corrected:

The owner cannot renounce ownership of the contract. As the owner can also queue and execute
transactions, this ensures the Governor will always have at least one admin.

7.20 Forbidden initCode
Design Low Version 1 Code Corrected

CS-GEARGOV310-028

In BytecodeRepository, the initCode is checked to not be forbidden twice, once when submitted
and another time when deployed. The check can easily be circumvented by adding some garbage byte
when submitted.

Code corrected:

The init code is not checked to be forbidden upon submission.

7.21 Pending Owners
Design Low Version 1 Code Corrected

CS-GEARGOV310-026

For PriceFeedStore._validatePriceFeedDeployment(), the pending owner of the priceFeed is
checked. There seems to be circular dependency here: The PriceFeedStore can indeed accept the
ownership of an Ownable2Step only if the price feed is known. However, the pricefeed cannot be added
to the known ones if it doesn't get validated.

Code corrected:

PriceFeedStore._validatePriceFeedDeployment() now accepts the ownership of the price
feed.

7.22 Wrong Specifications
Design Low Version 1 Code Corrected

CS-GEARGOV310-020

1. The specs of EIP712Mainnet._cachedDomainSeparator variable mention the domain
separator being recomputed if the chain ID doesn't match the cached one, but the domain
separator is recomputed only if the address(this) does not match the cached one.

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

2. The specs of the BytecodeRepository.contractTypeOwner mapping has the comment "// if
contractType is public", but the semantics of the mapping is to connect a contract type to its owner,
regardless of the contract type being in the public domain

3. The specs of CrossChainMultiSig.signProposal mention that "// Executed by any signer to
make cross-chain distribution possible". However, cross-chain distribution is not restricted by the
execution of this function on mainnet. It is enough to collect the signatures off-chain to execute a
proposal on another chain.

Code corrected:

1. The comment was removed

2. The mapping was removed

3. The specs were updated

7.23 Dead Code
Informational Version 1 Code Corrected

CS-GEARGOV310-006

Some parts of the code are unused. Unused code should be removed from the codebase to improve
clarity and maintainability.

1. the ProxyCallExecuted event in ProxyCall is never used

Code corrected:

The event definition has been removed.

7.24 Inconsistent Sanity Check for Versioning
Informational Version 1 Code Corrected

CS-GEARGOV310-029

BytecodeRepository._validateVersion() checks that the version is between 100 and 999.
However, AddressProvider._validateVersion() only checks that the version is above 100.

Code corrected:

The version validation is now consistent.

7.25 Redundant Chunk
Informational Version 1 Code Corrected

CS-GEARGOV310-007

BytecodeRepository._writeInitCode() splits the init code into chunks as follows:

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

uint256 len = initCode.length / chunkSize + 1;

This allows for the following theoretical issue: in case initCode.length % chunkSize == 0, the
last chunk will be empty.

Code corrected:

The number of chunks is now calculated as follows. Therefore, no redundant chunk is created:

uint256 len = (initCode.length - 1) / chunkSize + 1;

7.26 Unnecessary Imports
Informational Version 1 Code Corrected

CS-GEARGOV310-008

Some of the imports inthe codebase are not used. Here is a non-exhaustive list:

• IAddressProvider in Domain.sol

• AP_INSTANCE_MANAGER in Domain.sol

• AP_ADDRESS_PROVIDER in InstanceManager.sol

• AP_MARKET_CONFIGURATOR_FACTORY in InstanceManager.sol

• AP_INSTANCE_MANAGER_PROXY in CreditFactory.sol

•

Code corrected: The redundant imports have been removed.

7.27 Wrong Variable Name
Informational Version 1 Code Corrected

CS-GEARGOV310-021

1. The variable minorVersion in AddressProvider._setAddress() represents the major
version

2. The variable patchVersion in AddressProvider._setAddress() represents the minor
version

Code corrected:

The function has been refactored and merged into setAddress(), which uses the correct variable
names.

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

8 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

8.1 Gas Optimizations
Informational Version 1

CS-GEARGOV310-004

1. In TreasurySplitter._distribute(), the check receiver != address(this) is
unnecessary as the function _setSplit does not allow a receiver to be the TreasurySplitter
contract address.

2. In CrossChainMultisig._verifySignatures(), checking that _signers contains signer
is redundant as if multiple proposals are competing, only one fo them will be executed, and the
other discarded. There is no possibility for a proposal to be by a signer that will be removed before
the proposal is executed.

8.2 Missing Events
Informational Version 1

CS-GEARGOV310-005

Smart contracts should emit events for all important state changes. The following states changes may
deserve an event:

1. In TresurySplitter, when a new proposal is added

2. In TresurySplitter, when a new proposal is executed

3. In TresurySplitter, when a proposal is canceled

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

9 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

9.1 Gas Consumption of Market Configuration
Operations
Note Version 1

The market configuration might include some gas-heavy operations such as hooks on different factories.
The same applies to market configurator legacy. An example is the migration of the legacy system in the
construction of the MarketConfiguratorLegacy. We assume that Gearbox will make sure that all
operations fit in the block gas limit of each chain.

9.2 Signatures On Different Chains
Note Version 1

BytecodeRepository expects to make use of signatures submitted for mainnet on any chain. These
signatures contain a domain separator which depends on the address of the BytecodeRepository.
Therefore, it also depends on the address of the InstanceManager deploying it, on the current chain. If
the contracts are not deployed on the same address as on mainnet then the signatures cannot be
verified. Reproducible deployment is not always trivial.

Certain networks and deployment strategies may pose challenges to this requirement:

1. Optimism-stack-based chains: when bridging funds to an OP chain, the nonce of the from
account is incremented. See https://specs.optimism.io/protocol/deposits.html#nonce-handling.
This should be taken into account in cases where the deployer of the InstanceManager
contract has bridged funds. This would increase their nonce and thus affect the address of the
deploying contract as the address depends on the nonce of the deployer. Consequently, the
address of the token contract will be also affected as it depends on the address of the
CREATE2 caller (which is the deploying contract). Affected chains: Optimism, Base, etc.

2. Since the same EOA needs to be used for InstanceManager deployment on all the
networks, the private key of the EOA must be used to sign multiple transactions. Factors such
as bad setup, insider threat, malicious code or infrastructure, bad key generation, etc. may lead
to the private key leak. It is important that the deployer contract does not have any special
permissions and does not have access to funds.

3. zkSync Era: CREATE_PREFIX used in zkSync is different from the mainnet one and will
produce a different address for the same bytecode. In addition, to use CREATE2 in Deployer
contract, zkSync requires that the deployed contract bytecode is already known to the compiler
as states here. Thus, the BytecodeRepository.deploy() function won't work on zkSync.

9.3 Transferability of Shares
Note Version 1

Users should be aware that on legacy pools, shares are always transferable, in comparison to the newer
pools (>=3.10) where transfers are paused when the pool is paused.

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 25

https://specs.optimism.io/protocol/deposits.html#nonce-handling
https://github.com/matter-labs/era-system-contracts/blob/d42f707cbe6938a76fa29f4bf76203af1e13f51f/contracts/Constants.sol#L78
https://docs.zksync.io/build/developer-reference/ethereum-differences/evm-instructions
https://chainsecurity.com

9.4 CrossChainMultisig Must Enforce Identical
Signers Across Chains
Note Version 1

When constructing CrossChainMultisig (CCM), it is crucial to ensure that the same signers are
added across all chains. Otherwise, the following issue can arise:

1. Suppose signers on Chain A during construction are {S1, S2}, but on Chain B, it is only {S1}.

2. If a transaction is created to add S2 on Chain B, it will fail on Chain A because S2 is already
present.

3. Similarly, removing a signer on one chain but not the others may create inconsistent governance
states.

Gearbox - Permissionless - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Cross-chain governance
	3.2 Bytecode security and versioning
	3.3 Instance management
	3.4 Market deployment and management
	3.5 Legacy system migration
	3.6 Trust Model and Roles
	3.7 Version 2

	4 Limitations and use of report
	5 Terminology
	6 Open Findings
	6.1 Duplicated Events
	6.2 Overwriting Addresses
	6.3 tokenSplits() Does Not Return Default Split

	7 Resolved Findings
	7.1 Cannot Forbid an Adapter With Normal Configuration
	7.2 Factory Migration Will Fail
	7.3 Legacy CreditManager Cannot Be Fully Configured
	7.4 Overwritten Version in AddressProvider
	7.5 Reverting Proposals Lock Cross-Chain Governance
	7.6 Timelock Transactions Can Be Executed Before the ETA
	7.7 Updating a Rate Keeper Will Freeze the Epoch
	7.8 Batching disableRecoveryMode Can Be Problematic
	7.9 Recovery Mode Message Replay
	7.10 Dynamic Types Must Be Hashed for EIP712
	7.11 Free Choice of maxEnabledTokens Can Be Dangerous
	7.12 Legacy PriceOracle Cannot Be Updated
	7.13 Missing Sanity Checks on minorVersion
	7.14 Rate Keeper Cannot Be Updated
	7.15 Shutting Down a Market Configurator
	7.16 Threshold Not Enforced When Removing Signer
	7.17 A Transaction Can Be Canceled After Execution
	7.18 Allowance Timestamp Can Be Reset
	7.19 Enough Admins Check
	7.20 Forbidden initCode
	7.21 Pending Owners
	7.22 Wrong Specifications
	7.23 Dead Code
	7.24 Inconsistent Sanity Check for Versioning
	7.25 Redundant Chunk
	7.26 Unnecessary Imports
	7.27 Wrong Variable Name

	8 Informational
	8.1 Gas Optimizations
	8.2 Missing Events

	9 Notes
	9.1 Gas Consumption of Market Configuration Operations
	9.2 Signatures On Different Chains
	9.3 Transferability of Shares
	9.4 CrossChainMultisig Must Enforce Identical Signers Across Chains

