

PUBLIC

Code Assessment

of the Yield Basis Core

Smart Contracts

July 7th, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 11

4 Terminology 12

5 Open Findings 13

6 Resolved Findings 14

7 Informational 21

8 Notes 23

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Yield Basis,

Thank you for trusting us to help Yield Basis with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Yield Basis Core according
to Scope to support you in forming an opinion on their security risks.

Yield Basis implements an Automated Market Maker (AMM) solution that protects liquidity providers from
impermanent loss by maintaining constant leverage against Curve Cryptopool LP shares.

The most critical subjects covered in our audit are functional correctness, incentive compatibility, and
access control. Functional correctness is high. Incentive compatibility is good but requires attention in
certain scenarios, see Rational user will stake tokens during losses recovery. Access control is
satisfactory with appropriate privileged role management.

The general subjects covered are event handling, documentation quality, and testing. Documentation is
good. Whitepaper is a great help. Test suite would benefit from stateful testing that might help to uncover
odd and undesired rounding issues.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code Corrected 1

Low -Severity Findings 10

• Code Corrected 10

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the following code files inside the Yield Basis Core repository:

• contracts/AMM.vy

• contracts/CryptopoolLPOracle.vy

• contracts/Factory.vy

• contracts/LT.vy

• contracts/VirtualPool.vy

A Whitepaper document was provided as a source of documentation. The table below indicates the code
versions relevant to this report and when they were received.

V Date Commit Hash Note

1 30th April 2025 de498361f7971b8b01c432093e4ba36c21a4b37d Initial Version

2 16th June 2025 f6fcf71f94ef19015917469d3f2c7fc1b949ee76 Version with fixes

3 19th June 2025 fc3ce208ce0813aa57bca06c87703dca8ae5a65e Version with fixes

4 21th June 2025 27eb439cb0cd86e4bc3709eca3d7b7536f8b51e5 Version with fixes

5 30th June 2025 74dcb46765081ef5170aa0cffcb8925f98cf84b6 Minor changes

For the vyper smart contracts, the compiler version 0.4.3 was chosen.

2.1.1 Excluded from scope
The following items were not a part of this assessment review:

• Any smart contracts, imports, 3rd party libraries and dependencies not mentioned in Scope section

• The "aggregated" CRVUSD/USD price oracle is not in-scope. The LT staker contract is
out-of-scope.

• Cryptopool implementation is not in scope

• Protocol economic modeling and game theory analysis

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 5

https://github.com/yield-basis/yb-core/tree/de498361f7971b8b01c432093e4ba36c21a4b37d
https://github.com/yield-basis/yb-core/tree/f6fcf71f94ef19015917469d3f2c7fc1b949ee76
https://github.com/yield-basis/yb-core/tree/fc3ce208ce0813aa57bca06c87703dca8ae5a65e
https://github.com/yield-basis/yb-core/tree/27eb439cb0cd86e4bc3709eca3d7b7536f8b51e5
https://github.com/yield-basis/yb-core/tree/74dcb46765081ef5170aa0cffcb8925f98cf84b6
https://chainsecurity.com

Yield Basis offers an Automated Market Maker (AMM) solution that protects liquidity providers from
impermanent loss. This is done by borrowing stablecoins against Curve Cryptopool LP shares while
keeping constant leverage (of 2 by default).

Following are the tokens that the system will interact with:

• Stablecoin - assumed to be CurveUSD.

• Asset token - Any other ERC20

• Curve Cryptopool LP token - A Stablecoin and Asset twocrypto LP token. This is assumed to be a
new Curve StableSwap Twocrypto pool that supports donation functionality. Stablecoin must be
token 0 and Asset must be token 1 in this Cryptopool.

• LT token - Leveraged token that keeps a constant leverage relative to Cryptopool LP share.

2.2.1 Core formulas
As per the whitepaper, the following formulas define the system bonding curve for swap invariant I at
oracle price .

(x0(po) − d)y = I(po)
The is a defining AMM state equation that for a given amount of collateral , debt and target
leverage ratio is:

x0(po) = poy + √p2
oy2 − 4poyd(L

2L − 1)2

2 (L
2L − 1)2

Value of Leveraged AMM pool V, measured in stablecoins, is defined as:

V = x0
2L − 1

2.2.2 System contracts overview
The following contracts are used as part of the implementation:

LT

This is an ERC20 token that represents a leveraged position. It manages:

• User deposits and withdrawals

• Borrowing fees (stablecoin) donation to Cryptopool.

• Revenue split between staked and unstaked LT tokens.

• Admin fees distribution by LT minting

• Stablecoin allocation management.

It is provided an aggregated USD oracle which reports the price of CurveUSD in real-world USD. (It is
expected to aggregate oracles from stablecoin pools, but this is out-of-scope)

AMM

An AMM is coupled one-to-one with an instance of LT. It manages the following aspects on behalf of the
LT:

• Account for collateral (Cryptopool LP tokens) and debt (stablecoins) values

• Manages trades between stablecoin and collateral via exchange() function

• Tracks interest rate and collects borrowing fees

It uses an instance of CryptopoolLPOracle to query the current value.

Factory

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Factory serves as a control and deployment center for the entire Yield Basis system. It:

• Deploys new AMM, LT and CryptopoolLPOracle contracts for existing Cryptopools.

• Optionally deploys VirtualPool and Staker contracts for the system features.

• Manages administrative permissions

• Controls fee settings

• Stores and updates implementations of various contracts that are used for new deployments.

• Version 5In gauge_controller address is stored in factory.

VirtualPool

VirtualPool enables efficient trading using fee-less flash CurveUSD flash loans. It also helps users
skip Curve Cryptopool LP deposit/withdrawal and only deal with stablecoins and assets.

CryptopoolLPOracle

This is a contract that returns current USD prices for Curve Cryptopool LP tokens. It uses the
lp_price() method of the pool, and the same CurveUSD aggregated price oracle as LT.

2.2.3 System Usage scenarios
Deployment

A privileged factory admin can call the Factory.add_market() function for an existing Curve
Cryptopool contract. This action will deploy new LT, AMM and CryptopoolLPOracle contracts using
implementation blueprints stored in the Factory contract. Since the LT is deployed first, its set_amm()
method is used to bind it to the AMM. Optionally, VirtualPool and Staker contracts can be deployed.
add_market() also sets up newly deployed contracts and allocates stablecoins via the
LT.allocate() call. Allocated tokens are transferred from LT.admin (default is factory) to the AMM
contract.

Deposit

The following sequence happens during this process:

1. User can call LT.deposit() to deposit asset tokens and a specified amount of stablecoins to
borrow from AMM.

2. Deposited asset and borrowed stable tokens are then deposited into Cryptopool in exchange for LP
tokens. The receiver of LP tokens is the AMM contract.

3. AMM._deposit() is then called to account for collateral (LP shares) and debt changes. Limits on
debt/collateral ratio are enforced.

4. Based on Core Formulas, the value of the user's deposit is estimated and LT tokens are minted.
For the first deposit, 1 LT token = 1 V unit of value (in stablecoins). For subsequent deposits,
shares are calculated proportionally based on value change.

5. Slippage protection and max AMM debt capacity are also validated.

Withdraw

The following sequence happens during this process:

1. User can call LT.withdraw() to redeem a specified amount of LT tokens, receiving asset tokens
and paying back borrowed stablecoins.

2. LT contract calculates the current AMM value and what fraction of total assets and debts the user
needs to be given.

3. LT calls AMM._withdraw() with the calculated fraction, which proportionally reduces collateral
and debt in the AMM and returns the amounts to be withdrawn.

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4. The LP tokens (collateral) are removed from the Cryptopool using
Cryptopool.remove_liquidity_fixed_out(), so the exact amount of stablecoin to cover
the user's debt part is taken.

5. The LT contract burns the redeemed shares from the user's balance.

6. The stablecoin debt is transferred back to the AMM, effectively repaying the borrowed amount.

7. The asset tokens are transferred to the specified receiver address.

8. Slippage protection is enforced via the min_assets parameter to prevent excessive value loss
during withdrawal.

In emergency situations when the AMM is killed, users can call LT.emergency_withdraw() which
follows a similar but simplified process using Cryptopool.remove_liquidity() instead. If the
balanced withdrawal yields not enough stables to cover the user's debt, stables will be transferred from
the user.

Staking

When LT tokens are transferred to or from the staker contract, liquidity.staked and
liquidity.ideal_staked are recalculated.

Note that the Staker contract itself is out of scope.

Stablecoin Allocation

The stablecoins lent to depositors are expected to be uncirculated CurveUSD provided through the
factory. By calling allocate_stablecoins(), the administrator can adjust the total amount of
stablecoins available for lending, also referred to as debt ceiling. This also transfers the difference to or
from the factory. We assume that governance allocates enough stablecoins for the system not to run out.

Additionally, anyone can call the allocate_stablecoins() method without passing a new debt
ceiling value. This means that the value will remain the one previously set by the administrator, but the
method will still transfer excess stablecoins back to the factory and vice versa.

Profits and losses split in LT

There are 3 parties in Yield Basis who profit (or take losses) from system performance: staked tokens,
unstaked tokens and admin. All tokens on the balance of the staker contract are considered to be
staked and the rest are unstaked. Staked tokens forfeit the profits and in general do not earn any yields.
In the LT contract, the value in stablecoins is computed as in Core formulas and converted to value in
asset tokens using a price oracle. Two storage variables track this converted value of the pool: total
and admin. Each token owns a portion in liquidity.total. When liquidity.total grows, e.g.,
due to growth of Cryptopool.lp_price() or AMM swap fees, The
current_value - liquidity.total - liquidity.admin value change is distributed between 3
parties:

1. Admin fee ratio is calculated based on what % of the tokens are staked. [nothing staked, everything
staked] -> [10%, 100%].

2. Staked tokens don't get any yield; however, if loss has ever happened, the value of staked tokens
is brought back to ideal_staked. The ideal_staked storage variable tracks the value of
staked tokens if no loss ever happened. If value change is negative, staked tokens socialize the
loss.

3. Unstaked tokens get the rest of the value change.

Note that value change can be negative in case of losses.

LT.withdraw_admin_fees() zeroes liquidity.admin and mints the tokens for this value.

Admin Parameters

Privileged actors also control the rate charged for borrowing stablecoins and the trading fee for the AMM.
The rate can be at most 100% APR and the fee 10% of the output tokens.

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

2.2.4 Assumptions
Yield basis has certain assumptions that are important to highlight:

1. Value of AMM for exchange() is measured in USD, while stablecoins received or sent from trader
always accounted 1:1 to USD. This is similar to crvUSD liquidation/de-liquidation mechanism

2. Leverage of 2 assumes close to 50% LTV for asset. Some risky assets might need lower LTV.

3. Factory.flash is assumed to be 0 fee Flash loan contract.

Version 42.2.5 Admin fee changes in
In the new version of the LT pool the admin fee is computed the same way as before, but when it is
applied has changed.

A new parameter was added: MIN_STAKED_FOR_FEES. This parameter is a threshold below which
admin fees are calculated as before. When more than MIN_STAKED_FOR_FEES tokens are staked the
fee:

1. Not changed if pool suffered losses until all losses are repaid.

2. Once the losses are repaid admin fee applies as usual.

3. Admin fee is not applied on value loss.

Delta between liquidity.staked and liquidity.ideal_staked variables is used to determine
the pool losses.

2.3 Trust Model
The following roles are present in the system:

• Factory Admin

• LT staker address

• LT.admin, but acts as default admin for any Factory-deployed set of contracts itself.

• Can kill LT contract, thus only allowing emergency_withdraw() calls.

• Can set AMM exchange fee and borrowing rate

• Version 5Since : Can initialize gauge_controller if it was not set during deployment using
set_gauge_controller()

• Can change stablecoin allocation given to AMM for borrowing

• Can donate fees with a high discount rate

• Trust Level: Fully trusted

• Emergency admin

• Can kill LT contract, thus only allowing emergency_withdraw() calls.

• Trust Level: partially trusted

• LT Admin

• Can kill LT contract, thus only allowing emergency_withdraw() calls.

• Can set AMM exchange fee and borrowing rate

• Can change stablecoin allocation given to AMM for borrowing

• Can donate fees with a high discount rate

• Trust Level: Fully trusted

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 9

https://resources.curve.finance/crvusd/liquidations/#how-does-the-liquidation-compare-to-other-protocols
https://chainsecurity.com

• Users

• Can deposit assets, withdraw assets, and perform exchanges.

• They may also trade the underlying cryptopool, look for arbitrage opportunities within the
system, stake, unstake, and so on. We only assume that they are financially self-interested.

• Trust Level: Untrusted

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code CorrectedStaker Balance Not Updated

Low -Severity Findings 10

• Code CorrectedAsset Token Reentrancy

• Code CorrectedFirst Deposit Can Be Less Than MIN_SHARE_REMAINDER

• Code CorrectedStaker Should Not Be Fee_Receiver

• Code CorrectedTwocrypto Pool Changes

• Code CorrectedAMM.fee Is Not Validated During Deployment

• Code CorrectedLT.preview_deposit() Diverges From deposit()

• Code CorrectedLT.pricePerShare() Reverts on an Empty Pool

• Code CorrectedLT.set_admin() Does Not Check ABI of a Contract

• Code CorrectedLT Negative Admin Fees Can Be Erased

• Code CorrectedVirtualPool Problems

Informational Findings 7

• Code CorrectedFactory Stablecoin Assumptions

• Specification ChangedFull Staked Supply Prevents Recovery

• Code CorrectedGas Optimizations

• Code CorrectedMisleading Function Name

• Code CorrectedMissing Event on Staker Balance Update

• Code CorrectedMissing Nonreentrant

• Code CorrectedAMM.get_x0() Comment Inaccuracy

6.1 Staker Balance Not Updated
Correctness Medium Version 1 Code Corrected

CS-YBCORE-001

Every state modifying function should call _calculate_values() and update the total supply and the
balance of the staker to reflect a potential token reduction. In emergency_withdraw(), the
balanceOf[staker] is not updated.

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Code corrected:

An update was introduced.

6.2 Asset Token Reentrancy
Correctness Low Version 1 Code Corrected

CS-YBCORE-002

In LT.emergency_withdraw(), the ASSET_TOKEN.transfer() call is performed before the state of
the contract is updated, i.e., burning the user's shares and updating self.liquidity. This is not an
issue with common choices for ASSET_TOKEN but can lead to reentrancy attacks draining the contract if
the token contract has transfer hooks, such as those in ERC-777.

Code corrected:

The order of operations was changed to comply with the Check-Effects-Interactions pattern.

6.3 First Deposit Can Be Less Than
MIN_SHARE_REMAINDER
Design Low Version 1 Code Corrected

CS-YBCORE-003

When withdrawing from LT, users cannot leave dust shares in the pool.

assert supply >= MIN_SHARE_REMAINDER + shares or supply == shares, "Remainder too small"

However, deposit() allows tiny deposits that bypass this limitation and might cause numerical
problems.

For example:

1. Initial deposit of 1 wei of value mints 1 wei of share.

• LiquidityValuesOut(admin=0, total=1, ideal_staked=0, staked=0, staked
_tokens=0, supply_tokens=1)

2. Underlying Cryptopool experiences virtual_price drop:

• LiquidityValuesOut(admin=-1, total=1, ideal_staked=0, staked=0, stake
d_tokens=0, supply_tokens=1)

Due to rounding up of admin fees (even if value_change is negative), a pool that effectively has 0 value
keeps 1 as a value, but all loss goes to self.liquidity.admin.

Requiring at least MIN_SHARE_REMAINDER for the first deposit would protect the pool from such odd
states.

Code corrected:

A check was introduced. At least MIN_SHARE_REMAINDER needs to be minted as a first deposit.

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.4 Staker Should Not Be Fee_Receiver
Design Low Version 1 Code Corrected

CS-YBCORE-004

LT.withdraw_admin_fees() modifies balance of staker based on reduction only after
self._mint() call has occurred. This will result in a wrong balance amount for staker contract.

Code corrected:

A check was added to withdraw_admin_fees(). In addition, a constraint was added to
set_staker() to prevent such a situation.

6.5 Twocrypto Pool Changes
Correctness Low Version 1 Code Corrected

CS-YBCORE-005

1. The newest version of Twocrypto with donation has the donate() function removed and a flag to
add_liquidity() added instead.

2. calc_remove_liquidity() is not exposed on the pool version with donate(). Twocrypto
has calc_withdraw_one_coin() but not this one.

Code corrected:

YieldBasis LT now is compatible with the latest Twocrypto version.

6.6 AMM.fee Is Not Validated During Deployment
Correctness Low Version 1 Code Corrected

CS-YBCORE-006

When Factory.add_market() deploys the AMM, no validation is done. On the other hand
AMM.set_fee() performs MAX_FEE check. As a result, an AMM with broken exchange() function due
to > 100% fee can be deployed.

Code corrected:

A check was introduced to AMM.__init__() to match the set_fee() constraint.

6.7 LT.preview_deposit() Diverges From
deposit()
Design Low Version 1 Code Corrected

CS-YBCORE-007

1. max_debt checks are skipped in preview_deposit(). The checks are enforced in
AMM._deposit(), which is not called in preview_deposit().

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

2. In the case when supply != 0 but liquidity.total == 0, deposit() treats this as an
initial deposit, while preview_deposit() will fail.

Code corrected:

1. preview_deposit() will check and revert if max_debt is exceeded.

2. Fixed to be compatible with preview_deposit()

6.8 LT.pricePerShare() Reverts on an Empty
Pool
Design Low Version 1 Code Corrected

CS-YBCORE-008

Due to division by zero, pricePerShare() will revert. This is not consistent with a real price of 1 for the
first deposit and might break UI integrations.

Code corrected:

Version 2In , unsafe_div is used. It will return 0 instead of reverting.

Version 4In , the function returns as a special case when the denominator is zero. This is less
surprising for integrations.

6.9 LT.set_admin() Does Not Check ABI of a
Contract
Design Low Version 1 Code Corrected

CS-YBCORE-009

If LT.admin is a smart contract, it must implement certain methods:

1. min_admin_fee() function that returns uint256

2. admin() function that returns address

3. emergency_admin() function that returns address

4. fee_receiver() function that returns address

The set_admin() setter does not check that the new admin implements these methods. As a result, it
is possible to brick LT functionality due to a bad update of the admin.

Since the is_contract check in vyper checks for EXTCODESIZE, with EIP-7702 any EOA can also
wrongly bypass this check. If the smart contract to which the account delegates does not define these
methods, LT will also brick.

Code corrected:

In set_admin() function the required functions are called once to verify ABI compliance.

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6.10 LT Negative Admin Fees Can Be Erased
Design Low Version 1 Code Corrected

CS-YBCORE-010

If the pool experiences a value loss, admin fees might become negative. Until the pool recovers and
self.liquidity.admin > 0, the admin will not be able to withdraw_admin_fees(). However, if
a user withdraws shares and admin fees are negative, a shares/supply portion of the negative
admin fees is erased. During deposits, negative admin fees are not scaled up. Thus, anyone can call
deposit() and withdraw() in a loop until the admin fees are lowered.

Code corrected:

With a new design, the admin does not pay for value loss if MIN_STAKED_FOR_FEES == 1e16 tokens
are staked. In addition, if enough is staked, the admin fees are only charged when all losses are paid off.
These two factors limit how big self.liquidity.admin might become.

6.11 VirtualPool Problems
Design Low Version 1 Code Corrected

CS-YBCORE-011

1. onFlashLoan() does not check that msg.sender is equal to FACTORY.flash(). A direct call to
this function is possible, while VirtualPool.exchange() only permits FACTORY.flash().

2. VirtualPool.exchange() allocates a huge data: Bytes[10**5] array that does not need
to be that big. Vyper allows implicit casting Byte[10] -> Bytes[100].

3. onFlashLoan() does not use the fee parameter. This assumes 0 flash loan fees. A more generic
solution does not require much extra gas or code.

Code corrected:

Points 1 and 2 were fixed. Point 3 is left unfixed. Non-zero fee flash loans are assumed to be
unsupported.

6.12 Factory Stablecoin Assumptions
Informational Version 1 Code Corrected

CS-YBCORE-023

Factory does not assert STABLECOIN.transfer() and transferFrom() are successful. Also it
does not use default_return_value=True. AMM and LT don't have such strong requirements and
can handle weird ERC20, not only CurveUSD.

Code corrected:

An assert was added to all STABLECOIN calls in Factory.

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6.13 Full Staked Supply Prevents Recovery
Informational Version 1 Specification Changed

CS-YBCORE-012

In LT, if the value of staked tokens has ever dropped, ideal_staked will be greater than staked.
Usually when the LT pool value grows, admin gets a fee, unstaked gets the rest of the value change, and
staked can only recover back to ideal_staked value. However, if everything is staked, the admin fee
is 100%. Thus, no recovery will happen.

Specification changed:

Version 4In , the admin fee is no longer taken when the ideal_staked is greater than staked. Thus,
no admin fees will be taken until full recovery. The exception is when too few tokens are staked
(<MIN_STAKED_FOR_FEES).

6.14 Gas Optimizations
Informational Version 1 Code Corrected

CS-YBCORE-013

We include a non-exhaustive list of potential gas optimizations.

1. AMM.check_nonreentrant() could be @view.

2. In AMM.exchange() on lines 300 and 312, self.collateral_amount has already been read
into the collateral variable, so a storage load can be avoided.

3. AMM._deposit() computes value_before that is practically unused. This value is a mix of total
and admin values that cannot be used directly.

4. LT.preview_emergency_withdraw() computes: max(lv.admin, 0) in a branch where it is
not negative.

5. LT.emergency_withdraw() computes: max(lv.admin, 0) in a branch where it is not
negative.

6. LT.withdraw() updates self.liquidity.total immediately after _calculate_values()
and later adjusts it again.

Code corrected:

All points were addressed

6.15 Misleading Function Name
Informational Version 1 Code Corrected

CS-YBCORE-014

The AMM.admin_fees() view function computes the interest collected on lent stablecoins. These fees
do not go to the admin, but are donated into the cryptopool. In contrast, LT.withdraw_admin_fees()
refers to the true admin fee.

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Code corrected:

The function was renamed to accumulated_interest().

6.16 Missing Event on Staker Balance Update
Informational Version 1 Code Corrected

CS-YBCORE-015

When a token reduction is performed, for instance when depositing to the LT or staking LT tokens, the
balance of the staker contract is updated as well as the total supply, but no Transfer(), Mint(), or
Burn() event is emitted. This makes it impossible to track the staker balance and total supply off-chain
by relying just on events.

Code partially corrected:

All places were fixed.

6.17 Missing Nonreentrant
Informational Version 1 Code Corrected

CS-YBCORE-016

Unlike neighboring functions, preview_emergency_withdraw() allows reentrancy. The function is a
view function, so it would be read-only reentrancy. ChainSecurity is not aware of a scenario where this
can be exploited.

Code corrected:

The modifier was added.

6.18 AMM.get_x0() Comment Inaccuracy
Informational Version 1 Code Corrected

CS-YBCORE-020

The Safe Limits in the comment suggest that 0 <= debt <= 9/16 coll_value. The real
MIN_SAFE_DEBT and MAX_SAFE_DEBT depend on the leverage and are coll_value / 16 and
8.5 * coll_value / 16 for a leverage of 2.

Code corrected:

A precise comment was added.

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 v_loss Precision Can Be Improved
Informational Version 4

CS-YBCORE-024

In LT._calculate_values() v_loss is computed as:
min(value_change, v_st_loss * supply // staked) as 1e18 variable. Later is is used to
compute dv_use_36 - 1e36 based value. In the spirit of other computations v_loss can be computed
as a 1e36 variable, increasing precision of the truncated division.

7.2 Read-only Reentrancy on Token Transfer
Informational Version 1

CS-YBCORE-022

Twocrypto.add_liquidity() flow can be summarised as:

1. _transfer_in() token 0. Increase self.balances[0]

2. _transfer_in() token 1. Increase self.balances[1]

3. mint LP shares

If token 1 is an ERC777 token, the LT.preview_emergency_withdraw() can be executed at step 2.
Computed CRYPTOPOOL.balances(0) / CRYPTOPOOL.totalSupply() value will be wrong. This
problem is an example and other functions in LT may be flawed. CRYPTOPOOL in general does not
protect against invalid state reads. Any use of ERC777 token as an asset or integration of LT with such
an asset is discouraged.

7.3 Stray Tokens Can Get Stuck in Contracts
Informational Version 1 Acknowledged

CS-YBCORE-017

System contracts don't have any sweep functions to extract excess tokens from their balances.

E.g. AMM tracks Cryptopool LPs via self.collateral_amount. However, the actual token balance is
never verified. If tokens are sent directly to the contract, the actual balance diverges from the tracked
amount. There is no admin function to withdraw excess tokens that exceed
self.collateral_amount.

7.4 Unnecessary Receiver Restriction
Informational Version 1 Acknowledged

CS-YBCORE-018

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

The functions LT.withdraw() and LT.emergency_withdraw() assert that the receiver
parameter is not equal to the staker contract. Unlike deposit() which can mint LT shares to the
receiver which would pose a risk, these functions simply transfer the asset token to the receiver. Anyone
can transfer the asset token using its own transfer function, meaning that the check is easy to bypass.
Thankfully, nothing bad happens if the staker has an unexpected balance of asset token.

7.5 AMM.fee Choice Considerations
Informational Version 1 Acknowledged

CS-YBCORE-019

When considering an amount for fee in AMM, the following aspects need to be taken into account:

1. EMA lag compensation: The underlying Cryptopool exponential moving average (EMA) oracle
always lags behind the real price of the Cryptopool. The EMA price oracle is used to determine the
swap invariant for AMM.exchange(). The fee needs to be big enough to discourage systematic
value extraction.

2. Price oracle manipulation protection: A block producer can move the Cryptopool price a lot in a
block and produce block N+1 where the price is moved back. The EMA oracle will record an
elevated price in that case. While not completely preventing value extraction, the AMM.fee can be
a way to elevate the cost of such an attack.

Acknowledged:

Yield Basis responded: Good points of course. Fee is found by maximizing returns in backtesting and
appears fairly high.

7.6 max_token_reduction Computed With
Admin Fees
Informational Version 1 Acknowledged

CS-YBCORE-021

max_token_reduction: int256 = abs(value_change * supply //
 (prev_value + value_change + 1) * (10**18 - f_a) // SQRT_MIN_UNSTAKED_FRACTION)

Effectively, this is "How many tokens will represent the token value change."

value_change * (10**18 - f_a) is effectively how much value LT tokens should get. However,
prev_value + value_change + 1 includes the admin fee in the change of tokens. It is not "value of
tokens after gain". While this potentially lowers the max_token_reduction, the consequences are
minimal and can be disregarded.

Acknowledged:

Yield Basis responded: max_token_reduction was never intended to be precise

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Allocation Adjustment Might Hinder AMM
Releverage
Note Version 1

Releverage is achieved via AMM.exchange(). When a trader sells collateral, AMM needs to send stables
to the trader. If LT.allocate_stablecoins() tries to lower the allocation, the entire AMM balance
might be transferred back to the allocator. This can hinder the releverage ability of AMM.

8.2 Rational User Will Stake Tokens During
Losses Recovery
Note Version 4

When liquidity.staked is lower than liquidity.ideal_staked, following is true:

1. All tokens will have their value recovered at the same rate

2. Staked tokens will earn incentives in some other form (governance tokens)

As a result, any rational user will stake their tokens.

8.3 LT.withdraw() Might Fail on Low Liquidity
Note Version 1

CRYPTOPOOL.remove_liquidity_fixed_out() tries to get the full debt for the user position. In the
extreme case, the user might be the only LP in the Cryptopool, and the accumulated debt might not be
withdrawable directly from the pool. The emergency_withdraw() should still work in this case, and the
user will pay the debt separately.

Yield Basis - Yield Basis Core - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Core formulas
	2.2.2 System contracts overview
	2.2.3 System Usage scenarios
	2.2.4 Assumptions
	2.2.5 Admin fee changes in

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 Staker Balance Not Updated
	6.2 Asset Token Reentrancy
	6.3 First Deposit Can Be Less Than MIN_SHARE_REMAINDER
	6.4 Staker Should Not Be Fee_Receiver
	6.5 Twocrypto Pool Changes
	6.6 AMM.fee Is Not Validated During Deployment
	6.7 LT.preview_deposit() Diverges From deposit()
	6.8 LT.pricePerShare() Reverts on an Empty Pool
	6.9 LT.set_admin() Does Not Check ABI of a Contract
	6.10 LT Negative Admin Fees Can Be Erased
	6.11 VirtualPool Problems
	6.12 Factory Stablecoin Assumptions
	6.13 Full Staked Supply Prevents Recovery
	6.14 Gas Optimizations
	6.15 Misleading Function Name
	6.16 Missing Event on Staker Balance Update
	6.17 Missing Nonreentrant
	6.18 AMM.get_x0() Comment Inaccuracy

	7 Informational
	7.1 v_loss Precision Can Be Improved
	7.2 Read-only Reentrancy on Token Transfer
	7.3 Stray Tokens Can Get Stuck in Contracts
	7.4 Unnecessary Receiver Restriction
	7.5 AMM.fee Choice Considerations
	7.6 max_token_reduction Computed With Admin Fees

	8 Notes
	8.1 Allocation Adjustment Might Hinder AMM Releverage
	8.2 Rational User Will Stake Tokens During Losses Recovery
	8.3 LT.withdraw() Might Fail on Low Liquidity

