

PUBLIC

Code Assessment

of the Gearbox V3.1 Integrations

Smart Contracts

July 25, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 System Overview 10

4 Limitations and use of report 15

5 Terminology 16

6 Open Findings 17

7 Resolved Findings 19

8 Informational 23

9 Notes 24

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Gearbox Team,

Thank you for trusting us to help Gearbox Protocol with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Gearbox V3.1
Integrations according to Scope to support you in forming an opinion on their security risks.

This review focuses on changes of Gearbox Protocol to adapters and integrations interacting with
third-party protocols.

The most critical subjects covered in our audit are the functional correctness of the contracts, the adapter
configuration, the movement of the assets, and the interaction with the rest of the Gearbox system.
Changes between v3.0 and v3.1 of the core and their interaction with systems outside of the core,
including the interaction with adapters in the scope of this review, are out of scope. Security regarding all
the aforementioned subjects is high.

In Version 11, we have identified some issues regarding the Upshfit integration. Under certain conditions,
the delay enforced by Upshift Vault can interfere with the expected liquidation flow, potentially leading to
unexpected or increased loss for the liquidity providers. Gearbox Protocol accepted the risk and stated
that it will be mitigated with proper configuration of the system.

The general subjects covered are access control, documentation and specification, gas efficiency, and
the complexity of the implementation. Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase would provides a high level of security. The interactions between
different components of the Gearbox system are complex. The contracts in this scope have undergone
many changes during the review. This in combination with the fact that the reviews are limited in time
reduces our confidence in the assessment of the system's security level.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 2

• Code Corrected 2

Medium -Severity Findings 3

• Code Corrected 2

• Risk Accepted 1

Low -Severity Findings 5

• Code Corrected 3

• Specification Changed 1

• Risk Accepted 1

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the contracts/ folder of the Gearbox
V3.1 Integrations repository based on the documentation files. The table below indicates the code
versions relevant to this report and when they were received.

V
Date Commit Hash Note

1
25 Sept
2023

dddd06719bda2eee3f47d44cf1820
39f002c12f8

Initial Version

2
30 Oct
2023

5036094502ffe70b433ac7c89edce
6990ace5ed2

Added <x>_diff functions

3
6 Nov
2023

66bc3fd399189fa6fe73579bb8666f
6e416302cf

Inlining of internal <x>Diff functions

4
8 Nov
2023

74888bcf007aab373d0504cfed5ca
78c8d8f865e

Added pool migration zapper

5
11 Nov
2023

302c635e67c0017f5f7d91d9c4c56
199c624c4f6

Fix of redemption mechanism

6
8 Jul
2024

29c967b3ca2e17a46f73b477c5705
89e63365034

Added serialization, zircuit adapter, safe price
checks

7
19 Jul
2024

056e52102d88a4481aef56a579df1
3340c434b01

Added DAI-like permit in zappers and other fixes

8
29 Jul
24

e2fcd9aef437a19a37fdbd95cde2b7
df16bac346

Added IVersion for zappers and fixes

9
21 Oct
2024

361fb5c04df11a42d43bd46a2befcf
98da6a8ce3

Fix for Zircuit phantom token

1
0

3 June
2025

217c43b301f3d64744f6955cec67a
b123b3bdc39

Minor refactoring of adapters

1
1

14 July
2025

6a3c74f7441b9882c0bda4dd27a04
59ca98cedd3

ERC4626 Zappers

1
2

14 July
2025

0cba624ce59ebe335c7f5de31acdb
1422d90ea2f

Usphift adapters (open PR)

1
3

25 July
2025

883aad9cffe8ea77258f806b6ebbf3
4a013d9348

Release 3.1

Version 6For the solidity smart contracts, the compiler version 0.8.17 was chosen. After , the compiler
version was updated to 0.8.23.

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

The scope of this review is limited to the changes in the following files and folders compared to the last
commits of the Gearbox V2.1 report.

The previous commit for the integrations-v3 repository is
02f239fee250fb11b16a28974e71e73264de50b2.

The following contracts are in the scope of the review:

adapters:
 AbstractAdapter.sol
 aave:
 AaveV2_LendingPoolAdapter.sol
 AaveV2_WrappedATokenAdapter.sol
 balancer:
 BalancerV2VaultAdapter.sol
 compound:
 CompoundV2_CErc20Adapter.sol
 CompoundV2_CEtherAdapter.sol
 CompoundV2_CTokenAdapter.sol
 convex:
 ConvexV1_BaseRewardPool.sol
 ConvexV1_Booster.sol
 curve:
 CurveV1_2.sol
 CurveV1_3.sol
 CurveV1_4.sol
 CurveV1_Base.sol
 CurveV1_DepositZap.sol
 CurveV1_stETH.sol
 erc4626:
 ERC4626Adapter.sol
 lido:
 LidoV1.sol
 WstETHV1.sol
 uniswap:
 UniswapV2.sol
 UniswapV3.sol
 yearn:
 YearnV2.sol
helpers:
 aave:
 AaveV2_WrappedAToken.sol
 compound:
 CompoundV2_CEtherGateway.sol
 convex:
 ConvexV1_StakedPositionToken.sol
 curve:
 CurveV1_stETHGateway.sol
 lido:
 LidoV1_WETHGateway.sol
integrations:
 TokenType.sol
 aave:
 DataTypes.sol
 IAToken.sol
 ILendingPool.sol
 balancer:

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 6

https://www.chainsecurity.com/security-audit/gearbox-v2-1
https://chainsecurity.com

 IAsset.sol
 IBalancerQueries.sol
 IBalancerStablePool.sol
 IBalancerV2Vault.sol
 IBalancerWeightedPool.sol
 compound:
 ICErc20.sol
 ICEther.sol
 ICToken.sol
 convex:
 IBaseRewardPool.sol
 IBooster.sol
 IConvexToken.sol
 IRewards.sol
 Interfaces.sol
 curve:
 ICRVToken.sol
 ICurvePool.sol
 ICurvePoolStETH.sol
 ICurvePool_2.sol
 ICurvePool_3.sol
 ICurvePool_4.sol
 ICurveRegistry.sol
 lido:
 IstETH.sol
 IwstETH.sol
 uniswap:
 BytesLib.sol
 IQuoter.sol
 IUniswapV2Router01.sol
 IUniswapV2Router02.sol
 IUniswapV3.sol
 IUniswapV3SwapCallback.sol
 Path.sol
 yearn:
 IYVault.sol
interfaces:
 aave:
 IAaveV2_LendingPoolAdapter.sol
 IAaveV2_WrappedATokenAdapter.sol
 balancer:
 IBalancerV2VaultAdapter.sol
 compound:
 ICompoundV2_CTokenAdapter.sol
 convex:
 IConvexV1BaseRewardPoolAdapter.sol
 IConvexV1BoosterAdapter.sol
 curve:
 ICurveV1Adapter.sol
 ICurveV1_2AssetsAdapter.sol
 ICurveV1_3AssetsAdapter.sol
 ICurveV1_4AssetsAdapter.sol
 erc4626:
 IERC4626Adapter.sol
 lido:

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

 ILidoV1Adapter.sol
 IwstETHV1Adapter.sol
 uniswap:
 IUniswapV2Adapter.sol
 IUniswapV3Adapter.sol
 yearn:
 IYearnV2Adapter.sol
 zappers:
 IERC20ZapperDeposits.sol
 IETHZapperDeposits.sol
 IZapper.sol
zappers:
 DTokenDepositZapper.sol
 DTokenFarmingZapper.sol
 ERC20ZapperBase.sol
 ETHZapperBase.sol
 UnderlyingDepositZapper.sol
 UnderlyingFarmingZapper.sol
 WATokenDepositZapper.sol
 WATokenFarmingZapper.sol
 WETHDepositZapper.sol
 WETHFarmingZapper.sol
 WstETHDepositZapper.sol
 WstETHFarmingZapper.sol
 ZapperBase.sol
 traits:
 DTokenTrait.sol
 DepositTrait.sol
 FarmingTrait.sol
 UnderlyingTrait.sol
 WATokenTrait.sol
 WETHTrait.sol
 WstETHTrait.sol

Version 6After , the scope has been updated as follows:

• Deleted:

adapters:
 aave:
 AaveV2_LendingPoolAdapter.sol
 AaveV2_WrappedATokenAdapter.sol
 compound:
 CompoundV2_CErc20Adapter.sol
 CompoundV2_CEtherAdapter.sol
 CompoundV2_CTokenAdapter.sol
helpers:
 aave:
 AaveV2_WrappedAToken.sol
 compound:
 CompoundV2_CEtherGateway.sol
interfaces:
 aave:
 IAaveV2_LendingPoolAdapter.sol
 IAaveV2_WrappedATokenAdapter.sol
 compound:

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

 ICompoundV2_CTokenAdapter.sol
zappers:
 DTokenDepositZapper.sol
 DTokenFarmingZapper.sol
 WATokenDepositZapper.sol
 WATokenFarmingZapper.sol
 traits:
 DTokenTrait.sol
 WATokenTrait.sol

• Added:

adapters:
 zircuit:
 ZircuitPoolAdapter.sol
helpers:
 PhantomERC20.sol
 zircuit:
 ZircuitPhantomToken.sol
integrations:
 zircuit:
 IZircuitPool.sol
interfaces:
 IPhantomToken.sol
 IStateSerializer.sol
 zircuit:
 IZircuitPoolAdapter.sol

Version 7After , the scope has been updated as follows:

• Deleted:

interfaces:
 IPhantomToken.sol
 IStateSerializer.sol

For VERSION 10, only files that have already been inclded in scope in past versions were considered.
Moreover, the changes for CurveV1_StableNG.sol were also reviewed. However, the core
functionality of this contract has not been reviewed.

For VERSION 11, the following contracts were added:

adapters:
 upshift:
 UpshiftVaultAdapter.sol

helpers:
 upshift:
 UpshiftVaultGateway.sol
 UpshiftVaultWithdrawalPhantomToken.sol

zappers:
 ERC4626Zapper.sol
 StakedERC4626Zapper.sol

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

 traits:
 ERC4626Trait.sol
 StakedERC4626Trait.sol

2.1.1 Excluded from scope
Any contracts not explicitly listed above are out of the scope of this review. In particular, the following
adapters are out-of-scope:

adapters:
 camelot:
 CamelotV3Adapter.sol
 curve:
 CurveV1_StableNG.sol
 mellow:
 Mellow4626VaultAdapter.sol
 MellowVaultAdapter.sol
 pendle:
 PendleRouterAdapter.sol
 velodrome:
 VelodromeV2RouterAdapter.sol

Third-party libraries are out of the scope of this review. More specifically, the contracts with which these
adapters interact are assumed safe and to work as expected. Updates in the core protocol not covered
by the core V3 audit report are out of the scope of this review and the interactions with
integrations-v3 are assumed to work as expected.

3 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Gearbox Protocol integrations that facilitate the interaction of Gearbox with external protocols. These
integrations are refactored versions of the respective contracts used in previous versions of the protocol.
Furthermore, some Zapper contracts are introduced to aggregate common actions for users who want to
lend funds to Gearbox pools.

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 10

https://www.chainsecurity.com/security-audit/gearbox-v3-core
https://chainsecurity.com

3.1 Adapters
Adapters facilitate interaction with third-party protocols using the CreditAccounts's funds. All adapters
follow the same interaction paradigm, i.e., interactions with the Credit Account must be done through the
Credit Facade. Generally, adapters implement the very same function interfaces as the target contract.
Unsupported functions are no longer present. Some adapters implement variations of functions ending
with ..all(). These functions spend the whole balance the CreditAccount has of the spent token.
For Version 3 most adapters remain unchanged from previous versions with the main difference being
that they return the tokens to be enabled or disabled to their caller. The reader can refer to the report of
version 2.1. More specifically there are adapters for the following protocols: Yearn V2, Uniswap V2,
Uniswap V3, Balancer V2, Compound V2, Curve, Lido, Convex. Finally, a new generic adapter for
ERC4626 was added.

3.1.1 ERC4626
The interface supported by the adapter is the following:

• deposit(assets, receiver): deposits the amount of assets and enables the token that
represents the shares of the vault. The receiver is ignored as it's always the credit account. It
enables the shares token.

• depositAll(): deposits the whole balance of the underlying asset held by the credit account
and enables the token that represents the shares of the vault. It disables the underlying token
and enables the shares token.

• mint(shares, receiver): deposits the appropriate amount to mint a specified amount of
shares. The receiver is ignored as it's always the credit account. It enables the shares token.

• withdraw(assets, receiver, owner): redeems the appropriate amount of shares to
withdraw the amount of the underlying assets specified by assets. The rest of the variables are
ignored as they are always the credit account. It enables the underlying token.

• redeem(shares, receiver, owner): redeem shares amount of shares for some assets.
The rest of the variables are ignored as they are always the credit account. It enables the
underlying token.

• redeemAll(): It redeems the whole amount of shares held by the credit account. It disables
the shares token and enables the underlying token.

3.2 Zappers
All the currently available zappers implement a similar functionality and they share the same interface:

• deposit[WithReferral](): allows users to wrap their tokens and lend them using
optionally a referral to a Gearbox lending pool.

• redeem[WithPermit](): allows users to redeem their wrapped tokens from a pool and
immediately unwrap them. A user can redeem the tokens on behalf of another user through a
permission mechanism.

• previewDeposit(): a view function which returns the number of shares users will receive if
they deposit an amount of the underlying token.

• previewRedeem(): a view function that returns the amount of unwrapped tokens a user will
receive if they redeem an amount of shares of the pool.

More specifically:

• WATokenZapper: wraps ATokens to WATokens. For this, it interacts with the
AaveV2_WrappedToken contract.

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com/security-audit/gearbox-v2-1/
https://chainsecurity.com

• WstETHZapper: wraps stETH to WstETH.

• WETHZapper: wraps ETH to WETH.

3.3 Changes in Version 2
• The adapters have new functionality that allows callers to specify the leftover amount of a specific

token balance in the CreditAccount. These functions have the form <x>Diff.

• The architecture of the Zappers has been updated and allows more functionality than before. All the
zappers implement either ERC20ZapperBase or ETHZapperBase, which both inherit from
ZapperBase. The zappers are built on top of these with a combination of some of the following
traits:

• DepositTrait: implements functionality to deposit some token in a pool

• FarmingTrait: implements functionality to deposit pool LP tokens in a 1inch farming pool

• UnderlyingTrait: implements functionality to deal directly with the underlying token

• WATokenTrait: implements functionality to wrap/unwrap aToken/WAToken

• WETHTrait: implements functionality to wrap/unwrap ETH/WETH

• WstETHTrait: implements functionality to wrap/unwrap stETH/WstETH

The composition of the traits allows efficient wrap/unwrap/deposit/withdrawal from/to Gearbox liquidity
and 1inch farming pools in one transaction for liquidity providers. The available zappers are:

• Underlyling[Deposit|Farming]Zapper: allows users to add liquidity to a pool in one
transaction by depositing the underlying with a (signed) permit. If the farming version is used,
the LP token will be deposited in 1inch farming pool. Users can also redeem their shares in the
underlying token.

• WAToken[Deposit|Farming]Zapper: allows users to directly add liquidity to a pool using
their aTokens by wrapping them to waToken. If the farming version is used, the LP token will
be deposited in 1inch farming pool. Users can also redeem their shares in aToken.

• WETH[Deposit|Farming]Zapper: allows users to add liquidity in one transaction to a pool
with WETH as underlying by wrapping ETH to WETH. If the farming version is used, the LP token
will be deposited in 1inch farming pool. Users can also redeem their shares in ETH.

• WstETH[Deposit|Farming]Zapper: allows users to add liquidity to a pool with WstETH, by
converting stETH to WstETH for use within the pool. If the farming version is used, the LP token
will be deposited in 1inch farming pool. Users can also redeem their shares in stETH.

3.4 Changes in Version 3
The functions <x>All have been removed as the same result can easily be achieved with the <x>Diff
functions.

3.5 Changes in Version 4
A new zapper trait for pool LP tokens migration has been added:

• DTokenTrait: implements functionality to withdraw liquidity from an old pool

The new zappers are:

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

• DToken[Deposit|Farming]Zapper: allows users to migrate their liquidity from an old pool
used in previous versions of the protocol (V1, V2, V2.1) to a new one (used in V3). If the farming
version is used, the LP token will be deposited in 1inch farming pool. The zapper allows the
migration to happen only in one direction.

3.6 Changes in Version 6
• Version of the contracts was bumped from 3_00 to 3_10.

• The adapterType has been replaced by contractType.

• Instead of returning the tokens to enable/disable, adapters now return a boolean value that indicates
whether safe prices should be used in the collateral check.

• A new serialize() function was added, it returns the configuration of the adapter.

• The tokens used in the adapters are now only validated upon adapter deployment, addition of a
supported token, or tokens approval instead of validation for all the tokens involved at each
interaction.

• The adapters and zappers related to Compound and Aave have been removed.

• A new adapter for Zircuit has been added.

3.7 Changes in Version 7
• The zappers can now be used with tokens having DAI-like permit function signature, i.e. an
allowed flag giving infinite allowance instead of an amount. The following functions are now
available:

ZapperBase.redeemWithPermitAllowed()
ERC20ZapperBase.depositWithPermitAllowed()
ERC20ZapperBase.depositWithReferralAndPermitAllowed()

3.8 Changes in Version 8
• The zappers implement IVersion.

3.9 Changes in Version 11
• Two new zapper contracts were added: ERC4626Zapper and StakedERC4626Zapper. They let

users convert ERC-4626 vault positions straight into Gearbox pool deposits in a single on-chain call.
The ERC4626Zapper takes vault share tokens, redeems them for their underlying assets, and
immediately deposits those assets into the target pool, while the StakedERC4626Zapper first
withdraws staked shares from a 1inch farming pool before redeeming and depositing. Note that
zappers cannot be used for the reverse flow.

• The ERC4626Adapter now accepts an optional _gateway parameter. If non-zero, it acts as the
target contract and all calls will be forwarded to that gateway address instead of the vault itself,
enabling protocol-specific routing (e.g., for delayed-withdrawal workflows). To support this, a new
vault() getter was added alongside the existing targetContract() getter.

• An adapter for Upshift Vaults was introduced. It extends the ERC4626Adapter, making use of a
dedicated gateway. It exposes the standard ERC-4626 deposit and mint functions but reverts on all
withdrawal and redemption operations. To request a redemption, a user must call the
requestRedeem function. Their Upshift vault share tokens are transferred into the gateway and

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

replaced in the Credit Account by a withdrawal phantom token such that collateral value is preserved
even while the actual assets are time-locked. Once the required time has elapsed, invoking
claim(amount) or withdrawPhantomToken pulls the underlying assets back from the gateway
to the CA. Note that all phantom tokens are non-transferable. Therefore, various actions on the CA
might be non-applicable while holding the Upshift phantom token. In Version 11 we extend our trust
model by assuming that the Upshift gateway will not get blacklisted by the Upshift admins.
Moreover, we assume that the upshift vaults, being ERC4626 implementations, have mitigated
known relevant vulnerabilities such as inflation attacks.

3.10 Trust Model
The following role can be identified:

• Configurator: This is the most powerful role. The configurator contract is the timelock controlled by
the GovernorV3. It is fully trusted. It can configure most system parameters. This role should be
controlled by the Gearbox DAO. The configurator can be updated only by the configurator itself. The
initial configurator is the deployer of the contracts. The configurator is allowed to set the parameters
which are not set by the controller (see next). Setting parameters wrongly can lead to loss of funds.

For adapters indicating that safe prices don't have to be used, it is assumed that the associated oracle is
carefully chosen so that its price cannot be manipulated.

Gearbox Protocol is expected to keep track of any reward token added in the Convex reward pool and
take appropriate measures in case such tokens can be malicious.

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

4 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

5 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk AcceptedRisk of Failed Liquidation Due to Upshift Exit Delay

Low -Severity Findings 1

• Risk AcceptedUpshift Vault Insolvency Risk

6.1 Risk of Failed Liquidation Due to Upshift Exit
Delay
Design Medium Version 11 Risk Accepted

CS-GEARV3INTGRTNS-011

Upshift vault shares can only be redeemed with a delay. Let's assume an account that holds upshift vault
shares alongside some other volatile asset. The account can become liquidatable due to the price of the
volatile asset dropping. The exit delay seems to expose the system to the following risks:

1. Flashloan liquidation with illiquid Upshift vault shares:

A liquidator might try to liquidate the position via a flashloan. Since the vault imposes an exit delay,
even if a liquidator wanted to redeem those shares for underlying, they cannot do so within a single
liquidation transaction. Shares need to be sent to the gateway and await the epoch delay breaking
the liquidation flow. Therefore, the only option for the liquidator is to swap the shares in the
secondary market provided there's enough liquidity. If that's not the case, the liquidation cannot
proceed as the liquidator will make a loss.

Note that the liquidation can still proceed without a flashloan since the liquidator can withdraw the shares
and redeem them at a later time.

2. Liquidation after a redeem request

If requestRedeem() is already pending, the shares (now locked in the gateway) are non-transferrable
until the delay elapses and claim()/withdrawPhantomToken() can be called. This means that the
liquidator cannot even acquire the phantom token from the vault in exchange for providing the
collateral to reduce the debt of the account. This means that the liquidator has no incentive to
intervene as they'll make a loss. Note that during this lockup, further depreciation of remaining
collateral deepens the deficit, risking bad debt for the protocol.

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

In practice such cases have low likelihood to arise since the CMs often impose a limit of one colleteral or
only allow for collaterals that are correlated to the underlying.

Risk accepted:

Gearbox Protocol accepted the risk stating:

1. In case of active vault shares (i.e., not currently withdrawn), unless the vault experiences
catastrophic value loss, it's still probably lucrative for liquidators to buy upshfit shares in exchange
for underlying - they would be able to unstake and redeem them for 1:1 underlying after a time. This
would be equivalent to having liquidationPremium% yield over the unstaking period (which is 1
day). This requires a more sophisticated liquidator that has some funds of their own to cover the
immediate liquidation, but we believe that curators can probably arrange this. Worst case scenario,
the DAO can perform these kinds of liquidations from its insurance fund.

2. Regarding already pending withdrawals. We can just minimize the risk by pricing the withdrawn
collateral with a discount to ensure the user will not go red due to interest, and also have a separate
credit manager for the asset to avoid poisoning the credit account with other assets that can bring it
underwater.

6.2 Upshift Vault Insolvency Risk
Design Low Version 11 Risk Accepted

CS-GEARV3INTGRTNS-012

Upshift Vault’s withdrawal mechanism fixes the redemption rate at the moment when the
requestRedeem(shares) function is called. At that time, the vault calculates the share tokens' worth
in underlying assets and records that amount for the pending withdrawal. If, between requestRedeem
and a later call to claim(), the vault’s underlying asset amount decreases (from slashing events,
market depreciation, or protocol losses), and the total assets remaining may be insufficient to honor all
outstanding requests at their originally locked-in rates.

Once the Upshift vault fails to cover those fixed-price redemptions, any call to claim() (or
withdrawPhantomToken()) on the gateway will revert. In this scenario, phantom tokens become
unredeemable and unbacked, leaving Credit Accounts holding tokens that no longer represent any
recoverable assets. Note that the quota can be reset to zero, realising the losses.

Risk accepted:

Gearbox Protocol accepted the risk stating: "Unless the vault is hacked, its price is assumed to slowly
grow, so the only way an account holding it can become liquidatable is if growth rate is slower than
interest accrued for some time. To prevent this from ever happening, we set the special reserve price
feed which returns the vault price multiplied by some constant factor 1-eps which would guarantee that
account has enough funds to wait until withdrawal matures".

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Code CorrectedBack-running Redemption Approvals

• Code CorrectedFront-running the Redeem

Medium -Severity Findings 2

• Code CorrectedWrong Token Expected by Zircuit Adapter

• Code CorrectedReferrals for DAI-like Token Deposits With Permit Are Not Working

Low -Severity Findings 4

• Code CorrectedRedundant Events

• Specification ChangedWrong Natspec

• Code CorrectedNumber of Underlying Tokens in Metapools

• Code CorrectedWrappedAToken Does Not Implement Its Interface

Informational Findings 1

• Code CorrectedGas Optimizations

7.1 Back-running Redemption Approvals
Security High Version 2 Code Corrected

CS-GEARV3INTGRTNS-004

When redeeming assets a user calls redeem to the relevant zapper. They should give approval to the
zapper to be able to redeem the assets. An attacker who sees the approval can the front-run the actual
redemption redeem the assets of the user.

The issue was reported by the client during the review after an independent assessment of the
codebase.

Code corrected:

Only the msg.sender can use their approvals.

7.2 Front-running the Redeem
Security High Version 1 Code Corrected

CS-GEARV3INTGRTNS-006

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

When redeeming a token with permit, a user specifies the receiver of the redeemed assets and submits a
signature which is verified as follows:

try IERC20Permit(tokenOut()).permit(owner, address(this), tokenOutAmount, deadline, v, r, s) {} catch {} // U:[ZB-5]

Note that the signature verified is not connected to the msg.sender. Thus, an attacker who observes
the mempool can front-run and submit the same signature. Since the receiver is freely set, an attacker
can redeem the assets of a user.

The issue was reported by the client during the review after an independent assessment of the
codebase.

Code corrected:

In the current implementation, only a signature belonging to the msg.sender can be verified.

7.3 Wrong Token Expected by Zircuit Adapter
Correctness Medium Version 9 Code Corrected

CS-GEARV3INTGRTNS-010

When using _tryWithdrawPhantomToken(), the CreditFacadeV3 is specifying the phantom token,
but the Zircuit adapter is expecting the underlying token. This blocks partial liquidation and direct
collateral withdrawal of the phantom token.

Code corrected:

A reverse mapping from phantom token to underlying token has been added in the adapter.

This issue was reported by Gearbox Protocol and was out of the scope of this review. However, the fix
was reviewed against the core on commit a60af54be23d308b781bda784aa0c96273f6b5ef.

7.4 Referrals for DAI-like Token Deposits With
Permit Are Not Working
Correctness Medium Version 7 Code Corrected

CS-GEARV3INTGRTNS-001

The function ERC20ZapperBase.depositWithReferralAndPermitAllowed() accepts a referral
code, but the call to _deposit() set the withReferral flag to false, which will make the call ignore
the referral code.

Code corrected:

The withReferral flag in ERC20ZapperBase.depositWithReferralAndPermitAllowed() has
been set to true.

7.5 Redundant Events
Design Low Version 6 Code Corrected

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

CS-GEARV3INTGRTNS-007

In the functions ConvexV1BoosterAdapter.updateSupportedPids() and
ZircuitPoolAdapter.updateSupportedUnderlyings(), the events AddSupportedPid and
AddSupportedUnderlying can be emitted multiple times for the same pid or underlying every
time the functions are called when a new pool or underlying is supported.

Code corrected:

The events are now emitted only if the new pid or underlying is not already in the supported set.

7.6 Wrong Natspec
Correctness Low Version 6 Specification Changed

CS-GEARV3INTGRTNS-009

The Natspec of the serialize() function in the adapters mentions the adapter type and version, but
the implementation omits that data.

Specification changed:

The Natspec has been updated.

7.7 Number of Underlying Tokens in Metapools
Correctness Low Version 1 Code Corrected

CS-GEARV3INTGRTNS-008

The current implementation of CurveV1AdapterBase assumes the metapool to be a tricrypto pool, or
at least have 3 underlying tokens. If the metapool has less than 3 underlying tokens, then the constructor
will revert.

Code corrected:

The function _getCoin will not revert if CurvePool.coin() reverts.

7.8 WrappedAToken Does Not Implement Its
Interface
Design Low Version 1 Code Corrected

CS-GEARV3INTGRTNS-005

The interface IWAToken is defined in oracles-v3/contracts/interfaces/aave/IWAToken.sol
and used to interact with WrappedAToken, but WrappedAToken does not implement fully this interface.

Code corrected:

The WrappedAToken has been removed from the codebase.

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

7.9 Gas Optimizations
Informational Version 1 Code Corrected

CS-GEARV3INTGRTNS-003

1. In the constructor of CurveV1AdapterBase, when the underlying tokens are queried for lending
pools, the loop can break in the case !success as the calls to underlying_coins in following
iterations will fail as well.

Version 6

1. In ConvexV1_BaseRewardPool.withdrawDiffAndUnwrap(), the returned variable
enableSafePrices is initialized but never used.

2. The substraction in LidoV1.submitDiff() can be done in an unchecked block.

3. In ZircuitPoolAdapter.updateSupportedUnderlyings(), the check
_getMaskOrRevert(token) is redundant as token is taken from the collateral tokens of the
CreditManager.

Code corrected:

1. The loop now breaks the first time success is false.

Version 6

1. The variable has been removed.

2. The substraction is done in an unchecked block.

3. The checks _getMaskOrRevert() have been removed.

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

8 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

8.1 Old Floating Compiler Version
Informational Version 6 Acknowledged

CS-GEARV3INTGRTNS-002

Some files still have an old floating compiler version ^0.8.10 or ^0.8.17. Here is a non-exhaustive list:

IStateSerializer.sol
CurveV1_stETHGateway.sol
integrations/*.sol

Acknowledged:

Gearbox Protocol answered:

Gateways are already deployed and work fine, so we just don't update the code (that's also why they have old pragmas etc).

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

9 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

9.1 New Constraints on Uniswap Paths
Note Version 6

Version 6

Version 6

Before , intermediate tokens in the Uniswap paths only needed to be validated in the adapter,
they didn't have to be collateral tokens in the CreditManager. Starting , intermediate tokens
must also be collateral tokens in the CreditManager.

9.2 Partial Liquidations With Upshift Shares
Note Version 1

If an account becomes liquidatable, any liquidator can modify the holding of the account to make it
healthy. During this process, the liquidator can make requests on behalf of the credit account. Such a
request could be redemeption of the upshift shares. In such a case the owner of the CA will be forced to
wait for until they can get access to these assets even if the redemption action didn't actually contribute
to the liquidation of the account.

9.3 Phantom Token Withdrawal Does Not Claim
Rewards
Note Version 6

Users must be aware that when withdrawPhantomToken() is called on the
ConvexV1BaseRewardPoolAdapter, the rewards are not claimed. Rewards can be claimed with a call
to getReward() or any other withdraw function with the claim boolean flag set to true.

9.4 Zappers Do Not Support Tokens With Fees
Note Version 1

Even though the pools can handle tokens with fees (USDT for now), the zappers do not support tokens
with fees. If the fees on USDT were to be activated, the Underlying[Deposit|Farming]Zapper will
stop working and users will have to deposit and withdraw manually.

Gearbox Protocol - Gearbox V3.1 Integrations - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Adapters
	3.1.1 ERC4626

	3.2 Zappers
	3.3 Changes in Version 2
	3.4 Changes in Version 3
	3.5 Changes in Version 4
	3.6 Changes in Version 6
	3.7 Changes in Version 7
	3.8 Changes in Version 8
	3.9 Changes in Version 11
	3.10 Trust Model

	4 Limitations and use of report
	5 Terminology
	6 Open Findings
	6.1 Risk of Failed Liquidation Due to Upshift Exit Delay
	6.2 Upshift Vault Insolvency Risk

	7 Resolved Findings
	7.1 Back-running Redemption Approvals
	7.2 Front-running the Redeem
	7.3 Wrong Token Expected by Zircuit Adapter
	7.4 Referrals for DAI-like Token Deposits With Permit Are Not Working
	7.5 Redundant Events
	7.6 Wrong Natspec
	7.7 Number of Underlying Tokens in Metapools
	7.8 WrappedAToken Does Not Implement Its Interface
	7.9 Gas Optimizations

	8 Informational
	8.1 Old Floating Compiler Version

	9 Notes
	9.1 New Constraints on Uniswap Paths
	9.2 Partial Liquidations With Upshift Shares
	9.3 Phantom Token Withdrawal Does Not Claim Rewards
	9.4 Zappers Do Not Support Tokens With Fees

