

PUBLIC

Code Assessment

of the Migration Bot

Smart Contracts

July 25, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Open Findings 10

6 Resolved Findings 11

7 Notes 12

Gearbox - Migration Bot - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Gearbox Team,

Thank you for trusting us to help Gearbox with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Migration Bot, according to
Scope to support you in forming an opinion on their security risks.

Gearbox implements the migration bot, a module that facilitates the migration of liquidity by closing a
credit account and opening another one.

The most critical subjects covered in our audit are the functional correctness of the implementation, the
possible execution flows, and the safety of the funds. Security regarding all the aforementioned subjects
is high.

The general subjects covered are gas efficiency, authorization, documentation, and testing. As the
Gearbox protocol interacts with many different assets and protocols, thorough e2e testing of the
migration of accounts with different configurations and assets would benefit the implementation.
Currently, the testing is quite limited. Security regarding the rest of the aforementioned subjects is high.

In summary, we find that the codebase could provide a high level of security should all the issues be fixed
and no further issues be uncovered during the fixes review.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Gearbox - Migration Bot - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code Corrected 1

Gearbox - Migration Bot - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Migration Bot repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 14 July 2025 f349923539cfb2136c0599b1f16e16b7fa7892fd Initial Version

2 24 July 2025 f30752716e83ac3f8c6e7b7b97b57ac95e2a8c76 Fixes

3 25 July 2025 0b1827d061f1d5340b71e6670bd3c56b47f55070 Release 3.1

For the solidity smart contracts, the compiler version 0.8.23 was chosen.

The following contracts are considered in scope:

contracts/migration/:

• AccountMigratorAdapter.sol

• AccountMigratorAdapter30.sol

• AccountMigratorAdapter31.sol

• AccountMigratorBot.sol

2.1.1 Excluded from scope
All contracts not explicitly mentioned in scope are considered out of scope. In particular, the
AccountMigratorPreviewer.sol is out of scope. The code is assumed to be deployed on chains
that are equivalent to the Ethereum EVM. Vectors that include users purposely signing transactions that
lead them to a loss of funds were not considered. The contracts in scope are assumed to be
parametrised and deployed correctly.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Gearbox offers an implementation of the Migrator Bot. The purpose of the bot is to facilitate migration of a
credit account (source CA) to new one (target CA). There are very minimal assumptions on what the
involved credit managers (CM) of these accounts should be; they can be different versions or use a
different pool. For the source CA to transfer its assets to the bot, an external call to an adapter is used
(AccountMigratorAdapter).

Migration Flow:

Gearbox - Migration Bot - ChainSecurity - © Decentralized Security AG 5

https://github.com/Gearbox-protocol/periphery-v3//tree/f349923539cfb2136c0599b1f16e16b7fa7892fd
https://github.com/Gearbox-protocol/periphery-v3//tree/f30752716e83ac3f8c6e7b7b97b57ac95e2a8c76
https://github.com/Gearbox-protocol/periphery-v3//tree/0b1827d061f1d5340b71e6670bd3c56b47f55070
https://chainsecurity.com

1. The owner of the source CA calls migrateCreditAccount on the bot providing the needed
parameters.

2. The parameters are validated.

3. The price feeds of the instance are updated.

4. The bot initiates a botMulticall on the source CA. For that the owner of the CA must have given
the appropriate permissions.

5. The multicall eventually interacts with MigratorAdapter which makes the source CA call
migrate on the bot itself.

6. The bot withdraws the collateral from the source credit account.

7. The bot opens the target CA by calling the Credit Facade of the new Credit Manager.

8. The target CA is configured (collateral is added, quotas are set, debt is increased).

9. The target CA optionally withdraws some of its collateral in underlying to the source CA.

10. The control returns back to source CA which finishes its closure e.g., by decreasing its debt to 0,
appropriately upgrade the quotas, etc.

It is important to note the following:

• The source CA might not be empty after the migration but it shouldn't have any debt. Its owner
can then withdraw its remaining assets.

• The migrator bot can be configured to properly interact with the phantom tokens.

• In principal, a migration could manually be performed without the owner of the CA. The
migration bot however, enables the user to borrow with its target CA to repay the debt of the old
source. This is achieved by interleaving the closure and opening operations i.e., the new credit
account is opened while source credit account is in the process of closing. The health check at
the end of the operations guarantees that both the source and the target accounts are healthy.

Migration Constraints:

Here we present some of the constraints of the migration

• the CMs should be known to the gearbox instance.

• both the source and target CMs should have all the migrated tokens enabled.

• the collateral to be migrated (can be phantom tokens).

• swap and other external calls on the opening shouldn't interact with a migrator adapter.

Handling Phantom Tokens

Phantom tokens are non transferable tokens used for accounting within the system when an actual
token is not available. During the migration the phantom tokens of the source account must be
withdrawn. The admins of the bot can override the default call (withdrawPhantomToken) when
needed. Note that such functionality is not needed when Phantom Tokens are deposited to the target
CA. The bot can handle the case where the phantom token position on the source and target CAs is
handled by different contracts.

2.3 Trust Model
We infer the following trust model for the system:

• The owner of the bot is fully trusted as it configures how the phantom tokens are handled.

• All the components the system interacts with are assumed to function properly.

Gearbox - Migration Bot - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• The owner of the source credit account is assumed to provide the correct parameters for the
migration.

Gearbox - Migration Bot - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Gearbox - Migration Bot - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Gearbox - Migration Bot - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Gearbox - Migration Bot - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code CorrectedUsage of ptOverride

Informational Findings 1

• Code CorrectedMissing Lock Check

6.1 Usage of ptOverride
Design Low Version 1 Code Corrected

CS-GEAR-PERIPH-002

ptOverride seems to need to always be populated for all phantom tokens. If it isn't, the underlying
must be 0. This will result in the comparison between the uniqueTransferred tokens and the
migratedCollateral.underlying to fail. However, later _getPhantomTokenWithdrawalCall
seems to be able to handle the case where ptOverride is empty for a phantom token.

Code corrected:

The _validateParameters function has been modified to correctly handle tokens which don't have a
ptOverride. It now only checks that the underlying of the collateral matches the ptOverride if we
have an override.

6.2 Missing Lock Check
Informational Version 1 Code Corrected

CS-GEAR-PERIPH-001

In order for a credit account to interact with the AccountMigratorAdapter, it needs to be unlocked by
the AccountMigratorBot. The current implementation of the locking mechanism never checks the
state of the lock before changing. locked is set to true without checking that the lock is unlocked. In
case of an unexpected execution trace, such a check could prevent the migration from malfunctioning.

Code corrected:

The implementation now includes a check to ensure the lock is in the expected state before attempting to
set or release it. If the lock is found to be in an incorrect state, the transaction reverts.

Gearbox - Migration Bot - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Migration With Phantom Tokens Deposit
Note Version 1

The migration of a credit account might fail should it hold phantom tokens. These cases might include,
but are not limited to, the following:

• The phantom token implements a time delay. In this case, the withdrawal of a phantom token might
fail if more time is required.

• The phantom token doesn't implement deposit. In this case, even if the token is successfully
withdrawn from the source credit account, its underlying won't be able to be converted into a
phantom token in the target account.

7.2 No Check on Balances After Account Closure
Note Version 1

When an account is being closed, a specific vector of calls is executed. However, there's no check
regarding the state of the account's balances after the closing operation besides the health check
enforced by the protocol. Such a check could allow users to ensure that only the expected amount has
been transferred and the rest remains in the source CA to be withdrawn.

The same holds for the target CA. However, the migration flow allows the target CA to execute arbitrary
opening calls, which could include checking the balances.

Moreover, note that the parameters of the migration are determined by the
AccountMigratorPreviewer (out-of-scope). However, the previewer doesn't create a call to check
the expected balances on the accounts after the migration.

Gearbox - Migration Bot - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 Usage of ptOverride
	6.2 Missing Lock Check

	7 Notes
	7.1 Migration With Phantom Tokens Deposit
	7.2 No Check on Balances After Account Closure

