

PUBLIC

Code Assessment

of the Boros Markets

Smart Contracts

08 August, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 14

4 Terminology 15

5 Open Findings 16

6 Resolved Findings 18

7 Informational 30

8 Notes 34

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Pendle team,

Thank you for trusting us to help Pendle with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Boros Markets according to
Scope to support you in forming an opinion on their security risks.

Pendle implements Pendle Boros, a marketplace for Interest Rate Swaps based on oracle-reported rates
and an on-chain orderbook, allowing cross-margined markets and leverage.

The most critical areas addressed in our audit are asset solvency, resistance to manipulation, and the
precision of arithmetic operations. Security regarding asset solvency is high. In the first version (out of 5
versions), an empty orderbook could lead to bad debt due to filling of orders at extreme prices, see High
Priced Buy Order on Empty Orderbook Can Generate Bad Debt. The margin system has been revamped
since version 2, fully resolving the issue by restricting the range in which orders can be created and
enabling the admin to purge orders that fall outside this range. Resistance to price manipulation is good
after the maximum allowable changes in the TWAP price have been lowered. TWAP instability could also
be a concern if the spread is high, though it can be mitigated by Pendle's intention of lowering the spread
and increasing the TWAP duration. Security regarding arithmetic operations is high. The rounding is
performed in favor of the system and calculations are done with high precision.

General topics covered include code complexity, documentation and decentralization. Security regarding
code complexity is good. The codebase is well-structured, though it makes extensive use of inline
assembly, which bypasses many built-in safety checks. Security regarding documentation is high, with
both a whitepaper and a specification available. Decentralization is improvable. Risk operations that are
required to maintain the economic security of the protocol, such as order cancellation, order purging, and
liquidations, are permissioned and can only be performed by whitelisted accounts. Users must trust the
admin to perform these obligations at all times for the protocol to remain solvent.

In summary, we find that the codebase provides a good level of security. However, the settlement
process, involving FTags, TickNonceData, MatchEvent, Quaternary Indexed Trees, and optimized
sorting (LibOrderIdSort), is exceptionally complex. While designed for efficiency, such complexity
significantly increases the surface area for subtle bugs related to state consistency, off-by-one errors, or
incorrect handling of edge cases. The margin logic is also mathematically complex, and incorrect
mathematical modeling of the system, which is out of scope of this review, might lead to insolvency of
certain users. The risks are mitigated by the upgradeable and pausable nature of the contracts. We
recommend that Pendle implements extensive monitoring of the protocol to swiftly react in case of
anomalies. The security of the system also vitally depends on the correct selection of market parameters,
such as TWAP time window, maximum rate deviation, margin factors, and more. It is the responsability of
Pendle to choose parameters that ensure the security of the system.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 2

• Code Corrected 2

Low -Severity Findings 10

• Code Corrected 7

• Specification Changed 1

• Risk Accepted 2

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Boros Markets repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 9 March 2025 d479e388725aeae4ce5334dc34e480d9b6b92681 Initial Version

2 29 May 2025 4f769483ded7dff9afd226bba9e0e171c8e95a26 Second version

3 12 June 2025 8f9855c22ae4a1c733de8756e7ab26f6c7c7b7d3 Third version

4 20 July 2025 e2aa73d0c4b8d427bed661ee0a747b1d8e11aa6c Fourth version

5 25 July 2025 a905b3788f13edba3bbdb7e49b5594ae51f28b31 Final version

For the solidity smart contracts, the compiler version 0.8.28 was chosen.

This review covers the smart contracts defined in the following files:

./contracts/core/market/MarketEntry.sol

./contracts/core/market/core/CoreOrderUtils.sol

./contracts/core/market/orderbook/OrderBookUtils.sol

./contracts/core/market/settle/PendingOIUtils.sol

./contracts/core/market/core/MarketInfoAndState.sol

./contracts/core/market/core/CoreStateUtils.sol

./contracts/core/market/margin/LiquidationViewUtils.sol

./contracts/core/market/margin/MarginViewUtils.sol

./contracts/core/market/settle/SweepProcessUtils.sol

./contracts/core/market/settle/ProcessUtils.sol

./contracts/core/market/MarketOffView.sol

./contracts/core/market/MarketOrderAndOtc.sol

./contracts/core/market/MarketSetAndView.sol

./contracts/core/market/findexOracle/FIndexOracle.sol

./contracts/core/market/findexOracle/SampleFundingRateUpkeep.sol

./contracts/core/market/settle/LibOrderIdSort.sol

./contracts/core/market/orderbook/TickBitmap.sol

./contracts/core/market/orderbook/Tick.sol

./contracts/core/markethub/MarketHub.sol

./contracts/core/markethub/Storage.sol

./contracts/core/markethub/MarginManager.sol

./contracts/lib/Errors.sol

./contracts/lib/math/TickMath.sol

./contracts/lib/math/PMath.sol

./contracts/lib/FixedWindowObservationLib.sol

./contracts/lib/ArrayLib.sol

./contracts/lib/PaymentLib.sol

./contracts/types/Order.sol

./contracts/types/createCompute.sol

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 5

https://github.com/pendle-finance/pendle-core-v3/tree/d479e388725aeae4ce5334dc34e480d9b6b92681
https://github.com/pendle-finance/pendle-core-v3/tree/4f769483ded7dff9afd226bba9e0e171c8e95a26
https://github.com/pendle-finance/pendle-core-v3/tree/8f9855c22ae4a1c733de8756e7ab26f6c7c7b7d3
https://github.com/pendle-finance/pendle-core-v3/tree/e2aa73d0c4b8d427bed661ee0a747b1d8e11aa6c
https://github.com/pendle-finance/pendle-core-v3/tree/a905b3788f13edba3bbdb7e49b5594ae51f28b31
https://chainsecurity.com

./contracts/types/Account.sol

./contracts/types/MarketTypes.sol

./contracts/types/RecentTradeRateLib.sol

./contracts/types/MarketImpliedRate.sol

./contracts/types/TransientOrderIdMapping.sol

./contracts/types/StoredOrderIdArr.sol

./contracts/types/Trade.sol

./contracts/factory/MarketFactory.sol

Version 2In the following contracts were included in scope:

./contracts/core/market/MarketRiskManagement.sol

./contracts/core/market/core/RateUtils.sol

./contracts/core/markethub/MarketHubEntry.sol

./contracts/core/markethub/MarketHubRiskManagement.sol

The following contracts were removed from the scope:

./contracts/core/markethub/MarketHub.sol

./contracts/core/market/findexOracle/SampleFundingRateUpkeep.sol

./contracts/types/RecentTradeRateLib.sol

Version 4In the following contracts were included in scope:

./contracts/core/markethub/MarketHubSetAndView.sol

2.1.1 Excluded from scope
The economic soundness of the system and the mathematical proof of the security of the specification
are explicitly out of scope for this review. The assessment focused on reviewing that Boros Markets
implements the financial formulas as specified in the Boros whitepaper.

Furthermore any contracts not explicitly listed in the scope, including third-party libraries, are excluded
from this review.

2.2 System Overview
Version 4This system overview describes of the contracts as defined in the Assessment Overview.

At the end of this report section, we have added subsections for each of the changes according to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Pendle offers Boros, a marketplace for interest rate swaps using an on-chain order book.

Interest rate swaps are financial derivatives where two parties agree to exchange a fixed-interest income
stream against a variable-interest stream. Parties agree on a notional amount, a maturity date, and a
reference rate: a variable interest rate that is the object of the swap. The fixed-rate payer knows up front
what they owe; the variable-rate payer pays based on the accrued variable rate. In Boros, the fixed
interest is paid up-front, and the variable leg is paid at specified intervals. Multiple markets can exist for
different reference rates, maturities, and notional currencies like ETH or USD.

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Boros offers:

1. A public on-chain order book so a user (order taker) can swap with many parties at once (order
makers).

2. An OTC channel, so two parties can enter a swap at a chosen fixed rate and size.

3. An AMM that provides liquidity to swap without active participation from liquidity providers.

Boros handles solvency by ensuring both counterparties hold enough collateral to cover their floating-rate
obligations, and to cover liquidations in case of potential insolvency. Boros also aggregates order-book
swaps into a Time-Weighted Average Price (TWAP) to produce a "mark rate", which is used to price
positions for margin checks, liquidations, deleverages and purging.

From a user's perspective, their counterparty is the whole system (regardless if the positions are created
through OTC, AMM, or order book). The system is solvent because it is backed by users with opposite
positions. A user can take a LONG exposure (buying variable, pay fixed up front) or SHORT exposure
(selling variable - receive fixed up front). If rates go negative, shorts receive variable payments and longs
pay.

For each market, a user has a signed "size" (notional) of long (if size positive) or short (if size negative).
The user also has a cash balance that can be for a specific market (isolated account) or shared between
markets with the same notional currency (cross-margined account). The value of a user's positions plus
cash must always be non-negative, otherwise the user is insolvent and cannot fullfil their obligations. In
general, the system requires the value of a user positions and cash to be above a certain threshold. This
is the margin check that keeps the system solvent.

Payments are made to or from a user's balance on a fixed time period, the payment amount is
determined by the accrual of the variable interest since last update, which is reported on-chain via an
oracle. Every period a fee (proportional to absolute size) goes to the protocol.

2.2.1 MarketHub
The MarketHub contract keeps track of users. Users are identified by MarketAccounts. A MarketAccount
is made of:

• the users EVM address

• subaccount number (every user has up to 256 subaccount)

• the tokenId that this MarketAccount uses: every notional currency has a specific ID inside Boros.
A given MarketAccount can only interact with Markets for its specific currency.

• The marketId of the market that this accounts operates, on, or CROSS, if this account is a
cross-margined account that operates on multiple markets simultaneously.

The MarketHub keeps track of the cash balance of accounts, and the markets that they have entered. An
account can enter a single market, if it is isolated, or multiple markets, if it is CROSS. Every Market
represents a different interest rate swap type: different markets have different reference rates, maturity
dates, parameters. But every market entered by a given account shares the same notional currency
(tokenId).

It is the role of MarketHub to also check that accounts fulfill the margin requirements.

2.2.1.1 Margin Requirements
There are two types of margin requirements in Boros: the Initial Margin requirement, and the
Maintenance Margin requirement.

Their fulfillment is formulated as satisfying the following inequality:

TOTAL_VALUE > = TOTAL_MARGIN

Where total value of an account is:

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

TOTAL_VALUE : = C + ∑
i ∈ M

Vi

where is the cash amount of the account, and is shared by all markets that the account has entered,
and is the value of the position of the account in market .

The current value of a position is estimated (the future payout is still uncertain) as:

Vi = siriTi

, where is the size, which can be positive or negative, is the mark rate APR of the Market, which is
reported by an external oracle or derived from the recent trades in the order book, and is the time to
maturity in years.

Version 2In of the protocol, the calculation of margin requirements has undergone significant changes.
The initial margin represents the amount of collateral required whenever a user's position is increased or
its direction changed. It is determined by aggregating the margin requirements for the user's current
position and their open orders:

INITIAL_MARGIN : = max(MARGINorderslong ∓ MARGINsize, MARGINordersshort ∓ MARGINsize)

The margin requirements of all long orders are summed and aded to the margin requirements of the
current position if the position is long (or subtracted if it is short). Similarly, for short orders, the margin
requirements are summed, and the margin requirements of the current position are added if it is short (or
subtracted if it is long). The initial margin requirements are then the maximum of both. Hence, for a user
with a long position and open long orders the formula becomes:

INITIAL_MARGIN : = ∑
i ∈ M

∑
oi ∈ O

KIM|so| ̂ri, o ̂Ti + KIM|si| ̂ri ̂Ti

Here is the initial margin factor, is the current position size, and is the margin index rate, which is
the maximum of a minimum lower bound and the mark rate. This ensures that the margin does not
become too small near zero interest rates: . Likewise, is the time to maturity, which
is lower-bounded by a minimum time-to-maturity to prevent margin requirements from becoming
excessively low as the position approaches maturity.

For the open orders, the size of the order is denoted as , and the rate is calculated as
, where is the fixed interest rate of the order at its tick. The time to maturity for

orders is also lower-bounded by a minimum time-to-maturity, which is denoted as .

The maintenance margin is the amount of collateral required to keep a position healthy and is used to
determine whether a position can be liquidated. The MAINTENANCE_MARGIN is calculated as follows:

MAINTENANCE_MARGIN : = ∑
i ∈ M

KMM|si| ̂ri ̂Ti

Here is the maintenance margin factor (), is the position size in the market, is the
maximum of a minimum lower bound and the absolute mark rate and is the lower bounded time to
maturity.

In cases where , , and , an alternative formula is used to ensure that positions
are not liquidated due to the mark rate increasing close to maturity:

MAINTENANCE_MARGIN : = ∑
i ∈ M

KMM|si|(|ri|Ti + ̂ri(TminKMM − Ti))

The Initial Margin requirement must be satisfied whenever a user's position is modified. A weak margin
check exists that allows reducing the absolute size of a user's position in one market even when they
would not fullfill the initial margin check and without recalculating the margin across all positions. For this,
the ratio of value to margin must not decrease with the position change. This enables a user to
deleverage even if they no longer satisfy the initial margin check:

Δvalue ≤ ΔMM ⋅ hcrit

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

Here is the critical health ratio, a risk parameter of the system that is below 100%.

If the Maintenance Margin requirement is at any moment violated, the user can be liquidated, and their
risky position is sold at a discount to another user. If the total value of the violator is negative, it is too late,
and the system is temporarily insolvent. The bad debt can be repaired by governance through the use of
the forceDeleverage(), which allows to transfer a position to another to cover the bad debt.

Leveraged positions can be taken with values of below 1. In general the margin factors are expected
to be well below one, when the liquidity is sufficient for swift liquidations.

2.2.1.2 Liquidations
When the maintenance margin is no longer satisfied for a user, either because the mark rate has
decreased or because cash has decreased to pay for periodical fees, the user becomes liquidatable. A
liquidation can only be performed by an authorized address and consists of acquiring the user's size on a
given market, priced at a value between the current mark rate. If the violator (the users being liquidated)
is short, the liquidator receives the value of the position in cash, and takes over the position. If the violator
is long, the liquidator pays for the long at current mark rate and receives the positive size. A liquidation
incentive is added to the cash received to liquidate shorts, or subtracted from the cost paid to liquidate
longs. The liquidation incentive is a fraction of the cost and is a function of the health of the violator,
which is defined as TOTAL_VALUE over TOTAL_MARGIN. The incentive is always such that liquidations
never worsen the health of a position, meaning that liquidation cannot create bad debt. If TOTAL_VALUE
is already below 0, meaning health is negative, bad debt is already created and liquidations are no longer
possible. The insolvency must be addressed by governance through the forceDeleverage() function.

Forced deleveraging is a function available to governance that allows transferring a position (size)
between two accounts, at a rate between the current mark rate and the bankruptcy rate: size is
subtracted from one account and added to the other, while size * r * T (cost) is added to one and
subtracted to the other.

The MarketHub coordinates the margin checks, and holds the cash balance of accounts in its storage.
However, the position sizes for each of the markets are held in the markets themselves, and accounts'
positions in markets could have accrued interest payments that are not yet accounted in the MarketHub.
The role of accounting the payments to be sent or received because of user positions is delegated to the
markets themselves. A user needs to be settled in a market to synchronize its state with the MarketHub,
such that margin requirements can be properly checked.

2.2.2 Markets
For every token, multiple markets can exist, each one with a given maturity and reference rate. Each
market keeps track of user positions and each market maintains an orderbook exchange where orders
are matched.

The state of a user in the market consists of its size, a list with its orders in the orderbook, that could be
either open or filled, and the FIndex of the user. The FIndex is the mechanism that the Market uses to
keep track of the payments that need to be sent or received from users because of the accrual of variable
interest.

A FIndex is made of:

• The time at which the index update takes place (FTime)

• the new variable rate index (floatingIndex)

• the new fee index (feeIndex)

The market stores the FIndex of when each user has been last been brought up to date with the market.
Markets have an update period, for example 8 hours, at which a new FIndex is published. A new FIndex
allows computing the payment to be received or taken from each users for their position. The payment
amount owed to/from a user is:

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

payment = (market.latestIndex.floatingIndex() - user.index.floatingIndex()) * user.signedSize / 10**18

A fee is also computed, and it is then transferred to Pendle treasury:

fee = (market.latestIndex.feeIndex() - user.index.feeIndex()) * user.signedSize.abs() / 10**18

As we said, the FIndex is updated periodically based on an external oracle. Users positions are updated
based on the new FIndex lazily, only when requested through the MarketHub. A user position can skip
any amount of FIndex updates before being synchronized, the end state being the same with frequent or
infrequent synchronizations.

This view of the user update is however incomplete, as it does not account for existing orders of the user
in the orderbook, that might have filled in the past but are not accounted in the user's size yet. The full
process to synchronize a user is called settling

2.2.2.1 Settling an account
Several index updates can occur before the state of a user is synchronized between the MarketHub and
the Market. Updates of the Market FIndex happen on a regular schedule, when variable interest updates
are relayed on-chain after the scheduled update time has passed. When the FIndex is updated however
users are not touched directly, they need to independently be settled to compute how much they need to
pay, or they receive, from the latest variable rate accrual. Anybody can trigger the settlement, so in
practice the changes of user balance following a rate update, and their effect on liquidations, are
immediate.

The user size tells us how much variable interest the user should have received, between the last time
they were settled and the new index. However, the user size can also have changed multiple times since
the latest settlement of the user, because of filled orders. When orders are filled on the Order Book, they
are not immediately added to the order maker's balance, because the system is designed to be able to fill
many orders with a single match. The orders are marked as filled in a gas efficient way, and their time is
also recorded, and they are added to the size balance of their creator only when the order maker is
settled.

Settling a user happens in three steps:

1. Sweeping

The list of orders of a user, which is stored in the Market storage and contains open and filled orders, is
traversed. Orders are added to this list when they are opened, but when they get filled, they are only
marked as filled indirectly in the orderbook. So the list of orders is traversed, and the orders that have
been filled are collected.

2. Processing

The filled orders are processed by finding at which FTime they were filled, then orders with the same
FTimes are aggregated. The result is a list of sizes, costs at a set of sorted times. Cost is the annualized
fixed interest received/payed for a given order.

For each FTime, the FIndex value at that time is retrieved, and the user's payments and fees are
computed until that FTime. The annualized costs for the filled orders realized at that FTime are converted
to cash payments, with a value that depends on the FTime. The change of size is applied to the user.
After all the FTimes at which orders were filled have been processed, the user's index is the same as the
Market index, and the total payments and fees of this settlement have been computed.

3. Synchronizing the MarketHub

The payments and the fees of the user are applied to the cash balance of the user in the MarketHub.

Step 1. uses an optimized algorithm to perform the sweeping in a sublinear amount of storage accesses,
by exploiting the fact that orders are identified by OrderIds, which encode price and priority at a given
price in it, such that they have an ordering such that if there are OrderIds A and B, with A < B and B has
been filled, then A has also been filled. This allows sorting the orders by OrderId, and performing a binary

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

search to find the last order that has been filled. (in practice the algorithm is slightly more efficient, by
doing a partition search).

2.2.2.2 OTCs and Orderbook
Positions in a Market can be opened OTC (Over the Counter): where two parties enter a swap with an
arbitrary size (positive for one side and negative for the other), and cost (likewise).

Positions can otherwise be acquired through the Orderbook of the market:

Counterparties offer to sell or buy positions on the Orderbook, and order takers can match against those
open orders. There are two sides: the short orderbook, with people selling variable interest, and the long
orderbook (people buying variable interest). Orders have size and fixed rate, and are identified by an
OrderId which includes the side (long or short), the fixed rate (tick), and the position of the order in that
tick by priority (older orders are matched first).

Fixed rate is encoded as ticks corresponding to a half basis point increase on the previous tick, such that
the APR for a given positive tick i is . Negative ticks encode negative APRs:

.

On the order book, counterparties post maker orders to buy or sell floating at a given size and fixed rate
(“tick”). Takers match against maker orders:

Orders from order makers are aggregated by ticks, with tick being the smallest price granularity. Order
takers match against multiple orders at once in a tick, with older orders being matched first.

From the taker perspective, an order is sent to buy (or sell) a certain amount of size, at a limit fixed rate
(tick) that the taker is willing to pay (or receive). A long taker order will be matched against the short
orderbook, and viceversa for short taker order. For long orders, matches are searched starting at the
lowest tick that has open orders, and then iterating through growing ticks until either the taker order is
fully filled, the limit tick is reached, or the order book is emptied.

Within each tick: If taker size is bigger than the total tick size, the entire tick is consumed. Otherwise the
tick is partially matched.

Partially matching a tick is an algorithmically optimized process, since potentially a big number of open
orders are present in a tick. Traversing the list of open orders would be prohibitively expensive on-chain,
since each order would have to be read from storage, which is expensive. Orders are therefore organized
in a tree structure, called Fennwick-tree, that allows efficient computation of prefix-sums. Prefix-sums are
pertinent because they allow to efficiently find the range of orders in a tick that fully matches the taker
order. Fennwick trees, beside efficient prefix-sum computation, allow for efficient cancelling of existing
orders.

The specific Fennwick tree used is a zero indexed quad-tree with 9 layers. Each tree contains as such up
to 4**9 = 262144 orders. Orders are added sequentially to trees, and as a tree becomes full, a
neighboring tree is created.

The specifics of the Fennwick tree allows matching any number of orders in a tree with at most 9 storage
accesses.

Version 2When orders are filled, the current FTime (FTag in) is stored for retrieval in a dedicated
structure in the tick, that allows storing the match times for any number of orders matched at once with a
single storage write, and allows retrieving the match time of a specific order in a number of storage reads
at most logarithmic to the number of periods in the market. This information is required when settling a
user.

When an open order is only partially matched by a taker, extra care needs to be used since the order
stays open, and will be filled completely only later: its fill time will not be tracked according to the usual
mechanism, and its size is decreased in the orderbook. The fill time, size, and cost are tracked through a
storage slot belonging to the Order maker, dedicated to partial fills information. If the slot is free, or it is
occupied by a partial fill that happened during this same epoch, the partial fill can be added to the slot.
The value in the slot will be, together with filled orders, accounted to the next time the maker is settled.
However, if the slot is already occupied with a partial fill from a previous epoch, the partial maker needs

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

to be settled immediately, including this partial fill, since otherwise there would be no way to keep track of
this partial fill. This means that matching an order on the order book can trigger the settlement of another
user, the maker of the last partially filled order. Since every match partially fills at most 1 order, at most
one other user is settled when matching against the order book, which is important for gas concerns,
since settling users is gas intensive, and matching on the order book should be inexpensive.

2.2.2.3 Adding order on the orderbook
If the taker order is not completely filled, either because the limit tick is reached or because the order
book is empty, the remaining order size is placed on the orderbook, where a new maker order is created,
depending on the Time in Force of the user's order. The Time in Force is one of:

• GTC - will fill orders and add remaining order sizes to the orderbook.

• IOC - will fill orders and not add remaining order sizes to the orderbook.

• FOK - will fill orders and revert if not all orders are filled.

• ALO - will revert if orders get filled, else add orders to the orderbook.

• SOFT_ALO - will drop orders that could get filled and add remaining orders to the orderbook.

Users can have at most maxOpenOrders open at once. This limit is required to limit the possibly
unbounded gas consumption of sweeping. Orders have some restrictions where they can be placed. In
particular long orders can not be placed too high above the mark price and short orders too low below the
mark price

2.2.2.4 Cancelling orders
Users can cancel their orders. A flag, isStrictCancel is joined to the cancel request, which consists
of a list of orders to remove. If any order to be removed is not found (because it has been filled or already
cancelled), and isStrictCancel is set, the cancelling reverts.

An authorized address can also forceCancel() user orders, meaning they are cancelled without their
action, in case orders would be deemed risky.

An authorized address can also cancel multiple orders of a user whose health is below the critical health
ratio.

An admin can purge orders that are significantly above the mark price (or below the mark price for short
orders). This functions similarly to matching on the orderbook, except a special FTag is recorded in the
match to signal that the orders are not filled but cancelled.

2.3 Trust Model
The master admin (i.e. DEFAULT_ADMIN_ROLE) is fully trusted. They can upgrade the MarketHub
contract, register new markets and tokens or withdraw funds from the treasury. Furthermore they can
pause the protocol and pause individual withdrawals. They are trusted to give special admin rights to a
small set of addresses and revoke them in case the addresses get compromised.

Any user holding the DIRECT_MARKET_HUB_ROLE are fully trusted. They can operate on arbitrary
accounts.

The INITIALIZER_ROLE is trusted to correctly initialize all contracts.

The keeper is fully trusted to update the market's FIndex accurately.

Any token that has other non-standard behavior like callbacks on receive, rebasing or has fees on
transfer is not supported by the protocol.

Tokens with exceedingly low unit value, below $ per token, are not supported. These tokens allow
creating positions whose size overflows the int128 type used for sizes.

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

The protocol is expected to get deployed to Arbitrum or Base chain. The L2 sequencer is trusted to
process transactions in the order received.

2.4 Changelog
Version 4:

• Added new order type (Soft) Add Liquidity Only (SOFT_ALO).

• Allow only whitelisted accounts to liquidate or force cancel.

Version 2:

• Replaced the DELEVERAGER_ROLE by role-based admin permissions stored in an
PERM_CONTROLLER and the FINDEX_ORACLE_UPDATER_ROLE by a keeper address. Added the
option to have more fine-grained access-control for each admin function.

• Limit orders Initial Margin is now calculated using the tick price instead of the Mark Rate.

• Added alternate Maintenance Margin formula to use near maturity to prevent unfair liquidations
when Mark Rate increases.

• Allow admin to deleverage users at the bankruptcy rate to cover bad debt.

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Risk AcceptedTWAP Instability Due to Bid-Ask Spread

• Risk AcceptedreplaceWindow() Makes the Mark Rate Oracle Value Jump

5.1 TWAP Instability Due to Bid-Ask Spread
Design Low Version 1 Risk Accepted

CS-BOROS-MKT-024

The mark price is calculated as the time-weighted average price (TWAP) of the most recent matched
trades within a block, unless an external oracle is configured. In the orderbook, long and short orders
cannot cross, so the highest bid and lowest ask are always separated by at least one tick (also called
bid–ask spread).

This means that even small trades can influence the TWAP due to their direction alone. For example, if
the last trade is a short, the TWAP will be slightly lower than if it was a long, since there is a spread
between the best bid and best ask.

An adversary can exploit this by spamming the blockchain with tiny trades in the desired direction. For
instance, to push the TWAP upwards, they can repeatedly submit small long trades that match against
the short side of the orderbook. Even if a large short trade just matched with the long orderbook, enough
small long trades will ensure the last matched rate is from the short orderbook.

If the spread is larger, the mark price can be moved by a greater amount. This creates an incentive for an
adversary to manipulate the mark price and trigger liquidations of risky positions. For example, they can
spam small trades in each block to move the mark price and then check in the next block if the price has
moved enough to liquidate a position before anyone else can react.

Risk accepted:

Pendle answered:

We understand the implication of price manipulation within the bid-ask spread related to TWAP
instability. We accept this risk and will actively counter this problem by using internal bots (do
minimal trade as well) as well as setting up smaller spread. The mark rate TWAP is also set to be
significantly longer (5 min at the start), which largely mitigate the issue. As Boros grows in adoption

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

and when we decide to significantly shorten the twap, we will keep iterating on the definition of the
Mark rate in future upgrades.

5.2 replaceWindow() Makes the Mark Rate
Oracle Value Jump
Design Low Version 1 Risk Accepted

CS-BOROS-MKT-012

The market administrator calling replaceWindow() causes the mark rate returned by
impliedRate.getCurrentRate() to suddenly change. If the administrator sets a shorter window, the
value will jump towards lastTradedRate, while if a longer window is set, the value will jump towards
prevOracleRate. This potentially causes healthy positions to suddenly become liquidatable because of
admin action and makes it profitable to back-run the call of replaceWindow() with liquidations.

This can be avoided by snapshotting the implied rate before the parameter change.

Risk accepted:

Pendle has accepted the risk, but has decided to keep the code unchanged. They expect the window
size to only change in exceptional cases.

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedHigh Priced Buy Order on Empty Orderbook Can Generate Bad Debt

High -Severity Findings 1

• Code CorrectedWeak Margin Check Allows Creating Bad Debt

Medium -Severity Findings 2

• Code CorrectedTWAP Manipulation by Orderbook Clearing

• Code CorrectedUnsafe Use of Narrow Type in Inline Assembly

Low -Severity Findings 8

• Code CorrectedForce Cancel Risky Users Can Be Blocked

• Code CorrectedFee Can Make Liquidations Unprofitable

• Code CorrectedMain Account Has Priority When Increasing Collateral

• Code CorrectedMargin Rounding Allows Exiting With Open Positions

• Code CorrectedNo Minimum Position Size Requirement

• Code CorrectedPREVRANDAO Opcode Behavior on L2 Chains

• Specification ChangedforceDeleverage() Does Not Follow Specification

• Code CorrectedsignedSize Internal Method Returns Incorrect Result

Informational Findings 5

• Code CorrectedFinalize Withdrawal Violates CEI Pattern

• Code CorrectedInconsistent Specification

• Code CorrectedMisnamed Variables and Functions

• Specification Changed_getRateAtTick Does Not Function Over Its Whole Domain

• Code CorrectedcoverLength of Maximum Index Node Is Incorrect

6.1 High Priced Buy Order on Empty Orderbook
Can Generate Bad Debt
Design Critical Version 1 Code Corrected

CS-BOROS-MKT-001

With an empty orderbook, highly priced buy orders can be created with little collateral such that when
they are filled the order maker is immediately insolvent and the system incurs a loss.

The margin required to open a buy order of size is , where is the margin factor, inverse of
max initial leverage, is the annualized time to maturity, is the mark interest rate (APR). In a new

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

iteration of the code, the mark rate in the margin computation is substituted with , the fixed rate of the
order. When creating a long order, this margin is required such that the filling of the order will not bring
the account above the maximum initial leverage. This does not work; in case we can create a long order
at an arbitrary high price (empty orderbook on the short side).

Let us assume that attacker A place an order to buy size at fixed rate , and that current time to maturity
is 1 (for simplicity). The attacker is required to cover the open order with an initial margin (IM) of
(see below for version with margin rate given by fixed rate of the order). If the order is filled, the system
pays to the counterparty , and A gets a position with value (assuming mark rate is the market
price).

For the market to be solvent, the margin plus the value A receives must be bigger than the value the
counterparty receives:

IM + get ≥ pay ⇔ KIMSr + Sr ≥ Sf ⇔ Sr(1 + KIM) ≥ Sf

or equivalently needs to satisfy in order for the amount paid out by the buy order to not
exceed the value received plus the initial margin.

If the initial margin for the order is , the requirement becomes

IM + get ≥ pay ⇔ KIMSf + Sr ≥ Sf

or equivalently .

In both cases, if the f of the order (the fixed rate of the order) exceeds the that limit, the market will
immediately be insolvent as the order is filled, at the profit of the counterparty. The attacker can self-fill
from another account, such that they extract the profit.

For this attack to be possible it is required to place a LONG order at a high rate (or a SHORT order at a
low negative rate). This would normally match against the existing SHORT (or LONG) orders in the order
book. Clearing the orderbook beforehand is therefore required. The cost of clearing the orderbook can be
however recovered by the attacker than can extract unlimited value from the market by repeating this
strategy.

The following is a numerical example with concrete values:

current mark rate 10%
user A has 100 cash, no positions
IMFactor = 0.1
time to maturity = 1y

With empty order book, A places a LONG order of size 10 at 10'000% ->
IM = 10 (size) * 10'000% (fixed rate) * 1 (time to maturity) * 0.1 (IMFactor) = 100
cash >= IM, so they can place the order.

Order is immediately filled by user B:
B gets 10 * 10'000% = 1000 cash upfront.
The SHORT position they now hold is worth -10 (size) * 10% (markRate) = -1,
so they can withdraw most of the cash.

B withdraws ~1000, of which only 100 is backed by A.
A is immediately deeply unhealthy (cash = -900, position value = 1).

Code corrected:

The code went through 5 versions, and this issue is already fully resolved after the margin system was
revamped in version 2:

Version 2 introduced price limits to prevent orders from being placed at arbitrarily high or low rates. For
long orders, the price limits are defined as when the mark price is below the threshold ,

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

and when the mark price is above the threshold. The constant and slope are configurable
parameters that can be changed by the admin.

function __calcRateBoundPositive(int256 rMark, uint256 k_iThresh, Side side) private view returns (int256) {
 if (rMark >= int256(k_iThresh)) {
 int16 slope = side == Side.LONG ? _ctx().loUpperSlopeBase1e4 : _ctx().loLowerSlopeBase1e4;
 return mulBase1e4(rMark, slope);
 } else {
 int16 constBase1e4 = side == Side.LONG ? _ctx().loUpperConstBase1e4 : _ctx().loLowerConstBase1e4;
 return addBase1e18And1e4(rMark, constBase1e4);
 }
}

Additionally, function MarketRiskManagement.forcePurgeOobOrders() has been added for an
admin to purge all existing orders that have become out of the bounds as the mark price changed.

Similar limits have also been introduced for the lowest rate at which short orders can be placed.

Version 2 also introduced a withdrawal cooldown feature which prevents any attacker from immediately
withdrawing from the system, rendering this attack or any other "in-a-block" attacks infeasible.

6.2 Weak Margin Check Allows Creating Bad Debt
Design High Version 1 Code Corrected

CS-BOROS-MKT-002

When a user changes their position in a market, the system checks if the new position is within the initial
margin limits. For this, the MarginManager first performs a "weak check" that considers only the values
of the position on this market. Only if the weak check fails, the system performs a "strong check," that
takes the positions on all markets into account. To fulfill the "weak check", the position must fulfill two
conditions. First, the margin requirements of the user must not increase as a result of their action.
Second, the difference of the user's position value and cash, minus the initial margin requirements, must
not decrease.

function _isEnoughIMWeak(
 VMResult preIM,
 int256 preCash,
 VMResult postIM,
 int256 postCash
) internal pure returns (bool) {
 (int256 postValue, uint256 postMargin) = postIM.unpack();
 (int256 preValue, uint256 preMargin) = preIM.unpack();

 if (postMargin > preMargin) return false;
 return (preValue + preCash - preMargin.Int()) <= (postValue + postCash - postMargin.Int());
}

It can be shown that if the user's position value and cash are above the initial margin requirements,
before the user's action, the weak check ensures that the position's health increases as result of the
action. However, if a user's position is below the initial margin requirements before, the check can be
abused to create bad debt. Note that the initial requirements are stricter than the maintenance
requirements. So, as long as the user stays above the maintenance margin requirements they cannot get
liquidated.

A strategy of an attacker to exploit this behavior is to create a position at the initial margin and then wait
for a mark price update that moves against the user. As their value decreases the sum of position value
and cash decrease below the initial margin requirements. Denote D as the amount by which the user is
below the initial margin requirements:

D = preValue + preCash − preMargin < 0
An attacker can then trade with another user to close their position. As seen in function
_isEnoughIMWeak, if postMargin and postValue are zero, the check would a trade that ends up with a

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

negative cash amount postCash = -D. The negative cash amount can be considered as the bad debt to
the system as the attacker has no incentive to pay it back. Note that the counterparty in this trade can
also be controlled by the attacker, so the bad debt directly benefits the attacker. An OTC trade is the
simplest way to execute this strategy, as the user can set arbitrary values for the trade. However, the
attacker could alternatively make repeated "bad trades" with their controlled counterparty in the
orderbook and slowly extract value this way.

As shown in the equation, the amount of value extracted depends on the size of D. It can be
demonstrated that the maximum value of D is approximately proportional to the amount of collateral, the
change in mark price and the margin factor. An attacker needs sufficient capital to extract a large amount
of cash. For example, with a margin factor of 10% and a 5% price decrease, the attacker can create bad
debt worth approximately 50% of their starting position.

Markets use a TWAP (Time-Weighted Average Price) for the mark price. Since a TWAP adjusts
gradually over time, an attacker can exploit this by waiting for a sudden price drop. They can then create
a position that falls below the margin requirements as the mark price slowly adjusts to reflect the new
price.

Code corrected:

Version 2In , the margin system has been completely redesigned to fully resolve the issue. The function
MarginViewUtils._checkMargin() implements a more restrictive version of the weak margin
check, but uses the maintenance margin instead of the initial margin.

if (diffValue > diffMargin.mulFloor(critHR)) {
 return (true, true, _getIMAft(market, user));
}

The updated check ensures that, as long as the user is above the critical health ratio prior to the action,
they remain above it afterward.

The user is not tested to be above the critical health ratio, except when an admin imposes it as a
requirement in exceptional market conditions. However, since the critical health ratio is set below 1, the
user would have needed to avoid liquidation for a prolonged period in order to fall below this threshold,
which is unlikely in practice.

6.3 TWAP Manipulation by Orderbook Clearing
Design Medium Version 1 Code Corrected

CS-BOROS-MKT-003

The Time-Weighted average price for implied rate can be significantly manipulated in a single block
transition (timestamp increases by 1 second on Arbitrum, 2 seconds on Base). Arbitrum and Base run
centralized sequencers that process transactions in FIFO orders. It is therefore possible to send two
transactions, one after the other, and have a high probability of the transactions being included one after
the other without any other in between. More importantly, the later transaction is included before the first
one is published, such that the MEV generated by the first transaction can be extracted by the second
transaction before other parties have time to react.

An attacker can exploit this fact to send two transactions that will be included in different blocks (because
of skillful timing, or gas limits preventing the second transaction from making it in the same block), with no
other transaction in-between. The first transaction can clear the order book and fill an order at a very high
or very low rate. This will be reflected in the value of the implied rate in the next block. The attacker can
then exploit the new mark rate of the next block to profit from liquidations caused by the mark rate
change.

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

If the block time is two seconds, and the TWAP window is defined as 15 minutes, the new rate oracle
value will be:

(prevOracleRate * (15*60 - 2) + lastTradedRate * 2) / (15*60)

or 99.77% * prevOracleRate + 0.22% * lastTradedRate. The attacker controls
lastTradedRate, and can set it as high as the highest rate allowed. If k_tickSpacing is 4, the
maximum rate is around 70000%. 0.22% * 70000 == 155%, meaning the oracle rate can be
increased to more than 155% APR, which is surely enough to make all short positions liquidatable.
Equivalently the attacker can do this for long positions by manipulating the rate downwards. The high
cost of clearing the orderbook can be maybe be recovered, depending on the liquidity of the orderbook
and the amount of positions made liquidatable

If k_tickSpacing is higher, it could be exploited even more effectively by an attacker, to completely
drain the protocol: when tickspacing is 15, the maximum tick rate is 4e9 %, which means that even
controlling 0.22% of the value of the oracle, an attacker can manipulate it arbitrarily high. If the attacker
owns a long position, that long position will be hugely overvalued, allowing them to withdraw all the cash
in the protocol.

Code corrected:

Version 2In , the risk of TWAP manipulation has been mitigated by introducing a restriction on the last
trade rate. The last trade rate can no longer deviate by more than a certain percentage of the previous
mark rate, as enforced by the following check:

function _checkRateDeviation(int256 lastMatchedRate, MarketMem memory market) internal view returns (bool) {
 return
 (market.rMark - lastMatchedRate).abs() <=
 mulBase1e4(market.k_iThresh.max(market.rMark.abs()), _ctx().maxRateDeviationFactorBase1e4);
}

This mechanism ensures that the mark rate (that is based on the last trade rate) cannot be manipulated
beyond a certain threshold, hereby preventing the attack scenario described above.

6.4 Unsafe Use of Narrow Type in Inline Assembly
Correctness Medium Version 1 Code Corrected

CS-BOROS-MKT-023

Internal function wordSlot() of TickBitmap.sol uses inline assembly to perform arithmetic
operations on a uint8 value without clearing the higher order bits which might be dirty, leading to
incorrect results, as documented by solidity documentation.

Numerical types narrower than 256 bits can have dirty high-order bits, for example as the result of a
narrowing cast, or as the result of reading from storage where other packed variables are present. The
dirty bits are removed lazily by Solidity when an action is performed which requires clearing them: for
example writing to memory, since the memory might be later used in a hash computation, or in arithmetic
operations, since the dirty bits might influence the result of the operation. However, the dirty bits are not
cleared automatically when a stack variable is used directly in inline assembly, therefore, when using
types narrower than uint256 in assembly the effect of dirty bits should always be considered.

The following code in TickBitmap.sol accesses wordPos without clearing its high order bits:

function wordSlot(TickBitmap storage self, uint8 wordPos) private pure returns (bytes32 slot) {
 assembly {
 slot := add(self.slot, add(wordPos, 1))
 }
}

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 22

https://docs.soliditylang.org/en/latest/internals/variable_cleanup.html
https://chainsecurity.com

If wordPos has dirty high-order bits, the result of the add() is incorrect.

Conversely, assembly access of narrow types is done correctly in function deriveMapping(), taken
from OpenZeppelin, where the high order bits are cleared in the first mstore:

// copy from @openzeppelin/contracts/utils/SlotDerivation.sol but change to OrderId
function deriveMapping(bytes32 slot, OrderId id) internal pure returns (bytes32 result) {
 assembly ("memory-safe") {
 mstore(0x00, and(id, shr(192, not(0))))
 mstore(0x20, slot)
 result := keccak256(0x00, 0x40)
 }
}

In practice, in the case of wordSlot(), the argument wordPos is the result of function tickToPos(),
which does not seem to introduce dirty bits, however this behavior is undefined and compiler specific,
and it could change by changing compiler settings or in future versions of solidity.

As an example of the effect of dirty bits, consider the following example: x and y should have the same
value, however the require fails in Solidity 0.8.28 when compiling without the --via-ir flag:

function uint_shrink_expand() public {
 uint256 a = 115792089237316195423570985008687907853269984665640564039457584007913129639935;
 uint128 b = uint128(a);
 uint256 x = uint256(b);
 uint256 y;
 assembly{
 y := b
 }
 // Reverts
 require(x == y, "CHECK");
}

Code corrected:

The function wordSlot() has been updated to increment value wordPos outside of the inline assembly
block, so the solidity compiler can clear up any dirty high order bits:

function wordSlot(
 TickBitmap storage self,
 uint8 wordPos
) private pure returns (StorageSlot.Uint256Slot storage slot) {
 return _slot(self).offset(uint256(wordPos).inc()).getUint256Slot();
}

6.5 Force Cancel Risky Users Can Be Blocked
Design Low Version 4 Code Corrected

CS-BOROS-MKT-029

The function MarketHubRiskManagement.forceCancelAllRiskyUser() iterates over all markets
a user has entered and cancels their open orders in each market. However, if any of the entered markets
has expired, the MarketEntry.cancel() function reverts, causing the entire operation to revert.

An attacker could exploit this behavior by intentionally remaining in an expired market, effectively
blocking the force cancellation of their open orders. While this creates a denial-of-service condition for

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

the batch operation, the admin can still call MarketHubRiskManagement.forceCancel() on each
non-expired market individually, so the overall impact is limited.

Code corrected:

Version 5In , the forceCancelAllRiskyUser() function has been updated to take a list of markets as
a parameter, instead of iterating on all the entered markets of the user. This allows the admin to filter out
reverting markets.

6.6 Fee Can Make Liquidations Unprofitable
Design Low Version 1 Code Corrected

CS-BOROS-MKT-004

It is likely that the fee applied to the liquidator makes liquidations as a whole unprofitable, for realistic
parameter selection.

The liquidation incentive earned by the liquidator is defined as:

|S| KMM max(r, Ir) max(Δt, minT) min(h, b + s(1 − h))
and the fee paid by the liquidator is:

|S| Δt fotc

Liquidations are therefore profitable if

KMM max(r, Ir) max(Δt, minT) min(h, b + s(1 − h)) ≥ Δt fotc

For realistic parameters choice we can use:

KMM = 5%
Ir = 10%
fotc = 0.05%
min(h, b + s(1 − h)) = 10%
With this choice of parameters, assuming we can divide both sides by , and have the
inequality evaluate to:

5% ⋅ 10% ⋅ 10% = 0.05%
which is comparable to the fee rate that needs to be paid by the liquidator. Considering that we are
assuming the best conditions for the liquidator to trade, that is the market rate is actually the mark rate
and not worse. In practice, this might be a too restrictive assumption, and the market rate could be worse
than the mark rate. The fee is an additional factor that might hamper timely liquidations.

Code corrected:

Version 2In , the liquidator is charged a Liquidation feeRate instead of the OTC fee. The admin can
modify the liquidation fee to ensure that liquidations remain profitable.

6.7 Main Account Has Priority When Increasing
Collateral
Design Low Version 1 Code Corrected

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

CS-BOROS-MKT-006

The subaccount system allows a single address (root) to control multiple market accounts. For a given
token id, a user needs to first add the token balance to the main account
(marketId == CROSS, subaccountId == 0), and then move it to a subaccount (either an isolated
marketId, or another subaccountId). When moving collateral (cash) between accounts, both are
checked for the initial margin. This means that if both are below initial margin, but the subaccount (or
isolated market account) has a more urgent need of collateral to avoid liquidations, the collateral cannot
reach the subaccount because it will be used to satisfy the main account Initial Margin check.

Code corrected:

Version 2In a user can top up the collateral of any subaccount directly.

6.8 Margin Rounding Allows Exiting With Open
Positions
Design Low Version 1 Code Corrected

CS-BOROS-MKT-007

Version 1In of the code, the function _getIMPostProcess() rounds down the initial margin of a user
(code rearranged for legibility):

(uint256 long, uint256 short) = user.pending.unpack();
uint256 maxLong = (user.signedSize + int256(long)).abs();
uint256 maxShort = (user.signedSize - int256(short)).abs();
PMath.max(maxLong, maxShort).mulDown(marginFactor).mulDown(marginIndexRate)

In particular, the multiplications with marginFactor and marginIndexRate round towards zero, which
could result in an initial margin too low.

For example, with marginFactor of 0.1 and a marginIndexRate of 1% (0.01), an order of size 999
weis would end up requiring 0 margin.

Since in MarketHub.exitMarket(), a margin of 0 is used to verify that a user has no open order in a
market, this can be exploited to exit markets while orders are still open, potentially creating few weis of
insolvency and breaking invariants.

Code corrected:

Version 2In the exitMarket function now checks for open orders by examining the user's size and the
number of open orders.

function exitMarket(MarketAcc user, MarketId marketId) external onlyRouter {
 ...
 bool positionIsEmpty = signedSize == 0 && nOrders == 0;
 require(positionIsEmpty || _isMarketMatured(market), Err.MMMarketExitDenied());

The change prevents a user from exiting a market while having open orders, even if the margin has been
rounded down to zero.

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

6.9 No Minimum Position Size Requirement
Design Low Version 1 Code Corrected

CS-BOROS-MKT-008

Users can create positions of all sizes including tiny positions of a few wei. The liquidation incentive is
proportional to the size of the position, so these tiny positions can be unprofitable to liquidate considering
gas costs.

As a result, small positions can get into negative health and then stay unliquidated. This creates bad debt
as the losses of these positions are paid out to counterparties and the treasury. An attacker could attempt
to exploit this behavior by creating thousands of tiny positions that are unlikely to be liquidated.

However, this strategy will likely not be profitable for the attacker as creating each position comes with a
onetime cost, and the potential upside is minimal. As long as maximum leverage remains modest relative
to market volatility, the potential percentage gain on any position is limited. In such cases, the absolute
profit from a small position is unlikely to justify the gas cost required to claim it.

Code corrected:

Version 2In , the risk of a spam attack is mitigated by introducing two mechanisms to make spam costly
for attackers:

1. Traders must possess an initial cash balance in their account when entering a market, increasing
the capital requirements for attackers.

2. Traders are charged a market entrance fee when entering a new market, raising the cost of
creating each position.

6.10 PREVRANDAO Opcode Behavior on L2
Chains
Correctness Low Version 1 Code Corrected

CS-BOROS-MKT-009

The function SweepProcessUtils.__sweepFOneSide() uses the PREVRANDAO opcode as a
source of randomness for the quicksort and random partition algorithm. On Ethereum Mainnet, this
opcode returns the previous RANDAO value. However, the protocol is expected to be deployed on Base
Chain or Arbitrum, where opcode has different behavior:

• Arbitrum: The opcode returns the constant value 1.

• Base Chain: The opcode returns the previous RANDAO` value from the latest synced L1 state,
which may remain unchanged for multiple blocks.

This makes the randomization of the algorithms predictable, and an attacker could try to create orders
that must be swept with the worst-case performance of the quicksort and random partition search, to
increase the gas cost of a liquidation or of a partial match.

Code corrected:

The function SweepProcessUtils.__sweepFOneSide() has been updated to use the block.number
as a source of randomness instead.

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

6.11 forceDeleverage() Does Not Follow
Specification
Design Low Version 1 Specification Changed

CS-BOROS-MKT-011

The Whitepaper specifies that forced deleverage (paragraph 3.3.11) should have a healthy winner and
an unhealthy loser. This is not enforced in the code for forceDeleverage(), which applies no
restrictions on the health of winner and loser.

Code corrected:

Pendle states that the checks will be implemented in an external deleverager contract.

6.12 signedSize Internal Method Returns
Incorrect Result
Correctness Low Version 1 Code Corrected

CS-BOROS-MKT-013

The signedSize() function defined in MarketTypes.sol for type AccountData2 returns an
incorrect value: it simply returns the 128 low order bits of AccountData2 as a signed integer, but the
signedSize is actually stored in the bits 191..64 of AccountData2.

The function is unused, so the overall system is unaffected.

Code corrected:

Version 2The function has been removed in .

6.13 Finalize Withdrawal Violates CEI Pattern
Informational Version 2 Code Corrected

CS-BOROS-MKT-025

The function MarginManager.finalizeVaultWithdrawal() sends tokens to the user before
setting the user's balance to zero. This order of the operations violates the Checks-Effects-Interactions
(CEI) pattern, which requires that state changes are made before any external calls. If the token used
would be reentrant (i.e. ERC-777), an attacker could re-enter the margin manager and withdraw their
balance a second time. In practice this is not a security concern, as the system does not allow reentrant
tokens.

Code corrected:

The code has been updated to follow CEI pattern.

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

6.14 Inconsistent Specification
Informational Version 2 Code Corrected

CS-BOROS-MKT-026

Code comments in the UserResult and OTCResult structures, in file MarketTypes.sol, imply that
UserResult.finalVM will be zero when isStrictIM is false and no strict margin check is performed:

VMResult finalVM; // if isStrictIM is true, then finalVM is finalIM, if strict then it's MM, else it's ZERO

However, ZERO is never returned.

Code corrected:

The code comments in UserResult and OTCResult have been corrected.

6.15 Misnamed Variables and Functions
Informational Version 1 Code Corrected

CS-BOROS-MKT-016

Variable maxMarginIndexRate, which defines the minimum absolute rate that is used in the margin
value computation, should instead be named minMarginIndexRate, since it is a minimum.

Internal function canSettle() returns true even if the order is already settled or cancelled.

Function tryRemove() reverts with error MarketOrderFilled() when called with flag
isStrictCancel set to true. The error name implies the order has already been filled, but it might have
instead already been cancelled.

In function _settleProcessGetHealth() of MarginManager, local variable totalIM represents
actualy a maintenance margin (MM), and not an initial margin (IM). Likewise, comment in function
_settleProcess() of MarketHub mentions totalIM, even though it could be a maintenance margin.
Function __settleProcessGetIM() can likewise also return maintenance margin, and in its body the
specific "IM" is used for variable naming even though the variables might represent also maintenance
margins.

Code corrected:

Version 2All the aforementioned variables and function have been renamed in .

6.16 _getRateAtTick Does Not Function Over Its
Whole Domain
Informational Version 1 Specification Changed

CS-BOROS-MKT-019

Internal function _getRateAtTick() accepts an int24 argument, but it does not return correct results
over the whole int24 range (for example it returns 0 for tick == 2**19).

The function however returns correct results over the range

tick ∈ [−2int16. min * 15, 2int16. max * 15]

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

which is the rate over which this function is used within the codebase. The valid range should be
documented in case the max tick spacing ever gets increased, or if the function gets reused in other
contexts.

Specification changed:

Pendle has added code comments to the function describing the valid range of ticks over which the
function returns correct results.

6.17 coverLength of Maximum Index Node Is
Incorrect
Informational Version 1 Code Corrected

CS-BOROS-MKT-021

Node ids are uint40, meaning the greatest possible value for a node id in the fenwick tree of orders is
2**40 - 1. This node should have cover length of 4**9, however function coverLength() returns 0
when 2**40 - 1 is passed as input.

Code corrected:

Version 2In , the function coverLength() has been updated to return the correct value for the
maximum node id.

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Force Deleverage and Liquidate Can Be
Frontrun
Informational Version 1 Acknowledged

CS-BOROS-MKT-005

The function forceDeleverage() can be frontrun by reducing the size of the winning or losing
address, causing the reduceOnly check to fail and the transaction to revert. The reduceOnly check in
the function _isReducedOnly ensures that the size of the forced trade is smaller than the current size
and that the sign is opposite. This check guarantees that the position is strictly reduced and prevents the
trade from flipping the size's sign (e.g., turning a long position into a short position or vice versa).

function _isReducedOnly(int256 curSize, int256 newTradeSize) internal pure returns (bool) {
 return newTradeSize.abs() <= curSize.abs() && newTradeSize.sign() * curSize.sign() <= 0;
}

An attacker can monitor the mempool for deleveraging transactions. Upon detection, the winning or
losing address could reduce their position size below the size of the trade, causing the trade to flip the
position's sign and the transaction to revert.

Similarly, the function liquidate() can also be frontrun by an attacker. By decreasing their position
size, the attacker can ensure that the size of the liquidation trade exceeds the signed size of their
position, causing the transaction to revert due to the same _isReducedOnly check. While the strong
margin check typically prevents a liquidatable user from modifying their position, the weak margin check
allows an action as long as it improves their position.

This behavior poses a risk to the platform's risk management as liquidations and force deleveraging are
delayed. However, since the protocol is expected to be deployed on an L2 without a public mempool, the
likelihood of frontrunning is considered low. An attacker could still decide to change their position every
block to block liquidations, but this would be very costly.

This risk is particularly problematic for callers unaware of this behavior. A more sophisticated caller could
programmatically retrieve the current size of the user's position within the transaction and cap the size of
the trade with it.

Acknowledged:

Pendle answered:

Key reason being Morpho & Compound also don’t take max of this number with users’ outstanding
debt. The expectation of an external contract calling & pass in the correct amount is rather
reasonable.

7.2 Gas Optimizations
Informational Version 1 Code Partially Corrected

CS-BOROS-MKT-014

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

Version 1 :

1. Function MarketOrderAndOtc._hasSelfFilledAfterMatch() could only check the side the
user has previously matched with.

2. Functions extend(), concat(), sliceFrom() of ArrayLib.sol and function
makeTempArray() of LibOrderIdSort.sol allocate empty arrays with the new keyword. This
generates code that will zero the newly allocated array, which is wasteful since the array
immediately gets written to, in the aforementioned functions.

3. In MarketEntry.liquidate(), _coreRemoveAll() is called before sweeping the violator's
orders. Removing after sweeping could be more efficient, as every removed order is a storage
access, while the storage complexity of sweeping is sublinear in the number of orders.

4. In MarketOrderAndOtc._matchOrder(), at line 106 we sweep all OTC counterparties after
matching on the order book. Both sides will be swept for every counterparty, while it would be
enough to sweep the side where we are matching.

5. In __matchPartialInner(), in line 192 subtreeSum is set to 0 even for leave nodes.

Version 4 :

6. Function CoreOrderUtils._shouldPlaceOnBook() could return !hasMatchedAll for
SOFT_ALO, allowing _coreAdd() to return early if all orders are removed.

Code partially corrected:

The code optimizations 1, 2, 3, 4 and 5 have been implemented.

7.3 Margin Rounds Down
Informational Version 1 Acknowledged

CS-BOROS-MKT-028

The function _getIMPostProcess() rounds down the initial margin of a user and can allow a user to
have possibly too much leverage on positions with very low sizes, potentially creating creating dust
amounts of bad debt.

Acknowledged:

Pendle has provided the following reasoning for their design decision:

In the current codebase, the rounding directions for all value types are correct (e.g. fees rounded up,
payment rounded down), except for PM which is rounded down. We chose not to round PM up as it
would complicate the code quite a lot (partial PM must be computed exactly, PM can no longer be
computed from trade cost). However, that means size = 1 would have MM = 0 -> health ratio can not
be calculated for liquidation.

7.4 Packed Variables in Events
Informational Version 1 Acknowledged

CS-BOROS-MKT-017

Events FIndexUpdated has a argument of type FIndex, which is a human unreadable packed type.
Likewise, ForceDeleverage, MarketOrdersFilled, OtcSwap, Liquidate include arguments of

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

type Trade which is unreadable when emitted. This can add friction when implementing front-ends and
debugging.

Acknowledged:

The team is aware of this behavior, but has decided to keep the code unchanged.

7.5 Unnecessary Unchecked Block in
makeTempArray()
Informational Version 1 Acknowledged

CS-BOROS-MKT-018

Internal function makeTempArray() wraps its body in an unchecked block. However, the only
arithmetic operation is the ++i increment in the iterator of the loop:

for (uint256 i = 0; i < n; ++i) {
 arr._set(i, OrderIdEntryLib.from(ids[i], i));
}

Loop increments of that form are by default unchecked since solidity 0.8.22 (link to docs). So, the
unchecked block is not necessary.

Acknowledged:

Pendle is aware of this behavior. They nonetheless choose to keep the code unchanged for consistency
with the rest of the codebase.

7.6 Unpacking OrderId Can Access Dirty Bits
Informational Version 1 Acknowledged

CS-BOROS-MKT-027

The structure OrderID is stored as a 64-bit value and contains several fields, including an initialized
marker, reserved bits, side, tick index, and order index.

The function OrderIdLib.unpack() extracts the side, tick index, and order index from the structure
but ignores the initialized marker and reserved bits. This can lead to multiple OrderId values being
unpacked into the same side, tick index, and order index values.

In most cases, OrderID is unpacked only after being created by OrderIdLib.from(), which ensures
the reserved bits are empty, and the initialized marker is set. However, the function getOrder() takes
any OrderId as argument and then unpacks it without validating the initialized marker or reserved bits.
So an invalid or non-existent OrderId values could to be interpreted as another valid OrderId.
Although this function is not actively used within the protocol, integrators could call this function with an
invalid OrderId and cause unexpected behavior.

Acknowledged:

Pendle answered:

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 32

https://docs.soliditylang.org/en/latest/internals/optimizer.html#unchecked-loop-increment
https://chainsecurity.com

We acknowledge that some bits in OrderId are not used at all. We decided not to validate those bits
when unpacking user-provided OrderIds because it increases gas with no security benefits.

7.7 cashTransferAll Executes the
onlyAllowed Modifier Twice
Informational Version 1 Acknowledged

CS-BOROS-MKT-020

Function cashTransferAll() of MarginManager has the onlyAllowed modifier, and internally
calls the cashTransfer() function, which also has the onlyAllowed modifier. The modifier is
therefore executed twice.

Acknowledged:

The Pendle team is aware of this behavior, but has decided to keep the code unchanged.

7.8 getOrderStatusAndSize() Does Not
Distinguish Cancelled From Non-Existing Orders
Informational Version 1 Acknowledged

CS-BOROS-MKT-022

View function getOrderStatusAndSize() could return CANCELED for orders that have been
cancelled. However, it just returns NOT_EXIST for both non-existing orders and cancelled orders.

Acknowledged:

The Pendle team is aware of this behavior, but has decided to keep the code unchanged.

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Bulk Orders Enable Temporal
Undercollateralization
Note Version 2

Bulk orders allow accounts to place orders across multiple markets and in both the long and short
direction within a single call. Unlike individual orders batched together in a multicall, the margin
requirements are not checked after each order is processed, but only after all bulk orders are processed.

For example, with two bulk orders B1 and B2, the following steps are executed:

1. Match and add B1.

2. Process payments and fees for B1.

3. Match and add B2.

4. Process payments and fees for B2.

5. Check margin requirements for account.

Since the margin requirements are only enforced after bulk order B2 is processed, the account could be
temporarily undercollateralized after processing B1. This can be compared to a flashloan and makes
certain operations more capital-efficient. For instance, accounts can simultaneously match against both
sides of the orderbook with reduced collateral requirements, since opposing positions can be netted
against each other.

8.2 Gas Considerations on Algorithm Complexity
Note Version 1

It is important for the correct function of markets that the settle operation uses a bounded and reasonable
amount of gas. Settle is required before matching, liquidations, force closes and deleverages, and an
attacker who is able to make settlement run out of gas can cause denials of service and insolvency risks
to markets. It is therefore necessary tha the gas requirements of settling are predictable and bounded.

Settling a user in a given trading zone (specific tokenId) requires settling the user in each of the
markets they have entered. The number of iterations for this loop is bounded by
MAX_ENTERED_MARKETS. MAX_ENTERED_MARKETS should therefore not be set too high. Settling a user
in a specific market requires iterating over all of their open orders, and individually checking if they have
been filled. The number of iterations for this loop is bounded by MarketCtx.maxOpenOrders.
maxOpenOrders should therefore not be set too high. The fTime of filled orders needs to be found. This
performs a binary search that takes at most
log2((maturity - marketCreationTime) / period). In practice this is below 23 iterations for a
market with 10 years maturity and fIndex update every second.

Substantially, the cost of settling a user scales linearly with
MAX_ENTERED_MARKETS * maxOpenOrders. This value should be therefore set appropriately, to
avoid the possibilty of Denials of Service attacks.

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

8.3 Pre-scaling Margin Collects Dust
Note Version 2

When a user places an order in the market, the pre-scaling margin for the new order is calculated in
__calcPMFromRate() based on the size and rate of the order. Depending on the direction of the order,
the calculated margin is added to either sumLongPM (for long positions) or sumShortPM (for short
positions).

function __calcPMFromRate(uint256 absSize, int256 rate, uint256 k_iThresh) private pure returns (uint256) {
 uint256 absRate = rate.abs();
 return absSize.mulDown(absRate.max(k_iThresh));
}

When the order is (completely) filled or canceled, the reverse operation occurs: the pre-scaling margin is
recalculated and deducted from sumLongPM or sumShortPM. Since the operations are symmetrical, the
pre-scaling margin after the order is removed matches the pre-scaling margin before the order was
added.

However, in the case of partial fills, the pre-scaling margin is calculated based on the partially filled size
of the order. Note that the margin is rounded down during calculations, so it may be up to 1 wei smaller.
This means that each time an order is partially filled, a rounding error of 1 wei may occur, causing a slight
discrepancy compared to when the order was first added. Over time, these small rounding errors can
accumulate, leaving a small residual "dust" in the pre-scaling margin once the order is completely filled.

While this rounding error is small and unlikely to significantly affect margin calculations, it is important for
integrators of the protocol to be aware that the pre-scaling margin may contain small amounts of dust.
Users should not expect the margin to exactly match the size of the orders placed.

Note than when all orders for a user are filled, the values for nLongOrders and nShortOrders are
reset to zero, and the pre-scaling margin is no longer used in the _initUserCoreData function. This
effectively removes any residual dust from the pre-scaling margin. So users can to reset their pre-scaling
margin to zero by canceling all their standing orders.

8.4 Security Considerations of Sequencer
Outages
Note Version 1

Pendle V3 is expected to be deployed to an Ethereum L2, such as Base or Arbitrum. These networks rely
on a centralized sequencer to order transactions and produce blocks. If the sequencer goes offline, the
L2 becomes unable to process transactions in a timely manner.

In such scenarios, users can bypass the sequencer by using the force inclusion mechanism, submitting
L2 transactions directly on Ethereum Mainnet. However, this method is costly and requires technical
expertise, making it inaccessible to most users. If trading is unrestricted then users may be unable to
cancel their trades, allowing others to fill their orders at stale prices. Additionally, reduced trading activity
during a sequencer outage can make the mark price, which is based on a TWAP (Time-Weighted
Average Price), less reliable. This could lead to unfair liquidations, even for users whose positions would
otherwise remain healthy.

Version 1There exist oracle solutions to detect sequencer outages, but none are implemented in . Future
versions of the Boros Markets could integrate an oracle to monitor for outages and restrict certain user
actions during these periods. However, if trading were restricted then the TWAP does not get updated
anymore and positions could become unhealthy and create bad debt as they cannot get liquidated fast
enough.

Pendle - Boros Markets - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 MarketHub
	2.2.1.1 Margin Requirements
	2.2.1.2 Liquidations

	2.2.2 Markets
	2.2.2.1 Settling an account
	2.2.2.2 OTCs and Orderbook
	2.2.2.3 Adding order on the orderbook
	2.2.2.4 Cancelling orders

	2.3 Trust Model
	2.4 Changelog

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 TWAP Instability Due to Bid-Ask Spread
	5.2 replaceWindow() Makes the Mark Rate Oracle Value Jump

	6 Resolved Findings
	6.1 High Priced Buy Order on Empty Orderbook Can Generate Bad Debt
	6.2 Weak Margin Check Allows Creating Bad Debt
	6.3 TWAP Manipulation by Orderbook Clearing
	6.4 Unsafe Use of Narrow Type in Inline Assembly
	6.5 Force Cancel Risky Users Can Be Blocked
	6.6 Fee Can Make Liquidations Unprofitable
	6.7 Main Account Has Priority When Increasing Collateral
	6.8 Margin Rounding Allows Exiting With Open Positions
	6.9 No Minimum Position Size Requirement
	6.10 PREVRANDAO Opcode Behavior on L2 Chains
	6.11 forceDeleverage() Does Not Follow Specification
	6.12 signedSize Internal Method Returns Incorrect Result
	6.13 Finalize Withdrawal Violates CEI Pattern
	6.14 Inconsistent Specification
	6.15 Misnamed Variables and Functions
	6.16 _getRateAtTick Does Not Function Over Its Whole Domain
	6.17 coverLength of Maximum Index Node Is Incorrect

	7 Informational
	7.1 Force Deleverage and Liquidate Can Be Frontrun
	7.2 Gas Optimizations
	7.3 Margin Rounds Down
	7.4 Packed Variables in Events
	7.5 Unnecessary Unchecked Block in makeTempArray()
	7.6 Unpacking OrderId Can Access Dirty Bits
	7.7 cashTransferAll Executes the onlyAllowed Modifier Twice
	7.8 getOrderStatusAndSize() Does Not Distinguish Cancelled From Non-Existing Orders

	8 Notes
	8.1 Bulk Orders Enable Temporal Undercollateralization
	8.2 Gas Considerations on Algorithm Complexity
	8.3 Pre-scaling Margin Collects Dust
	8.4 Security Considerations of Sequencer Outages

