PUBLIC

Code Assessment

of the Grove ALM Controller
Smart Contracts

August 15, 2025

Produced for

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Informational

N o o b~ WDN P

Notes

@ Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG

© 0 01 W

10
14
16

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help GrovelLabs with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Grove ALM Controller
according to Scope to support you in forming an opinion on their security risks.

GrovelLabs offers Grove ALM Controller, a fork of Spark ALM Controller, that implements a set of
on-chain components of the Grove Liquidity Layer designed to manage and control the flow of liquidity
between Ethereum mainnet and L2s by leveraging Sky DSS Allocator.

This review focused on the first version of Grove ALM Controller for which a separate review was
conducted, covering functionality added since Spark ALM Controller v1.5.0, in particular the Centrifuge
V3 integration.

The most critical subjects covered in our audit are access control, the correct integration with Centrifuge
V3. The general subjects covered are gas efficiency, documentation and composability.

Security regarding all the aforementioned subjects is high.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 3

https://github.com/sparkdotfi/spark-alm-controller
https://github.com/sparkdotfi/spark-alm-controller/releases/tag/v1.5.0
https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Risk Accepted

J Acknowledged

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Grove ALM Controller repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V | Date Commit Hash Note
1 11 Aug 2025 | 1658e2034e0149ae1f5db0692370822008417903 Initial Version

For the solidity smart contracts, the compiler version 0. 8. 25 was chosen and evm ver si on is set to
cancun.

Grove ALM Controller is a fork of Spark ALM Controller. The review scope covered the differences
between Grove ALM Controller’s initial commit and Spark ALM Controller v1.5.0. This report also
includes the risk accepted, acknowledged issues and notes from the upstream v1.5.0 audit report as
these remain relevant to the code being reviewed. The following files are in scope:

src/
ALMPr oxy. sol
Mai nnet Control | er. sol
For ei gnControl |l er. sol
Rat eLi m t Hel pers. sol
RateLi m ts. sol
i nterfaces/
| ALMPr oxy. sol
| RateLinmts. sol
CCTPI nt er f aces. sol
Centrifugel nterfaces. sol
| Layer Zer 0. sol
libraries/
CCTPLi b. sol
Centri fugeLi b. sol
Cur veli b. sol
PSM.i b. sol
depl oy/
Control | er Depl oy. sol
Controllerlnstance. sol
Forei gnControllerlnit.sol
Mai nnet Controllerlnit.sol

2.1.1 Excluded from scope

All other files are out of scope. In particular, all 3rd-party protocols Grove ALM Controller integrate with
are out of scope and assumed to work honestly and correctly as documented, including: Aave, Ethena,
Centrifuge, Morpho, Maple, and Curve Stableswap-NG Pools.

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 5

https://github.com/grove-labs/grove-alm-controller/tree/1658e2034e0149ae1f5db0692370822008417903
https://github.com/sparkdotfi/spark-alm-controller/releases/tag/v1.5.0
https://chainsecurity.com

For the curve integration, it is assumed only the Stableswap-NG Plain pools will be used. Note that the
deployment script is in scope. However, governance should validate the deployment.

In addition, the inherent centralization risks of USDC are out of the scope of this review:
» USDC is deployed behind a proxy, and its implementation can be upgraded by an admin.

* CCTP relies on a set of centralized offchain signers to provide the bridging attestation.

Note that the deployment script is in scope. However, governance should validate the deployment.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

GrovelLabs offers Grove ALM Controller, a fork of Spark ALM Controller, that implements a set of
on-chain components of the Grove Liquidity Layer designed to manage and control the flow of liquidity
between Ethereum mainnet and L2s by leveraging Sky DSS Allocator.

On each chain, the following contracts are deployed. All of the contracts inherit the standard
AccessControl and grant the DEFAULT_ADMIN_ROLE role to an admin which can configure other roles.

ALMProxy: Entity that holds funds and interacts with external contracts (e.g. DssAllocator, PSM). Thus,
it holds the required privileges to interact with other contracts. It exposes doCall (),
doCal | Wt hVal ue(), and doDel egateCal | () to the controller role for customized executions.
recei ve() is also implemented to receive native tokens.

RateLimits: Defines and enforces limits for liquidity flows. Limits can be configured by the admin. The
rate limit will linearly grow from | ast Anount with sl ope over the time elapsed (tracked with
| ast Updat ed), and is capped naxAnount . Limits will be consumed or recharged by the controller with
triggerRateLi mtDecrease() ortriggerRatelLimtlncrease().

Controllers: Dictates which operations an ALMProxy shall perform. Note that multiple controllers could
point to the same ALMProxy. MainnetController and ForeignController are implemented that define
operations in the context of respective ALMProxy.They share a similar structure but feature some
different third-party integrations and operations. The admin can configure the parameters for 3rd-party
integrations and setup other roles: relayer that triggers ALMProxy executions and freezer that can revoke
a relayer in emergency.

For more details regarding these contracts and the unchanged 3rd-party integrations, please consult the
Spark ALM Review. Note the Superstate Integration has been removed.

2.2.1 Centrifuge V3

Grove ALM Controller further integrate with Centrifuge V3. In general, the deposit and redemption
(including the respective cancellation) functionalities stay the same as Centrifuge V2, while the following
function is added to both MainnetController and ForeignController:

transferSharesCentrifuge: The controller now allows transferring share class tokens to a cross-chain
recipient address. The recipient for each destination chain (centrifugel d) must be explicitly
configured by the admin using set Centri f ugeReci pi ent (). The transfer amount is rate-limited
based on the token and the destination chain. Once the message is processed on the destination chain
(Spoke. execut eTr ansf er Shar es()), the shares are minted to the recipient.

2.3 Trust Model

ALMProxy: The admin is fully trusted, otherwise, it can setup controllers and trigger any calls with the
privilege of ALMProxy. The controller is also trusted.

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 6

https://github.com/sparkdotfi/spark-alm-controller
https://www.chainsecurity.com/security-audit/spark-alm-controller
https://chainsecurity.com

In addition, the ALMProxy requires several roles to operate, which are assumed to be setup properly by
governance, for instance:

1. It requires bud role to swap without fee on DSS LitePSM.
2. It requires war ds role on AllocatorVault to dr aw() and wi pe() USDS.

3. It needs sufficient allowance from AllocatorBuffer to move minted USDS.

MainnetController and ForeignController:

1. The admin is fully trusted, otherwise they can DoS the controller, or steal the bridged money on the
destination domain by changing the mint recipient.

2. The relayer is semi-trusted, and they can only change the liquidity allocation in the worst case. The
freezer is also semi-trusted which can temporarily DoS the controller in the worst case.

Before initializing the contracts, the governance should always carefully examine whether the deployed
contracts match the expectations.

RateLimits: The admin is fully trusted to configure the limit data and controller correctly.
The 3rd-party integration requires an extended trust model:

* It is assumed Grove ALM Controller will not interact with weird ERC-20 (rebasing / low decimals / ...)
and ERC-4626 vault (low token decimals / without share inflation protection / ...). Otherwise, for
instance, in case an ERC-4626 has low decimals, a relayer may amplify the loss due to rounding
errors in shares conversion with many calls for ALMProxy on L2s.

* Grove ALM Controller is subject to the inherent risks of these protocols (i.e. risks of upgradeability,
RWAs, governance ...) and generally the third party protocols receiving funds are assumed to be
non-malicious.

For the shared integration with: Arbitrary ERC-4626, Aave and Aave-like protocols, Ethena, Maple,
Morpho, Curve StableswapNG pools, and LayerZero, please consult the Trust Model of Spark ALM
Review.

Centrifuge V3: Centrifuge is assumed to be the only ERC-7540 integrated. The privileged roles (wards)
are fully trusted, in particular:

» The wards of the ERC-7540 vaults are fully trusted, otherwise they can DoS the system by changing
the manager or asyncRedeemManager contract.

*« The wards of the asyncRedeemManager is fully trusted, otherwise they may 1) stop fulfilling
deposits, redemptions, or cancellation requests; 2) fulfilling the requests with bad conversion rate
and incur loss to the users.

Further, shares transfer related infrastructures (Gateway, Spoke, Hub...) and the privileged roles are
expected to work correctly and honestly. Otherwise, the shares in flight may be stuck due to censorship.

(S: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 7

https://www.chainsecurity.com/security-audit/spark-alm-controller
https://www.chainsecurity.com/security-audit/spark-alm-controller
https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Open Findings

In this section, we describe our findings. The findings are split into these different categories:
- @M Related to vulnerabilities that could be exploited by malicious actors
« CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0

ty g

(C)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings !
ty g

e Centrifuge Conversion Rate May Change Between Request Submission and Execution

Risk Accepted

» Centrifuge Deposit / Redemption Can Be DoSed by Cancellation

e LayerZero Approvals()

+ Maple Redemption Can Be DoSed
» Over-reduced Limit in Maple Redemption
» Relayer Can DoS SUSDE Unstaking

* Revoking Unused Approval ()

5.1 Centrifuge Conversion Rate May Change
Between Request Submission and Execution

[Correctness IETINEITR] Risk Accepted

When requesting a redemption from a Centrifuge ERC-7540 vault, the rate limit is decreased by an
estimation of the withdrawable assets (convert ToAsset s(shar es)) based on the latest conversion
rate.

CS-GRVALM-001

However, the conversion rate may change between the redemption request submission and execution,
hence the actual withdrawable assets after execution may not match the rate limit decreased at
submission time.

5.2 Centrifuge Deposit / Redemption Can Be
DoSed by Cancellation

D (Cow) (Version 1) (ETTTED)

CS-GRVALM-002

@ Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

The relayers can request to cancel pending deposits / redemptions on Centrifuge and claim them later
once being fulfilled. Note that in case there is a pending deposit cancellation, no new deposit can be
made (same for redemption). Consequently, a compromised relayer can DoS new deposit requests by
triggering a deposit cancellation (same for redemption) until the existing pending deposit is cancelled or
fulfilled.

Risk accepted:
Grovelabs is aware of the risk.

5.3 LayerZero Approvals
D (Low) (Version 1))

The OFTRecei pt contains the anount SentLD and the anobunt Recei vedLD amounts where
anmount Sent LD corresponds to the amount actually debited from the user. Hence, send() could
potentially pull less tokens than approved (e.g. LayerZero dust removal) and pending approvals could
exist. Optimally, the approvals should be revoked to prevent dangling approvals.

CS-GRVALM-003

Note that pending approvals might introduce a corner case if ZRO are held and bridged. Namely, a
dangling approval could allow for a | zTokenFee > 0 to be collected for ZRO OFTSs.

Acknowledged:

GrovelLabs has acknowledged that dangling approvals may still exist.

5.4 Maple Redemption Can Be DoSed
(Security [(ET)CETIBY Risk Accepted

Maple redemption can be DoSed by a compromised relayer in two ways:

CS-GRVALM-004

1. Each user can have at most 1 redemption request in MapleWithdrawalManager. Hence a
compromised relayer can keep triggering dust redemptions and block the legitimate redemptions
from honest relayers. In this case, the honest relayers have to cancel the dust redemptions first
before triggering a legitimate one.

2. Requesting a maple redemption will consume rate limit, whereas cancelling a redemption will not
recharge the limit. Consequently, if the whole rate limit is consumed by a compromised relayer,
other relayers will not be able to trigger future redemptions.

Risk accepted:

As demonstrated by the test (Attacks.t.sol,
test _attack_conprom sedRel ayer del ayRequest Mapl eRedenpti on): if a malicious relayer
delays redemption, the freezer can remove the compromised relayer and revert to the governance
relayer. This prevents the compromised relayer from continuing the attack, allowing the governance
relayer to cancel and submit the legitimate request.

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5.5 Over-reduced Limit in Maple Redemption

Correctness JICTEEETEY Risk Accepted)

In request Mapl eRedenpti on(), the redemption limit will be reduced given the conversion rate
between the shares and the assets with convert ToAsset s() .

CS-GRVALM-005

In MaplePool, function convert ToAsset s assumes the pool holds t ot al Asset () without unrealized
loss. However, when the redemption is processed with processRedenpti ons(), the withdrawable
amount takes the unrealized loss into consideration.

Consequently, there would be a discrepancy between the rate limit decrease and the actual received
tokens in the event of unrealized loss.

5.6 Relayer Can DoS SUSDE Unstaking
(Security JOET)|NZETTR Risk Accepted)

In Ethena, two steps are required to convert sUSDe to USDe:

CS-GRVALM-006

* A cooldown must be initiated first, which (1) burns the shares and credits the USDe to the USDeSilo
contract (2) reset the cool downEnd to be cool downDur at i on from current bl ock. ti mest anp.
Note the step (2) will extend any existing cooldown asset to another cool downDur at i on.

* When the cool downEnd is reached, the sUSDe can be unstaked and the USDe will be credited to a
specified receiver.

Consequently, a malicious relayer can keep triggering new cooldowns with as little as 1 wei asset to
block previous exits from sUSDe to USDe, hence DoS the sUSDe to USDe conversion.

Note: GrovelLabs was aware of this issue. In addition, in case a malicious relayer DoSed the sUSDe
unst ake(), the freezer will revoke the RELAYER role from the malicious relayer.

5.7 Revoking Unused Approval
[Low] [Version 1][]

The freezer can remove relayers from the MainnetController which prevents relayers from triggering any
more interactions or funds transfers from the ALMProxy.

CS-GRVALM-007

However, since the Ethena integration requires actions from several external parties (see Allowance For
Ethena Minter May Not Be Consumed), the actual transfers of underlying assets to mint or redeem USDe
may happen even after the relayer is disabled.

Acknowledged:

GrovelLabs acknowledged the issue and decide not to change the code since Ethena is fully trusted.

5.8 Inconsistent Bridging Rate Limits
[Version 1][]

CS-GRVALM-008

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

The LayerZero integration implements rate limits per OFT and destination pair. In contrast, the CCTP
integration implements a limit per destination and a global CCTP limit (always in USDC).

The LayerZero integration however lacks a notion of global limits per token and, hence, an inconsistency
between the bridging rate limits for CCTP and LayerZero exists.

Acknowledged:

GroveLabs has acknowledged the inconsistency between the bridging rate limits for CCTP and
LayerZero.

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

6.1 Allowance For Ethena Minter May Not Be

Consumed
(Informational] [Version 1] [j

CS-GRVALM-009

The integration with Ethena minter for USDe minting and burning requires external parties' (delegated
signers, Ethena minter and redeemer) actions. The relayer can only trigger the appr ove() from the
ALMProxy and expect the consecutive actions will be completed by the external parties.

In the following cases the allowance may not be fully consumed:
» The delegated signers sign orders with smaller volume which do not consume all the allowance.

» The Ethena minter or redeemer refuse to submit the order, which blocks the minting or redeeming
and does not consume the allowance.

* The expected minting and burning may not be executed successfully due to the restrictions on
Ethena minter such as the volume exceeds per block limit.

Consequently, the actual amount used in the interactions may be less than the amount tracked by the
rate limit.

Acknowledged:

GrovelLabs acknowledged the issue and decide not to change the code.

6.2 Maple Manual Withdraw May Be Enabled
(Informational) (Version 1)

A maple redemption requires two steps:

CS-GRVALM-010

1. The user submits a redemption request.

2. The privileged redeemer processes the request.

In a typical path, no more user interactions are required after step 1, and the underlying tokens will be
automatically sent to the user in step 2.

However, in case manual withdrawal is enabled for the user, another call to Mapl ePool . redeem()
must be initiated to fulfill the withdrawal and trigger the underlying token transfer.

Note that manual withdrawals can only be enabled by the privileged roles (pool delegator and protocol
admins) of MapleWithdrawalManager with set Manual W t hdr awal () . In this case, the ALM Proxy has
to explicitly call redeem (ALM Controller's r edeenERCA4626()) to finalize the redemption. And this
requiresa Ll M T_4626_W THDRAWconfigured on the ALM Controller for this MaplePool. In addition, the

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

manually withdrawable shares will be internally accounted in the MapleWithdrawalManager, hence the
share balance of ALMProxy (bal anceOr ()) will not contain this.

6.3 Withdraw From Aave Can Be Blocked By

LTV=0 Asset
(Informational] [Version 1] []

CS-GRVALM-011

When an asset is deposited under a user for the first time, the asset will be automatically configured as
collateral if its LTV is non-zero and it is not in isolation mode.

In case a user has an asset enabled as collateral which has LTV==0, the user will not be able to
withdraw any other assets that has LTV>0.

As a consequence, the following theoretical attack is possible:
* An attacker observed an asset that has LTV>0 is going to be configured to LTV==0 on Aave.
« It can supply on behalf of the ALMProxy (or send directly) a dust amount of this aToken.

* After the parameter change on Aave, the asset has LTV==0. The attacker successfully DoS the
ALMProxy, which will not be able to withdraw the desired aToken (i.e. aUSDS, aUSDC...) from
Aave.

Note that there is no rate limit and token restriction on function wi t hdr awAave(). The relayer can
withdraw the full balance of the asset with LTV==0, which resets the usi hgAsCol | at eral flag to
f al se and recovers the ALMProxy from the DoS.

Acknowledged:

GrovelLabs has acknowledged this issue and stated a rate limit for the LTV=0 asset will be added to
withdraw this asset in case this attack happens.

6.4 nsg. val ue Validation in

t ransf er TokenLayer Zer o
(Informational] [Version 1] []

CS-GRVALM-012

The relayer attaches nsg. val ue to callsto t r ansf er TokenLayer Zer o() to pay for the LayerZero V2
fees. Note that there might be two scenarios:

 The relayer does not provide sufficient value (e.g. pricing changed between transaction sending and
arrival). Then, if the controller does not hold the relevant native token delta, the call reverts.
However, that works as expected.

« Similarly, the relayer might provide a nsg. val ue that is too high due to similar reasons. In such
cases the native token could be stuck in the controller.

Ultimately, the second scenario could lead to native tokens in the controller. Typically, they will not be
used. However, technically the relayer could reuse them to future LayerZero V2 fees. However, refunding
the relayer with remaining delta might be more meaningful.

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 A Compromised Ethena Minter Or Redeemer
May Execute A Bad Order

Ethena's minter and redeemer are two crucial roles that can submit the signed orders to the Ethena
minting contract. Since the delegated signers are only semi-trusted and can be malicious, the minter and
redeemer are fully trusted to never submit bad orders signed by the malicious delegated signers.

In the worst case if Ethena’ minter or redeemer are compromised, they may collude with a malicious
delegated signer to execute an order with bad quote that drains the approved USDC from ALMProxy.

7.2 Aave Interprets Uint256 Max Withdrawal as
Full Withdrawal

The relayers should be aware that Aave will interpret a withdrawal with t ype(ui nt 256) . max amount
as a full withdrawal with user's balance. The relayers should be careful of this special behavior if they are
dependent on the input amount.

7.3 Asynchronous Operations May Be Interfered

The execution of some asynchronous operations may be interfered and unable to finalize due to another
operation. For instance, the operation of prepar eUSDeM nt () will be initiated to mint USDe, which
simply grants allowance of tokens to be deposited. Before the 3rd-party operation to consume the
allowance, another operation, i.e. swapCur ve(), may use up the tokens. This may cause the 3rd-party
operation to fail due to insufficient token balances.

The relayers should be careful of the asynchronous operations and avoid the interference of different
operations.

7.4 Avoid Morpho Deposit Into Market With Bad
Debt

Upon a deposit into MetaMorpho vault, shares will calculated based on the aggregated expected balance
over all the markets in the wi t hdr awQueue. In case there is unrealized bad debt in any of the underlying
markets, the new deposits will bear this impairment. The relayers should monitor the markets conditions
and not deposit or reallocate into markets with unrealized bad debt.

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7.5 Centrifuge Shares Transfer Refund to
ALMProxy
(D) (Version 1

When transferring Centrifuge shares to another chain with transfer SharesCentrifuge(), the
relayer has to attach nsg. val ue to pay for the transfer fuel. Note that in case the fuel is excessive, it will
be refunded to the ALMProxy instead of the relayer.

7.6 Curve Withdrawal Slippage
(D) (Version 1

When removing liquidity from Curve with renoveli qui di tyCurve() a balanced withdrawal is
performed. Note that the performed slippage protection is not strictly necessary. Namely, assuming
tokens are pegged, that is due to no negative slippage in terms of "underlying value" being possible.

As a consequence, note that the relayer will typically be forced to simulate the transaction to be able to
provide rough values suitable to pass the check.

7.7 Inconsistent Swap Rate Limit Decrease for
Curve

(D) (Version 1)

When adding liquidity to Curve, a swap can occur. Note that the rate limit adjustment is inconsistent with
the adjustment in the swap function. Consider the following example:

1. Assume that swapping 50 token A returns 49 token B.
2. When using the swap function, the rate limit is reduced by 50.

3. Assume that when adding liquidity with 100 token A and O token B, the internal swap swaps so that
50 token A and 49 token B are added.

4. The swap performed is effectively the swap from 1.

5. However, the rate limit adjustment will be the average of the input and output deltas and will thus be
49.5.

Ultimately, there can be swap rate limit discrepancies between swap and adding liquidity. However, note
that this is intended according to GrovelLabs.

7.8 Maple Deposit Ignores Unrealized Losses

When depositing into the MaplePool, shares are minted assuming there are no unrealized losses from
the underlying loan managers, hence this deposit will bear part of the impairment immediately. In
addition, withdrawals from MaplePool will bear existing unrealized loss and forfeit the potential recovery
of the impairment. The relayers should monitor the Maple's loan and unrealized loss status before
deposits and withdrawals to avoid loss to the ALMProxy.

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

7.9 MorphoAllocations updateWithdrawQueue
Subject to Front Running

(D (Version 1)

In Morpho vaults, any user can supply on behalf of the vault. Since updat eW t hdr awQueue() requires
the market to be empty, malicious actors can front-run this call, blocking its intended execution. This is a
known issue documented in Morpho's documentation. The recommended workaround is for the allocator
to bundle a reallocation that withdraws the maximum from the affected market alongside the
updateWithdrawQueue call.

The Grove ALM Controller provides separate updateW thdrawQueue() and reall ocate()
functions. Although there's no bundled variant that combines them atomically, the expectation is that
including both operations within a single transaction will mitigate the frontrunning risk.

7.10 OFT Considerations
(D) (Version 1

Governance should be aware that certain OFTs are not supported. Below is a list of considerations to
make when adding support for an OFT:

* OFTs that try to pull more than it was specified are not supported due to lack of sufficient approval.

* OFTs could try to burn (without approval) more than it was specified are generally not supported. If
more would be burned than specified, the rate limit accounting could be incorrect. Thus, such OFTs
should not be added.

* OFTs with inherent rate limits could lead to unsuccessful operations. More specifically, the
executions could revert due to OFT rate limits.

* OFTs should be ensured to follow the OFT standard correctly. Additionally, the underlying token
should not be allowed to change or similar as this could lead to rate limit violations.

» The gas cost for configured dest i nati onEndpoi nt | d should be carefully monitored to ensure
that the hardcoded value of 200_000 is sufficient.

7.11 OFTs With Mandatory Fee in [zToken Are Not

Supported

Function t r ansf er TokenLayer Zer o() queries the fees with quot eOFT() prior to send() to prepare
the fee payment by attaching required native tokens. Even though it quotes OFT with flag
_payl nLzToken=f al se, it does not guarantee the fee contains 0 IzToken. Hence, in case part of the
fee must be paid in 1zToken, send() will fail due to insufficient approval of IzToken.

In summary, OFTs that always require part of the fee in IzToken are not supported by Grove ALM
Controller hence should not be used.

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7.12 Special Cases Handling
(D) (Version 1

The ALM's functionality can be extended by allowing new controllers. Some currently unresolvable
scenarios, could be resolved in the future if needed. For example:

1. Assume it is desired that for an L2, all funds are bridged back to mainnet. However, in case the
PSM3 never holds sufficient USDC to bridge back to L1, funds will remain on L2. As a result,
another controller could be whitelisted that initiates redeeming the PSM shares against the other
two assets to then bridge them back to mainnet through the respective bridges.

2. The mint recipient for CCTP could be blacklisted. That effectively could DoS the USDC bridging. In
that case, a new controller could be added that allows calling CCTP's r epl aceDeposi t For Bur n
to resolve the issue.

Ultimately, some unlikely (and intentionally unhandled) issues may arise with the existing controllers. To
resolve such issues, new controllers can be added.

I:$: Grovelabs - Grove ALM Controller - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Centrifuge V3

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Centrifuge Conversion Rate May Change Between Request Submission and Execution
	5.2 Centrifuge Deposit / Redemption Can Be DoSed by Cancellation
	5.3 LayerZero Approvals
	5.4 Maple Redemption Can Be DoSed
	5.5 Over-reduced Limit in Maple Redemption
	5.6 Relayer Can DoS SUSDE Unstaking
	5.7 Revoking Unused Approval
	5.8 Inconsistent Bridging Rate Limits

	6 Informational
	6.1 Allowance For Ethena Minter May Not Be Consumed
	6.2 Maple Manual Withdraw May Be Enabled
	6.3 Withdraw From Aave Can Be Blocked By LTV=0 Asset
	6.4 msg.value Validation in transferTokenLayerZero

	7 Notes
	7.1 A Compromised Ethena Minter Or Redeemer May Execute A Bad Order
	7.2 Aave Interprets Uint256 Max Withdrawal as Full Withdrawal
	7.3 Asynchronous Operations May Be Interfered
	7.4 Avoid Morpho Deposit Into Market With Bad Debt
	7.5 Centrifuge Shares Transfer Refund to ALMProxy
	7.6 Curve Withdrawal Slippage
	7.7 Inconsistent Swap Rate Limit Decrease for Curve
	7.8 Maple Deposit Ignores Unrealized Losses
	7.9 MorphoAllocations updateWithdrawQueue Subject to Front Running
	7.10 OFT Considerations
	7.11 OFTs With Mandatory Fee in lzToken Are Not Supported
	7.12 Special Cases Handling

