

PUBLIC

Code Assessment

of the M Extensions

Smart Contracts

August 26, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 12

4 Terminology 13

5 Open Findings 14

6 Resolved Findings 17

7 Informational 23

8 Notes 25

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help M0 with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of M Extensions according to
Scope to support you in forming an opinion on their security risks.

M0 implements a suite of different ERC-20 stablecoin contracts designed to wrap the existing $M token
into non-rebasing tokens, for better composability in the broader DeFi ecosystem. These contracts,
called extensions, differ in how they treat and redistribute the yield generated by their $M balance.

Additionally, M0 offers a SwapFacility contract, that will act as a gateway towards these extensions,
being the only privileged address allowed to wrap and unwrap $M tokens.

The most critical subjects covered in our audit are asset solvency, functional correctness, and precision
of arithmetic operations. Security regarding all the aforementioned subjects is high, after all outstanding
issues have been addressed.

The general subjects covered are documentation, gas efficiency, and the integration of the wrapper into
the existing system. Security regarding all the aforementioned subjects is generally good.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 5

• Code Corrected 4

• Acknowledged 1

Low -Severity Findings 5

• Code Corrected 2

• Acknowledged 3

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the M Extensions repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V
Date Commit Hash Note

1
23 Jun
2025

66eb4710e73ce1ffcf198b593e9e818
48f9385cc

Initial Version

2
17 Jul
2025

ba39e694aa7bfffd5138a0ead9f9cb74
38c7929a

Version with fixes

3
31 Jul
2025

0bf9cadd2002a0fa656ba4e34c2cb90
eb73a2da9

Second round of fixes

4
13 Aug
2025

011f84f0f6a701a9796fcac1ad29896c
60b65344

Freezable and SwapFacility permission logic
update

5
26 Aug
2025

909c536deac54de5a5bc3305f57e310
c327fb441

Balance check and NatSpec updates

For the solidity smart contracts, the compiler version 0.8.26 was chosen.

The following contracts are in the scope of the review:

MExtension.sol
components:
 Blacklistable.sol
libs:
 IndexingMath.sol
projects:
 earnerManager:
 MEarnerManager.sol
 yieldToAllWithFee:
 MSpokeYieldFee.sol
 MYieldFee.sol
 yieldToOne:
 MYieldToOne.sol
swap:
 SwapFacility.sol
 UniswapV3SwapAdapter.sol

After V2, the scope has been updated as follows:

Added:

swap:
 ReentrancyLock.sol

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 5

https://github.com/m0-foundation/evm-m-extensions/tree/66eb4710e73ce1ffcf198b593e9e81848f9385cc
https://github.com/m0-foundation/evm-m-extensions/tree/66eb4710e73ce1ffcf198b593e9e81848f9385cc
https://github.com/m0-foundation/evm-m-extensions/tree/ba39e694aa7bfffd5138a0ead9f9cb7438c7929a
https://github.com/m0-foundation/evm-m-extensions/tree/ba39e694aa7bfffd5138a0ead9f9cb7438c7929a
https://github.com/m0-foundation/evm-m-extensions/tree/0bf9cadd2002a0fa656ba4e34c2cb90eb73a2da9
https://github.com/m0-foundation/evm-m-extensions/tree/0bf9cadd2002a0fa656ba4e34c2cb90eb73a2da9
https://github.com/m0-foundation/evm-m-extensions/tree/011f84f0f6a701a9796fcac1ad29896c60b65344
https://github.com/m0-foundation/evm-m-extensions/tree/011f84f0f6a701a9796fcac1ad29896c60b65344
https://github.com/m0-foundation/evm-m-extensions/tree/909c536deac54de5a5bc3305f57e310c327fb441
https://github.com/m0-foundation/evm-m-extensions/tree/909c536deac54de5a5bc3305f57e310c327fb441
https://chainsecurity.com

After V4, the scope has been updated as follows:

Removed:

src/components/Blacklistable.sol

Added:

src/components/Freezable.sol

2.1.1 Excluded from scope
Any contracts not explicitly listed above are out of the scope of this review. Third-party libraries are out of
the scope of this review. More specifically, openzeppelin-contracts-upgradeable,
openzeppelin-contracts and uniswap-v4-periphery are expected to work as intended and are
out of the scope of this review. The Uniswap V3 protocol and the SwapRouter02 router are expected to
work as intended and are out of the scope of this review. The code related to the core protocol (MToken)
and common/ is out of the scope of this review but a dedicated review can be found at
https://www.chainsecurity.com/security-audit/m-zerprotocol-and-governance.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

M0 offers a suite of different ERC-20 stablecoin contracts designed to wrap the existing $M token into
non-rebasing tokens, for better composability in the broader DeFi ecosystem. These contracts, called
extensions, differ in how they treat and redistribute the yield generated by their $M balance.

Additionally, M0 will deploy a SwapFacility contract, that will act as a gateway towards these
extensions, being the only privileged address allowed to wrap and unwrap $M tokens.

2.2.1 Extensions

Three different extensions are in scope for this review: MYieldToOne, MEarnerManager, and the pair
MYieldFee - MSpokeYieldFee.
They will not have minting privileges for the $M token, therefore the wrap/unwrap functionality is
implemented with a lock-unlock mechanism. They will, however, be whitelisted as $M earners (more on
that later), therefore their locked $M balance will generate yield: this yield gets represented by additional
wrapped tokens to be minted by an ad-hoc function, called claimYield() or some variant thereof.
It is the intention of M0 that these extensions be deployed by selected partner entities and individually
whitelisted in the SwapFacility.
All of the extensions are meant to be deployed behind transparent upgradable proxies.

2.2.1.1 MExtension

This is an abstract contract that serves as a basis for the three concrete extensions.
As a matter of public-facing functions, it defines little more than the access control, token flow, and
exchange logic for the wrap() and unwrap() functions: only the SwapFacility can call them; $M
tokens only flow to/from the SwapFacility; $M tokens are always exchanged one-to-one for the

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 6

https://www.chainsecurity.com/security-audit/m-zerprotocol-and-governance
https://chainsecurity.com

wrapped version. These functions are inherited without override: only the associated _mint() and
_burn() logic is left to be implemented by the concrete inheriting contracts. The implementation of the
internal accounting (balanceOf(), _update()) is delegated to the concrete implementation as well.
Furthermore, it declares optional hooks, to be defined by extensions needing to intercept particular user
actions; these are: _beforeWrap(), _beforeUnwrap(), _beforeApprove(),
_beforeTransfer().

2.2.1.2 MYieldToOne

This is the simplest of the three wrappers. All the yield goes to a single, configurable yieldRecipient
address. It also features a blacklist, restricting token movements among ordinary users.
A privileged yieldRecipientManager address can set the yieldRecipient at will; another
privileged blacklistManager address can add and remove arbitrary addresses to/from the blacklist.
When a new yieldRecipient recipient is set, the yield is not automatically claimed for the old
recipient.
The permissionless claimYield() function computes the "pending" yield as the difference between the
contract's own $M balance and the totalSupply() of wrapped tokens: this amount of wrapped tokens
is then minted to the yieldRecipient.
All four hooks are implemented to enforce the blacklist on every user action (wrap(), unwrap(),
approve(), transfer(), transferFrom(), permit(), transferWithAuthorization()).
This extension can seamlessly adapt to the case where the $M governance revokes its earning status; no
particular action is required to update its internal accounting.

2.2.1.3 MEarnerManager

This wrapper redistributes yield to all of its users, minus a fee determined by a per-address feeRate
taken as a percentage of the accrued yield. It features a whitelist of addresses allowed to hold and move
tokens.
A privileged earnerManager address can set the global feeRecipient address, as well as the
individual fee rates; it also manages the whitelist. If an address is un-whitelisted, its funds get frozen, and
its fee rate is set to 100% (this allows its future yield not to be frozen, and to go entirely to the
feeRecipient). By default, all accounts have a feeRate of 0% unless whitelisted with a different fee
rate, or un-whitelisted.
Anyone can permissionlessly claim yield on behalf of any other account, using the
claimFor(address account) function. The pending yield is computed by using the
currentIndex() of the $M token: the result is equal to the $M yield earned by the extension contract,
"induced" by the account's deposit, since the last claim (this effectively means that, when all users
claim, all yield is redistributed). The corresponding quantity of wrapped tokens is minted to the account,
and then the appropriate cut on the yield (determined by the account's feeRate) is explicitly
transferred to the feeRecipient.
No function exists to "sweep" all the "pending fee" in one go. Since users all have different feeRates,
the only way to collect all the pending fees is to iteratively call claimFor() over all users. For this to be
manageable, the whitelist is expected to stay within a reasonable size.
All four hooks are implemented to enforce the whitelist on every user action (wrap(), unwrap(),
approve(), transfer(), transferFrom(), permit(), transferWithAuthorization()). In
particular, the token source (msgSender() of the SwapFacility) when wrapping must also be
whitelisted, arbitrary addresses cannot wrap for a whitelisted address.
This extension cannot adapt to the case where the $M governance revokes its earning status. It will keep
crediting undue/unredeemable yield indefinitely to its users (always using the growing currentIndex()
of the $M token), eventually leading to insolvency, and a bank run. This situation is expected to be
remedied with an upgrade.

2.2.1.4 MYieldFee

This extension credits the same yield rate to all its users; this is the $M token's earnerRate(),
discounted by a configurable feeRate: the yield not credited to users makes up the fee.

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

A privileged feeManager address can set the feeRate and the feeRecipient. Another privileged
claimRecipientManager address can set a claimRecipient for each user: this effectively redirects
the user's yield to an admin-chosen address.
A permissionless updateIndex() function, analogous to the one in the $M token, exists to "pivot
around" the current index, and apply a new earner rate from this point on. This function needs to be
called promptly, whenever the earnerRate() changes on $M.
Anyone can permissionlessly claim yield on behalf of any other account, using the
claimYieldFor(address account) function. The pending yield is calculated by using the
currentIndex() recomputed internally using the discounted rate. This yield is then credited to the
account, and possibly forwarded to its claimRecipient, if one is set.
The permissionless function claimFee() computes all the pending fee as the difference between the
$M balance of the extension contract, and the projected total supply (i.e. a preview of the total supply,
should every user claim its yield). The fee is simply minted to the fee recipient.
None of the hooks are implemented, since no blacklist/whitelist checks need to be enforced.
This extension can handle the case where the $M governance revokes its earning status. The
permissionless function disableEarning() needs to be called promptly, as soon as the extension
contract stops being an $M earner; this function sets the rate to 0, effectively stopping undue yield from
being credited to users. Should the extension contract regain the $M earner status, anyone can call the
permissionless function enableEarning() in order to again start using $M's earnerRate()
(discounted by the fee).

2.2.1.5 MSpokeYieldFee

This is a specialized version of MYieldFee that can be deployed on supported EVM sidechains (e.g.
Arbitrum, Optimism) where the $M token is deployed. These chains are called spoke chains.
While MYieldToOne and MEarnerManager can be deployed to spoke chains without modifications,
MYieldFee needs to query the current earnerRate() on the $M token, which is absent in spoke
chains deployments. On spoke chains, the $M index does not continuously grow according to a rate;
instead, the currentIndex() is periodically bridged over from L1 and applied immediately. This results
in discrete jumps at every bridging operation.
The MSpokeYieldFee inherits from MYieldFee, overriding some of its internal functions so as to mimic
the step-wise behavior of the bridged $M index. First, the earnerRate() is queried from an ad-hoc
rateOracle, set at initialization time; notice that the implementation of the rate oracle is out of scope for
this review. Second, the exponential computed in currentIndex() does not utilize
block.timestamp, but the timestamp of the last $M index bridging. This ensures that
currentIndex() follows the same jumps as in the $M token, minus the fee.
The rest of the functionality is identical to the MYieldFee.

2.2.2 SwapFacility

The SwapFacility is deployed behind a transparent proxy and is the only entity allowed to call
wrap()/unwrap() on the extensions, it acts as the hub for:

• swapping between the extensions with swap(). It simply unwraps from the source and wraps into
the destination extension.

• wrapping MToken into one of the extensions with swapInM() and swapInMWithPermit(). The
MToken will be transferred to the SwapFacility and then wrapped into the desired extension.

• swapping some whitelisted token to one of the extension tokens, or the other way around, via
Uniswap V3 (through the UniswapV3SwapAdapter): functions swapInToken() and
swapOutToken().

• unwrapping MToken from one of the extensions with swapOutM(). Only whitelisted addresses are
allowed to do it, as regular users should not directly hold the MToken in practice, but rather interact
with one of the wrapped versions.

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

All the wrapping/unwrapping actions described above are subject to the limitations imposed by the
source and/or destination extensions, e.g. blacklist, whitelist, for the addresses involved.

2.2.3 UniswapV3SwapAdapter
This contract is immutable and serves as a helper to interact with Uniswap V3's SwapRouter02 to swap
from/to the base token (wrapped MToken) to/from some whitelisted token. The token whitelist is
managed by an admin address having the DEFAULT_ADMIN_ROLE. The contract exposes two main
functions: swapOut() and swapIn(). The two functions can be given a path, following the
token-fee-token structure from UniswapV3, for multi-hop swaps. An empty path is possible and will
default to a single swap on the token pair baseToken/[in-out]put with fee 0.01%.

2.2.4 Changes in V2

• MEarnerManager has been fixed in its internal accounting, so that now it can gracefully handle the
event of being removed from the earners list, without triggering a bank run or requiring an upgrade.

• The MExtension burns the shares from the SwapFacility instead of the
SwapFacility.msgSender().

• In the MYieldToOne the yield is automatically claimed for the old yield recipient before the new
recipient is set.

• The Lock implemented by SwapFacility allowing the contract to reenter itself has been replaced
by the new ReentrancyLock.

• The UniswapV3SwapAdapter contract now implements the ReentrancyLock from
uniswap-v4-periphery.

• The SwapFacility no longer offers swap functions from/to arbitrary tokens, and therefore no
longer depends on the UniswapV3SwapAdapter (aside from the ReentrancyLock component).

• The UniswapV3SwapAdapter is now a standalone helper contract that exposes user-facing swap
functions from/to arbitrary tokens.

2.2.5 Changes in V4

• Blacklistable has been renamed to Freezable, but the functionality stays the same.

• MYieldToOne implements a new hook _beforeClaimYield() called at the beginning of
claimYield(). The hook has no functionality in MYieldToOne but can be overridden by contracts
extending it.

• The SwapFacility has a more fine-grained access control. The extensions can be marked as
permissioned by the DEFAULT_ADMIN_ROLE. A permissioned extension can only be swapped from
and to by a swapper address that was explicitly whitelisted for that extension by the
DEFAULT_ADMIN_ROLE, overriding the M_SWAPER_ROLE role. The updated behavior of the
swapping functions are listed below:

• swap()/swapWithPermit(): both extensions must be approved as before, both
extensions must be not permissioned

• swapInM()/swapInMWithPermit(): the extensionOut must be approved as before,
the caller must be explicitly whitelisted if the extensionOut is permissioned, otherwise the
caller must have the M_SWAPPER_ROLE. Previously, any MToken holder could use this
function to swap to an authorized extension.

• swapOutM()/swapOutMWithPermit(): the extensionIn must be approved as before,
the caller must be explicitly whitelisted if the extensionIn is permissioned (new),
otherwise the caller must have the M_SWAPPER_ROLE (as before).

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

2.3 Roles and Trust Model
• Users: not trusted.

• Proxy admins: fully trusted. They are trusted to manage the proxies implementation in the best
interest of the users and in a non-adversarial manner. If malicious or compromised, they can
upgrade the implementations of the wrappers and/or SwapFacility and steal all the locked
MTokens.

• Bearers of DEFAULT_ADMIN_ROLE in general: fully trusted. They are trusted to manage the internal
roles and permissions of the contracts in the best interest of the users and in a non-adversarial
manner. If malicious or compromised, they can, for example, distribute critical roles to lock (DOS)
users' funds and collect their yield (MEarnerManager and MYieldToOne).

• Bearers of the DEFAULT_ADMIN_ROLE in UniswapV3SwapAdapter: semi-trusted. They are
trusted to manage the whitelist of tokens to facilitate swapping from and to the M ecosystem in the
best interest of the users and in a non-adversarial manner. If malicious or compromised, DOS the
the swapInToken() and swapOutToken() of the SwapFacility.

• Bearers of the M_SWAPPER_ROLE in SwapFacility: semi-trusted. They are trusted to set a correct
whitelist of addresses who are allowed to call swapOutM(). If set too lax, the $M token may start
circulating among regular users. If set too strictly, legitimate $M holders might be hampered in their
operations.

• Bearers of the EARNER_MANAGER_ROLE in MEarnerManager: fully-trusted. They are trusted to
manage the whitelist and the applied fees in the best interest of the users and in a non-adversarial
manner. If malicious or compromised, they can lock (DOS) user's funds and redirect the yield to an
address they control.

• Bearers of the FEE_MANAGER_ROLE in MYieldFee: semi-trusted. They are trusted to manage the
applied fee in the best interest of the users and in a non-adversarial manner. If malicious or
compromised, they can steal the yield by setting the fee to 100% and redirect the yield to an address
they control but cannot DOS users.

• Bearers of the CLAIM_RECIPIENT_MANAGER_ROLE in MYieldFee: semi-trusted. They are trusted
to manage the users' claim recipients in the best interest of the users and in a non-adversarial
manner. If malicious or compromised, they can redirect the yield to an address they control but
cannot DOS users.

• Bearers of the FREEZE_MANAGER_ROLE in MYieldToOne: fully trusted. They are trusted to manage
the freeze-list in the best interest of the users and the entity collecting the yield, and in a
non-adversarial manner. If malicious or compromised, they can lock (DOS) user's funds or freeze
the feeRecipient.

• Bearers of the YIELD_RECIPIENT_MANAGER_ROLE in MYieldToOne: semi-trusted. They are
trusted to manage the yield recipient address in the best interest of the entity collecting the yield. If
malicious or compromised, they can redirect the yield to an address they control but cannot DOS
users.

Other assumptions:

• SwapFacility will never be added to the earner list, nor be upgraded to expose a function calling
MToken.startEarning(). The same goes for UniswapV3SwapAdapter.

• MEarnerManager is meant to have a relatively low number of holders, so that claimFor() can
realistically be called on all of them.

• updateIndex() will be called promptly after an update of the MToken.earnerRate().

• The earner rate oracle on spoke chains is assumed to always return the MToken.earnerRate()
from Mainnet within an acceptable time delay.

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

• The $M governance will not add arbitrary/malicious contracts to the earners list, nor will it altogether
disable the list (making everyone an earner).

• The $M governance will not remove legitimate extensions from the earners list, as this will prevent
their users from unwrapping and exiting the system (since the SwapFacility will no longer
recognize them as extensions).

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• AcknowledgedAccount Blacklist Check Before Wrap Can Be Circumvented

Low -Severity Findings 3

• AcknowledgedDiscrepancy of Yield When Earning Is Disabled

• AcknowledgedExternal Instead of Public Functions

• AcknowledgedMEarnerManager Fee Recipient Can Have a Fee Rate

5.1 Account Blacklist Check Before Wrap Can Be
Circumvented
Design Medium Version 1 Acknowledged

CS-MEXT-002

In YieldToOne, the hook _beforeWrap() checks that the source of the MToken account and the
recipient of the wrapped token recipient are both not blacklisted. However, if account is blacklisted it
is easy for them to transfer the MToken to another address and then wrap from there, circumventing the
check.

Acknowledged:

M0 is aware of the issue but decided not to change the code.

5.2 Discrepancy of Yield When Earning Is
Disabled
Correctness Low Version 1 Acknowledged

CS-MEXT-005

If the governance removes the MYieldFee wrapper contract from the earners list, anyone can trigger a
call to stop the wrapper from earning more yield in M token in two ways:

1. Call disableEarning() in the MYieldFee wrapper contracts.

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

2. Call stopEarning(wrapperAddr) in M token contract.

The first option is the correct way to stop the wrapper earning more yield and ensure that the accounting
in the wrapper is correct. However, since anyone can call stopEarning() in the M token contract, the
second option is also possible. In this case, the accounting of the wrapper will be off depending on the
delay that disableEarning() is executed. Theoretically, any delay creates solvency issues for the
wrapper as the yield distributed to MYieldFee holders is larger than the yield earned by the wrapper,
hence last users cannot unwrap their tokens.

Acknowledged:

M0 is aware of a potential discrepancy in the yield and solvency issues in case of a delay to stop the yield
accrual in the wrapper contract.

5.3 External Instead of Public Functions
Design Low Version 1 Acknowledged

CS-MEXT-006

For the sake of code readability and maintainability, functions that are not meant to be called from within
the contract should have an external visibility. Below is a list of public function that can be external:

• MEarnerManager.initialize()

• MYieldToOne.initialize()

• MSpokeYieldFee.initialize()

Acknowledged:

M0 is aware of this and chose to leave the code unmodified in order to allow other contracts to build on
top and call super.initialize().

5.4 MEarnerManager Fee Recipient Can Have a
Fee Rate
Design Low Version 1 Acknowledged

CS-MEXT-007

The specifications of MEarnerManager indicate that the fee recipient should have a feeRate of zero.
However, it is still possible for the EARNER_MANAGER_ROLE to call setAccountInfo() for the current
fee recipient and apply a non-zero fee rate, or even remove it from the whitelist. In practice this should
not happen as the EARNER_MANAGER_ROLE is a trusted role, but it is still a theoretical inconsistency with
the specs.

Acknowledged:

M0 responded:

This will remain at the discretion of the earner manager role

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedMYieldFee Can Be Forced Into Insolvency if Non Earning

Medium -Severity Findings 4

• Code CorrectedWrapped $M V1 Is Unsupported

• Code CorrectedWrong Remaining Balance in swapOut()

• Code CorrectedMEarnerManager Can Be Forced Into an Irrecoverable State

• Code CorrectedRemoving MEarnerManager From the Earner List Will Make It Insolvent

Low -Severity Findings 2

• Code CorrectedDisable Initializers on Implementation

• Code CorrectedIncorrect earnerRate() Returned by MYieldFee When Not Earning

Informational Findings 6

• Code CorrectedConfig Should Be Checked on Spoke Chains After MSpokeYieldFee Deployment

• Code CorrectedDiscrepancy in Event Emission

• Code CorrectedPotentially Redundant Balance Difference

• Code CorrectedRedundant Balance Difference

• Code CorrectedUnused Code

• Code CorrectedWrong Storage Location for EIP7201

6.1 MYieldFee Can Be Forced Into Insolvency if
Non Earning
Design High Version 1 Code Corrected

CS-MEXT-001

The MYieldFee contract has an internal index to track its yield and fee to be distributed and relies on the
value of latestRate to know whether it is currently earning or not. The internal index needs to be
paused whenever the contract is removed from the earner whitelist. If it is not paused, the internal
accounting will still account for some yield which is not received by the contract, making it insolvent.

Because updateIndex() is not aware of the current earning status of the contract, the index can be
"unpaused" and thus force the contract to become insolvent. The following flow would reactivate the
growth of the index even though MYieldFee is not earning on the MToken contract:

1. MYieldFee is earning on MToken and earning is enabled internally

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

2. Governance vote removes MYieldFee from the earners list and
MYieldFee.disabledEarning() is called, setting the latestRate to 0.

3. MYieldFee.updateIndex() is called and sets back the latestRate to whatever
earnerRate() returns, this value will be non-zero as long as the fee is not 100% or the MToken
earner rate is non-zero.

Code corrected:

The contract now relies on a new storage variable isEarningEnabled to track its earning state. If this
variable is not set, updateIndex() will not do any state changes and currentIndex will return the
value of the index when earning was stopped on the contract.

6.2 Wrapped $M V1 Is Unsupported
Correctness Medium Version 2 Code Corrected

CS-MEXT-021

The functions of the SwapFacility and the UniswapV3SwapAdapter work with exact token amounts:
in particular, they expect wrap() and unwrap() on the Wrapped $M token to mint/burn exactly the
specified number of tokens (as is the case for the extensions). However, the currently deployed version
of Wrapped $M (Version 1) does not respect this assumption, as it incurs rounding errors upon wrap()
and unwrap(). This will cause all functions on the UniswapV3SwapAdapter and most functions on the
SwapFacility to revert.

Code corrected:

The contracts now use balance differences, in order to account for imprecise wrap()/unwrap() on
Wrapped $M V1. A comment specifies that, once Wrapped $M is upgraded to V2, these balance
differences will be unnecessary.

6.3 Wrong Remaining Balance in swapOut()
Correctness Medium Version 2 Code Corrected

CS-MEXT-018

The function UniswapV3SwapAdapter.swapOut() is used to swap some MExtension tokens to
arbitrary tokens. To do so, it will first swap the input token to wMToken if it is not already the case, and
then perform the swap to the output token. It can happen that the swap router does not fully consume the
input amount and some wMToken stays in the UniswapV3SwapAdapter.

This leftover amount is incorrectly tracked as the wrappedMBalanceBefore is computed after the
swap, leading to remainingBalance being always 0.

Code corrected:

The Wrapped $M balance is now gauged at the beginning of the function

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6.4 MEarnerManager Can Be Forced Into an
Irrecoverable State
Design Medium Version 2 Code Corrected

CS-MEXT-019

The MEarnerManager contract relies on two variables to determine its earning state:
wasEarningEnabled and disableIndex. They form a state machine with 4 states (both variables
can be 0 or non-zero). Only three of these states are valid, and the only transitions that can/should
happen are (0,0) -> (!0,0) -> (!0,!0). The (0,!0) state is invalid; however, it is reachable. If,
at deployment time, the contract is not yet an allowed earner, anyone can call disableEarning(),
which will irreversibly brick its interest accrual: even calling enableEarning() afterwards will not
remedy this.

Code corrected:

The function isEarningEnabled() is used to check whether the contract has earning currently
enabled instead of simply disableIndex != 0.

6.5 Removing MEarnerManager From the Earner
List Will Make It Insolvent
Design Medium Version 1 Code Corrected

CS-MEXT-003

If an MEarnerManager was to be removed from and added again to the earner list, the contract would
become insolvent and trigger a bank run because the yield kept accruing in the internal accounting while
the contract was not actively earning. If MEarnerManager was to be removed from the earner list, an
upgrade of the contract would be needed prior to the removal to handle it gracefully.

Code corrected:

If removed from the earner list, disableEarning() can be called and will set the disableIndex to
the current value of the index. Once this is done, the contract will never accrue interest again as the index
will be fixed at that value.

6.6 Disable Initializers on Implementation
Design Low Version 1 Code Corrected

CS-MEXT-004

All the wrapper extensions are behind a proxy contract and thus implement an initializer function. These
initialize functions are permissionless but can only be executed once, until the initialized flag is set. Note
that they can also be called on the implementation contract. While this does not have any adverse effect,
it is generally recommended not to leave the implementation contract uninitialized. It is recommended to
invoke _disableInitializers() in the constructor of the implementation to automatically lock the
initialize functions in the implementation contract.

Code corrected:

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

The initializers are disabled on the implementations of the wrapper contract through a call to
_disableInitializers() from the constructor of MExtenstion, which is inherited by all the
wrapper extensions.

6.7 Incorrect earnerRate() Returned by
MYieldFee When Not Earning
Design Low Version 1 Code Corrected

CS-MEXT-020

The function MYieldFee.earnerRate() does not return 0 if the contract is in non-earning mode.
Instead, it keeps returning the discounted earner rate as usual.

Code corrected:

MYieldFee.earnerRate() returns 0 when earning is disabled on the contract.

6.8 Config Should Be Checked on Spoke Chains
After MSpokeYieldFee Deployment
Informational Version 1 Code Corrected

CS-MEXT-009

The contract MSpokeYieldFee exposes two very similar initialize() functions:

• from MYieldFee with 9 parameters

• from MSpokeYieldFee with 10 parameters, basically MYieldFee.initialize() + 1 address

After deployment and initializations, the configuration of MSpokeYieldFee should be double-checked to
ensure the correct initialization function was called (MSpokeYieldFee.initialize).

Code corrected:

The initialize() function of MSpokeYieldFee has now the same signature as
MYieldFee.initialize() and simply overrides it.

6.9 Discrepancy in Event Emission
Informational Version 1 Code Corrected

CS-MEXT-010

In most of the codebase, events are not emitted if a storage variable is about to be updated to the same
value is already has. The function UniswapV3SwapAdapter._whitelistToken() emits the event
TokenWhitelisted even if the isWhitelisted will not change the value of
whitelistedTokens[token], which differs from the rest of the codebase.

Code corrected:

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

The function now returns early, in case of a no-op.

6.10 Potentially Redundant Balance Difference
Informational Version 1 Code Corrected

CS-MEXT-011

The function SwapFacility.swapOutToken() performs a
_swap(extensionIn, baseToken, amountIn, address(this)), surrounded by a balance
difference, so as to gauge the actual amount of baseToken received after the internal call to wrap().
This is currently needed, as the deployed Version 1 of the Wrapped $M Token has rounding errors on
wrap(). Should the token be upgraded to another version that doesn't suffer from the same
shortcomings, this balance difference would become redundant.

Code corrected

The balance difference has been removed, but this does not cause issues as long as the Wrapped $M
token gets upgraded to a new implementation that does not incur rounding errors. See Wrapped $M V1
is unsupported.

6.11 Redundant Balance Difference
Informational Version 1 Code Corrected

CS-MEXT-012

The functions _swap() and _swapOutM() of SwapFacility recompute the amount parameter
mid-way as a balance difference, to account for internal rounding errors in the M token contract. However,
no rounding error is actually incurred, since the SwapFacility is not an earner. The re-computation of
the amount is therefore unnecessary.

Code corrected:

The balance difference has been removed

6.12 Unused Code
Informational Version 1 Code Corrected

CS-MEXT-013

For the sake of code readability and maintainability, unused code should be removed from the codebase:

• the events IUniswapV3SwapAdapter.SwappedIn and
IUniswapV3SwapAdapter.SwappedOut are never used

Code corrected:

The events are now emitted

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

6.13 Wrong Storage Location for EIP7201
Informational Version 1 Code Corrected

CS-MEXT-014

The MSpokeYieldFee contract implements the EIP-7201 for namespaced storage layout. In the
@custom comment, it indicates the location M0.storage.SpokeMYieldFee, but computes the location
for M0.storage.MSpokeYieldFee instead.

Code corrected:

The code in question was removed from the codebase.

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Blacklist Can Theoretically Be Evaded
Informational Version 1 Acknowledged

CS-MEXT-008

The MYieldToOne tokens implements a blacklist and the EIP-3009 (Transfer with authorization). The
blacklist functionality won't allow a blacklisted user to spend its token allowance, but won't prevent them
from using EIP-3009 signatures because they can be consumed from a fresh address that will not be
blacklisted.

As a hypothetical scenario, consider a lending protocol that allows the use of EIP-3009 for the transfer of
liquidity from arbitrary sources, a blacklisted account can use the EIP-3009 signature of a non-blacklisted
account in order to fund its position, using it in a similar way as an allowance. To the best of our
knowledge, no such protocol exists at the time of writing.

Acknowledged

M0 is aware of this behavior and states:

Since EIP-3009 is not widely used across DeFi, we won't remediate this issue.

7.2 Wrong feeRate in Event for De-Whitelisted
Addresses
Informational Version 1 Acknowledged

CS-MEXT-015

In MEarnerManager, when an address is de-whitelisted, the function parameter for feeRate must be 0,
but the effective fee rate from there will be 100%. The emitted event will have status=false and
feeRate=0, observers must also take the status into account as relying only on the feeRate will not
give the new applied fee in this case.

Acknowledged

M0 is aware of this behavior.

7.3 MEarnerManager Fee Can Round to 0
Informational Version 1 Acknowledged

CS-MEXT-016

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

The $M token only has 6 decimals, as do the Wrapped $M Token and all the extensions in scope of this
review. Therefore, 1 wei of $M has non-negligible value, especially if taken as a per-block rate. As a
reference number, 1 wei per block (12 seconds) equals $2.62 per year.
The fee in MEarnerManager is taken as a cut on the yield realized through a call to claimFor(). For
small yearly amounts, this can get rounded down to 0 at every block, should the yield be claimed this
frequently.
As an intentional attack, this is unlikely to be profitable, as the associated gas costs would likely exceed
the dollars "saved" in fees, making it a costly griefing vector.
It can also arise from mismanagement, should an admin decide to automatically sweep all the due fees
at every block.

Acknowledged:

M0 is aware of the potential issue and decided not to change the code.

7.4 disableEarning() on Base MExtension
Might Revert
Informational Version 1 Acknowledged

CS-MEXT-017

The function MExtension.disableEarning() first checks that earning is not already disabled on the
MToken and reverts if it is the case. In the event where the extension is removed from the earner list,
there are two ways to disable earning:

1. Call disableEarning() in the extension wrapper contracts.

2. Call stopEarning(wrapperAddr) in M token contract.

For the currently implemented wrappers, the only effect of this is that the event EarningDisabled will
not be emitted from the wrapper contract, but this behavior should be kept in mind when developing new
wrapper extensions.

This does not apply to MYieldFee as it implements a different way to check whether earning is enabled.

Acknowledged

M0 is aware of this issue and states:

We will make sure to keep this behavior in mind when developing new extensions and communicate this mechanism to potential integrators.

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Claiming Less Often Results in More Yield
Note Version 1

In MEarnerManager, claiming yield reduces one's principal (since the fee is transferred out to the
feeRecipient using _update()). This reduces the yield generated afterwards, compared to
somebody who claims less often, thus "holding onto" their principal for a longer period of time.
In the limit case where claiming is "continuous", the resulting balance curve is an exponential whose rate
is equal to earnerRate() * (1 - feeRate) (exactly as in MSpokeYieldFee). In the opposite limit
case, claiming only once results in a "sampled" exponential, whose rate is the full earnerRate(), but
whose final result is scaled down by (1 - feeRate): this is strictly higher.

8.2 Contracts Can Be Temporarily Insolvent
Note Version 1

Due to the rebasing nature of the MToken, the wrapper contracts may be temporarily insolvent. In
practice, this should not impact security or UX as the rounding error should balance itself over time with
users wrapping and unwrapping, and the yield accumulated should be able to cover for this small
difference. However, it is important to note that this is a potential risk that should be monitored.

8.3 Effects of Disabling the $M Earners List
Note Version 1

The SwapFacility checks whether an address is an approved extension just by checking whether it is
an $M earner. If the governance were to ever disable the earners list, thus making everyone an earner,
this would open the door to phishing attacks: anyone would be able to operate a malicious smart contract
that just exposes the wrap() and unwrap() functions, and lure people into depositing $M tokens
through the legitimate SwapFacility.
Notice that this can also happen if the governance explicitly adds such a malicious contract to the
earners list, or if an earner contract gets upgraded to a malicious implementation.

8.4 Exact Token Amounts
Note Version 3

As of this writing, the currently deployed version of Wrapped $M (Version 1) incurs rounding errors on
wrap() and unwrap(). This affects all functions of the SwapFacility and the
UniswapV3SwapAdaper, except for UniswapV3SwapAdaper.swapOut(). Until Wrapped $M gets
upgraded to a new implementation that does not suffer from rounding errors, callers of these functions
should not expect the balance differences to be exactly equal to the parameters they specified.

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

8.5 Extensions May Not Be Solvent to the Last
Wei
Note Version 1

The extension contracts are assumed to be in earning state (most of the time). If this is the case, the
unwrap() function will trigger an $M transfer that will round up the principal amount to be deducted from
the contract's rawBalance. If all users of an extension were to claim their due yield and then unwrap(),
these roundings may add up to the point where the last operation fails and reverts with
InsufficientBalance, because the principal amount to be deducted is greater than the leftover
rawBalance of the extension contract by a few weis.
It is therefore to be noted that claiming all yield and then unwrapping the whole balance might not always
succeed. Users are discouraged from operating smart contracts that can only exit the system in this way,
and instead allow for more flexibility (e.g. specify an amount to unwrap()).

8.6 Freezelist Front-running
Note Version 1

If the transaction freezing a user is published in a public mempool, the user might be able to avoid being
frozen by front-running the transaction, transferring their funds to a new address.

Developers should be aware of this possibility when implementing block lists for compliance purposes.

8.7 Transfer Events Can Have De-Whitelisted
Addresses as Sender
Note Version 1

In MEarnerManager, a whitelisted address holding funds can be removed from the whitelist. Such an
address should not be able to be the origin or recipient of a token transfer. Even though their assets are
not seizable, 100% of the yield generated can be claimed. When claimFor() is used, a Transfer
event will be emitted with the de-whitelisted address as the sender.

8.8 Updates of the Effective Earner Rate on L2s
Note Version 1

The "effective earner rate" of MSpokeYieldFee depends on three parameters:

1. The protocol's earner rate, supplied by the oracle

2. The feeRate, set by admins

3. The contract's earning status (if non-earner, the rate goes to 0)

When either of these change, a call to MSpokeYieldFee.updateIndex() should be performed, to
correctly record the new rate into the storage variable latestRate.
However, this function call only brings latestUpdateTimestamp up to
IContinuousIndexing(mToken()).latestUpdateTimestamp(), not to the present
block.timestamp. Therefore, the new rate will take effect retroactively, unless M.updateIndex()
gets called (by the portal) right before MSpokeYieldFee.updateIndex().

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

8.9 Yield From MYieldFee Can Be Taken Away
From Users
Note Version 1

Even though the role is trusted to not act maliciously, users must be aware that the
claimRecipientManager address of MYieldFee has the power to set a claim recipient for arbitrary
MYieldFee holders, effectively taking their yield.

8.10 projectedTotalSupply() Is an
Approximation
Note Version 1

The specification of the function projectedTotalSupply() in MEarnerManager and MYieldFee
describe the resulting value as:

The projected total supply if all accrued yield was claimed at this moment.

But this value is actually an approximation (upper-bound) of the total supply if all actors were to claim the
yield, as the claimed yield is rounded down for each of them.

M0 - M Extensions - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Extensions
	2.2.1.1 MExtension
	2.2.1.2 MYieldToOne
	2.2.1.3 MEarnerManager
	2.2.1.4 MYieldFee
	2.2.1.5 MSpokeYieldFee

	2.2.2 SwapFacility
	2.2.3 UniswapV3SwapAdapter
	2.2.4 Changes in V2
	2.2.5 Changes in V4

	2.3 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Account Blacklist Check Before Wrap Can Be Circumvented
	5.2 Discrepancy of Yield When Earning Is Disabled
	5.3 External Instead of Public Functions
	5.4 MEarnerManager Fee Recipient Can Have a Fee Rate

	6 Resolved Findings
	6.1 MYieldFee Can Be Forced Into Insolvency if Non Earning
	6.2 Wrapped $M V1 Is Unsupported
	6.3 Wrong Remaining Balance in swapOut()
	6.4 MEarnerManager Can Be Forced Into an Irrecoverable State
	6.5 Removing MEarnerManager From the Earner List Will Make It Insolvent
	6.6 Disable Initializers on Implementation
	6.7 Incorrect earnerRate() Returned by MYieldFee When Not Earning
	6.8 Config Should Be Checked on Spoke Chains After MSpokeYieldFee Deployment
	6.9 Discrepancy in Event Emission
	6.10 Potentially Redundant Balance Difference
	6.11 Redundant Balance Difference
	6.12 Unused Code
	6.13 Wrong Storage Location for EIP7201

	7 Informational
	7.1 Blacklist Can Theoretically Be Evaded
	7.2 Wrong feeRate in Event for De-Whitelisted Addresses
	7.3 MEarnerManager Fee Can Round to 0
	7.4 disableEarning() on Base MExtension Might Revert

	8 Notes
	8.1 Claiming Less Often Results in More Yield
	8.2 Contracts Can Be Temporarily Insolvent
	8.3 Effects of Disabling the $M Earners List
	8.4 Exact Token Amounts
	8.5 Extensions May Not Be Solvent to the Last Wei
	8.6 Freezelist Front-running
	8.7 Transfer Events Can Have De-Whitelisted Addresses as Sender
	8.8 Updates of the Effective Earner Rate on L2s
	8.9 Yield From MYieldFee Can Be Taken Away From Users
	8.10 projectedTotalSupply() Is an Approximation

