

PUBLIC

Code Assessment

of the Enzyme Onyx

Smart Contracts

September 04, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 12

4 Terminology 13

5 Open Findings 14

6 Resolved Findings 16

7 Informational 21

8 Notes 22

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Enzyme Foundation with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Enzyme Onyx
according to Scope to support you in forming an opinion on their security risks.

Enzyme Foundation implements Enzyme Onyx, a set of smart contracts to tokenize on- and off-chain
value. It supports customizable deposit/redeem mechanisms, fees, and debt/credit tracking.

The most critical subjects covered in our audit are asset flow control, correctness of the fund valuation,
fee handling, and precision of arithmetic operations. Security regarding all the aforementioned subjects is
high.

The general subjects covered are upgradeability, documentation, and specification. Security regarding all
the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security as long as the admins follow the
assumptions under Admin / owner assumptions.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 0

Medium -Severity Findings 1

• Code Corrected 1

Low -Severity Findings 5

• Code Corrected 3

• Risk Accepted 1

• No Response 1

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Enzyme Onyx repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V
Date Commit Hash Note

1
25 June 2025 e74a1c0c760230222cf2412db8e8b230874bca

2e
Initial Version

2
14 July 2025 a7c635b080ee06e96cb190567581a3055261c

1ee
After Intermediate Report

3
01 September
2025

6dbb223aca107aef73efdcc6875cfd4a2a8a95f
e

License Update

4
03 September
2025

d2fd48fb2bd9c48c4f6917d2bccc7a0bae901f7
2

Deployment Update

For the solidity smart contracts, the compiler version 0.8.28 was chosen.

The following files were in scope:

src/components/assets-sources/WithdrawableAssetsSource.sol
src/components/fees/FeeHandler.sol
src/components/fees/interfaces/IManagementFeeTracker.sol
src/components/fees/interfaces/IPerformanceFeeTracker.sol
src/components/fees/management-fee-trackers/ContinuousFlatRateManagementFeeTracker.sol
src/components/fees/performance-fee-trackers/ContinuousFlatRatePerformanceFeeTracker.sol
src/components/fees/utils/FeeTrackerHelpersMixin.sol
src/infra/oracles/OneToOneAggregator.sol
src/components/issuance/deposit-handlers/ERC7540LikeDepositQueue.sol
src/components/issuance/deposit-handlers/IERC7540LikeDepositHandler.sol
src/components/issuance/redeem-handlers/ERC7540LikeRedeemQueue.sol
src/components/issuance/redeem-handlers/IERC7540LikeRedeemHandler.sol
src/components/issuance/utils/ERC7540LikeIssuanceBase.sol
src/components/utils/ComponentHelpersMixin.sol
src/components/value/ValuationHandler.sol
src/components/value/position-trackers/IPositionTracker.sol
src/components/value/position-trackers/LinearCreditDebtTracker.sol
src/components/roles/LimitedAccessLimitedCallForwarder.sol
src/components/roles/OpenAccessLimitedCallForwarder.sol
src/factories/BeaconFactory.sol
src/interfaces/external/IChainlinkAggregator.sol
src/factories/ComponentBeaconFactory.sol
src/factories/ComponentBeaconProxy.sol
src/interfaces/IComponentProxy.sol
src/interfaces/IFeeHandler.sol

src/interfaces/ISharesTransferValidator.sol
src/interfaces/IValuationHandler.sol

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

src/global/Global.sol
src/global/utils/GlobalOwnable.sol
src/shares/Shares.sol
src/utils/Constants.sol
src/utils/StorageHelpersLib.sol
src/utils/ValueHelpersLib.sol

Version 2In , the following files have been added to the scope:

src/components/value/position-trackers/AccountERC20Tracker.sol

Version 4In , the following files have been added to the scope:

src/utils/DeploymentHelpersLib.sol

2.1.1 Excluded from scope
All other files not explicitly listed are out of scope of this review. This includes third-party libraries.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Enzyme Foundation offers Enzyme Onyx, a set of smart contracts to tokenize on- and off-chain value.

Onyx's core functionalities include:

• The creation of an ERC20 tokenized representation of shares.

• Support for flexible deposit and redemption mechanisms, including asynchronous queues.

• Customizable fees.

• Customizable tracking of credits and debts.

The core of the system is located in the Shares contract. Other core contracts (e.g., fee handler, deposit
queue, valuation handler) are treated as components of Shares.

2.2.1 Shares
Each Onyx instance has, at its core, a single Shares contract. This contract functions as an ERC20
token, representing the shares of the portfolio. Additionally, it is responsible for:

• Managing roles, storing the owner and administrators of the system. Admins and the owner have
equal privileges with the exception of adding / removing admins.

• Managing components / tracking which components are authorized to interact with the system.

2.2.2 Components
The following contracts are components that interact with a single Shares instance.

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.2.1 ValuationHandler
This contract is responsible for computing the price of the Shares ERC20 token.

The ValuationHandler allows admins to configure oracle settings for various asset types. These
oracles will be utilized for conversions between the designated "value asset" (the asset the fund shares
are priced in - typically the quote asset of the used oracle feeds) and different on-chain assets.

Furthermore, the contract allows to add position trackers used for on-chain accounting.

The codebase includes the LinearCreditDebtTracker which enables admins to add credit or debit
items that are written off linearly over a certain duration of time (which can be 0 so that the items are
instantly added to the sheet).

The main function of ValuationHandler is updateShareValue(). This function allows admins to
report the equity of the fund, expressed in the value asset. Moreover, the function aggregates the
reported equity with the sum of the values yield from the on-chain position trackers, obtaining the total
value of the fund. After settling any fees, the total value is used to compute and store the value of a single
share.

2.2.2.2 FeeHandler
The system incorporates four distinct fee types:

• Entrance fee: a percentage of the assets deposited.

• Exit fee: a percentage of the assets withdrawn.

• Management fee: a percentage of the net value of the fund accrued over time.

• Performance fee: a percentage of the gains of the fund, determined by a fund-wide high watermark.

Entrance and exit fees are settled at the time of deposit and redemption time, respectively, while
management and performance fees are settled exclusively when the share value is updated.

Note that the net value of the fund is computed by removing any settled fee from the fund's gross value.

The FeeHandler component is responsible for:

• Setting the fee percentage and recipient for each of the fee types.

• Settling and tracking fees within the system.

• Claiming the fees, i.e., sending the owed amount of feeAsset to the respective fee recipient.

Note that fees are tracked in the value asset but paid out in the feeAsset stored inside FeeHandler.

When settling management and performance fees, also referred to as dynamic fees, the value owed for
each fee is computed by a specific fee tracker. Consequently, the system implements
ContinuousFlatRateManagementFeeTracker for management fees and
ContinuousFlatRatePerformanceFeeTracker for performance fees.

Management fees are calculated on the net value of the fund, while performance fees are calculated on
the net value of the fund minus the management fees of each round.

Entry and exit fees can be configured with the 0-address as the recipient. In this case, fees are effectively
distributed among the shareholders.

2.2.2.3 Deposit and Redeem handlers
These components allow users to deposit assets into and withdraw assets from the fund. The codebase
provides two asynchronous handlers: ERC7540LikeDepositQueue and ERC7540LikeRedeemQueue.
Both components permit any user to request a deposit or redeem operation, storing each request under
an increasing ID. The fund admin can then execute the requests in any order by specifying a set of
request IDs to be executed.

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

Specifically, ERC7540LikeDepositQueue allows a user to deposit an amount of a given deposit asset,
receiving a commensurate amount of shares based on the latest share price stored. The entrance fee is
deducted from the shares minted to the depositor. Deposited assets are transferred to the
depositAssetsDest address.

Similarly, ERC7540LikeRedeemQueue enables a user to burn an amount of shares, receiving a
commensurate amount of redeem assets based on the latest share price stored. The exit fee is deducted
from the assets sent to the redeemer. Withdrawn assets are pulled from the redeemAssetsSrc
address.

Multiple deposit and redemption handlers can be added to the Shares contract, allowing for the deposit
and redemption in different assets.

Note that the contracts do not meet the requirements of the ERC-7540 specification and aren't meant to -
hence they are only ERC-7540 "alike".

2.2.2.4 Roles Contracts
Enzyme Onyx implements two contracts for granular role management:
OpenAccessLimitedCallForwarder and LimitedAccessLimitedCallForwarder. Both
contracts are inteded to be set as admins in the Shares contract and expose the function
executeCalls() which forwards calls to Shares or its components.

In more detail, OpenAccessLimitedCallForwarder allows anyone to call a restricted set of functions
from a restricted set of contracts. For instance, OpenAccessLimitedCallForwarder could be used to
allow any user to call the function executeDepositRequests of the contract
ERC7540LikeDepositQueue.

The second contract, LimitedAccessLimitedCallForwarder, inherits from the open access limiter
and further restricts the execution of OpenAccessLimitedCallForwarder.executeCalls() to a
set of privileged users. This establishes the figure of "limited admins", which, unlike standard admins, can
only perform a restricted set of actions.

2.2.2.5 Wallets
The project defines a few different wallets in which funds can be stored for different purposes. While
there are generally no restrictions on where the funds are held, assets must become accessible at some
point, using the following wallets:

1. depositAssetsDest: Address to which assets are sent from the deposit queue after deposit
requests have been executed. These assets are then available for investment.

2. feeAssetsSrc: Address from which fees can be claimed. While fees accrue during each valuation
step, they can only be claimed when assets are sent to this address. Fees remain part of the fund
valuation until they are claimed.

3. redeemAssetsSrc: Address from which redemptions are sent to the respective users. For
successful execution of redemption requests, enough assets must be held in this wallet.

2.2.2.6 Auxiliary contracts
Some auxiliary contracts can be used in conjunction with the main contracts:

1. WithdrawableAssetsSource: A minimal wallet contract that can be used to accept assets and give
approvals to the Shares contract.

2. OneToOneAggregator: A dummy contract mimicking a Chainlink oracle to always return a price of
one.

2.2.3 Deployment
Enzyme Foundation will utilize beacon proxies for the deployment of the contracts.

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

In particular, the Shares contract will be deployed behind a BeaconProxy from the BeaconFactory.

Components will be deployed behind a ComponentBeaconProxy from the
ComponentBeaconFactory.

The beacon proxy pattern is employed to facilitate simultaneous upgrades across different Onyx
instances by deploying a new implementation and updating the implementation address returned by the
beacons.

The owner of the beacon factories is the owner of the Global contract, which must be deployed first.
This is the only contract owned by Enzyme Foundation.

2.2.4 Changes in Version 2
Version 2In of the protocol, the following changes have been added:

1. Fees are only claimable by the admins and the owner.

2. Storage locations are now hardcoded but checked against the respective string in the constructor.

3. depositAssetsDest, feeAssetsSrc, and redeemAssetsSrc have been removed in favor of
the Shares contract being the sole holder of tokens.

4. A new contract AccountERC20Tracker has been added that allows to track the value of a single
address's tokens.

5. Instead of Chainlink oracles, assets are now priced based on asset prices set directly by the
admins or the owner.

2.2.5 Changes in Version 4
Version 4In , factories are now deploying contracts using CREATE2 with a salt composed of a nonce and

the chain ID of the given blockchain. This is done to prevent factories deployed by the same wallet on
different chains creating contracts under the same addresses.

2.3 Trust Model
Global Owner The owner of the Global contract and, consequently, of the beacon factories.

• Fully trusted.

• Has full control of the factories

• Could fully drain the system.

Fund Owner The owner of the Onyx instance, has full control of the fund and can designate admins.

• Fully trusted.

• Can add and remove admins.

• Has full control over the fund.

• Could drain the system.

Fund Admins Admins have the same privileges as the fund owner with the exception that they cannot
modify the admin list.

• Fully trusted.

• Have full control over the fund.

• Can manage the set and capabilities of limited admins.

• Could drain the system.

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

We assume the admins to correctly configure the fund and its components. In particular, admins will
exclusively add trusted components to the Shares instance.

Version 2

Moreover, we assume that the fund admins will properly configure the oracles. Specifically, since the
value asset used by the fund is not enforced in the code, it is the admins' responsibility to ensure that the
price oracles convert to and from the correct value asset. Since , admins (and owners) are
instead trusted to set the correct asset prices at the right time without opening up frontrunning
possibilities (i.e., updating the valuation while asset prices in the contract are still outdated).

Apart from these trust assumptions, we have detailed a list of further assumptions on the behavior of the
admins to guarantee a safe operation of the fund: Admin / owner assumptions.

The assumptions above are equally valid for the fund owner.

Limited Admins Limited admins interact with the LimitedAccessLimitedCallForwarder contract
to perform a restricted set of actions. The list of limited admins and the set of permitted actions is
managed by the fund admins. Although the capabilities of limited admins can vary, they should be trusted
to behave honestly with respect to the privileges they are granted.

• Fully trusted in the scope they have been assigned to. E.g., if a limited admin has permission to
update the share valuation, then they are trusted to update the valuation correctly.

• Could drain the system if allowed by their privileges.

Furthermore, limited admins should make sure not to send multiple calls with value in the
LimitedAccessLimitedCallForwarder that do not sum up to the msg.value.

Fee recipients For each type of fee, a different recipient can be configured. These recipients can claim
fees via FeeHandler.claimFees().

• Minimally trusted as they can influence the valuation by frontrunning the call to
ValuationHandler.updateShareValue().

Users Users of the fund can create deposit and redemption requests.

• Untrusted.

• Can deploy contracts directly from the BeaconFactory and ComponentBeaconFactory. Such
deployments are therefore trusted.

Users can theoretically become trusted if the OpenAccessLimitedCallForwarder is used. We
therefore assume the contract is used only when no abuse potential exists.

Users should make sure to not send multiple calls with value in the
OpenAccessLimitedCallForwarder that do not sum up to the msg.value.

Price Oracles The system heavily relies on price oracles to compute the share value and perform
conversions between assets.

• Trusted to return correct prices and correct price decimals.

• Generally, the price oracles are assumed to be either official Chainlink price feeds or the
OneToOneAggregator and are compatible with the value asset of the associated fund.

• The OneToOneAggregator is assumed to only be used when there is no risk of a depeg of the
given asset.

Tokens It is assumed that the project will not be used with the following ERC-20 token types:

• Rebasing tokens: Increasing token amounts cannot be accounted for by the system.

• Fee-taking tokens: Decreasing token amounts cannot be accounted for by the system.

• Tokens capping the transfer amount to the user's balance: Discrepancies between user balances
and the actual amount of tokens deposited would emerge.

• Tokens with callbacks to the recipient: Deposit / redemption request executions could be blocked
(although this can be mitigated by excluding blocking users).

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Deposits Can Be Stolen By Inflating The Share Price RISKACCEPT

• Risk AcceptedFee Change After Requests

5.1 Deposits Can Be Stolen By Inflating The Share
Price RISKACCEPT
Security Low Version 2

CS-ONYX-011

Version 2In , Enzyme Foundation added the new AccountERC20Tracker position tracker, which tracks
the balance of arbitrary ERC-20 assets held by a wallet _account. The tracker relies on
asset.balanceOf(_account) to determine the value of the position. As a consequence, donations to
_account influence the value of the position. Importantly, an adversary might be able to inflate the share
price by performing a donation, managing to partially steal a user's deposit.

The following scenario provides an example of the attack.

Assume the value asset to be USD and the deposit and redeem asset to be DAI. Also, for simplicity,
assume no entry, exit or dynamic fees.

1. The deployer deploys a new fund.

2. An attacker makes a deposit request for 1 wei DAI.

3. An admin updates the valuation, setting the valuePerShare to the default of 1e18.

4. An admin executes the attacker's deposit request.

5. The attacker receives 1 wei of shares.

6. A victim makes a deposit request for 100 wei DAI.

7. An admin updates the valuation. The transaction is frontrun by the attacker, donating 50 wei
DAI to the account tracked by the AccountERC20Tracker. valuePerShare now is 51e18.

8. An admin executes the victim's deposit request.

9. The victim receives 1 wei shares.

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

10. The attacker now redeems their 1 wei shares.

11. An admin executes the attacker's redemption request. The attacker receives 75 wei DAI,
stealing 24 wei DAI from the victim.

Note that an attacker can always frontrun the valuation calculation but for this attack to succeed, admins
must execute a single deposit with very low value.

Risk Accepted:

Enzyme Foundation has acknowledged the possible risks stating:

Onyx intentionally does not protect against inflation/donation/low shares supply attack vectors in its
core. It is recommended that admins with untrusted shareholders mint existential shares to eliminate
any such attacks.

5.2 Fee Change After Requests
Design Low Version 1 Risk Accepted

CS-ONYX-003

Entry and exit fees can be changed by the admins of the contracts at any time. When users want to
deposit or redeem funds, they have to first create a request that is later executed by the admins. When
creating a request, no fees are taken. Instead, the fees are taken during the request execution (at a later
point in time). Additionally, the requests don't persist the fee values that were in effect during the creation
of the request.

It is therefore possible that a user creates a request and then an admin increases the associated fee and
executes their request without the user being able to intervene.

Risk Accepted:

Enzyme Foundation has acknowledged the issue stating the following:

Admins are trusted and can adopt their own practices for whether or not to process requests that
were submitted prior to an important fee change

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedUnsafe Downcast in Fee Claiming Allows Theft of Funds and Permanent DoS

High -Severity Findings 0

Medium -Severity Findings 1

• Code CorrectedUnburned Exit Fee Shares Permanently Inflate Total Supply and Deflate Share Price

Low -Severity Findings 3

• Code CorrectedPerformance Fee High-Water Mark (HWM) Misalignment

• Code CorrectedRounding Precision Error

• Code CorrectedValuation Race Condition

Informational Findings 2

• Code CorrectedInconsistent Error Handling

• Code CorrectedMismatched Namespace ID in NatSpec Annotation

6.1 Unsafe Downcast in Fee Claiming Allows
Theft of Funds and Permanent DoS
Security Critical Version 1 Code Corrected

CS-ONYX-001

The FeeHandler.claimFees() function allows a user to claim fees, but it fails to validate that the
claimed amount _value is not greater than the fees actually owed to the user.

When a user claims a _value even slightly larger than their balance, the internal
__updateValueOwed() function calculates the new balance by subtracting a larger number from a
smaller one. This results in a negative int256 value, which, when unsafely cast to uint256,
underflows.

This single vulnerability has multiple critical impacts:

1. Theft of Funds: Anyone can claim more fees than they are owed (zero in the case of unintended
fee recipients), draining assets from the feeAssetsSrc contract. Since no revert takes place on
underflow, users can claim any amount of tokens owned by the fee source address.

2. Permanent Denial of Service: The underflow can also corrupt the totalFeesOwed state
variable. This will cause all future attempts by the admin to call
ValuationHandler.updateShareValue() to revert, because its internal calculation
netValue = _totalPositionsValue - getTotalValueOwed() will always revert on
underflow.

Additionally, the delta value -int256(_value) is passed to __updateValueOwed() from a uint256
value which can equally result in an overflow. This is currently not exploitable though as the value is also

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

transformed with ValuationHandler.convertValueToAssetAmount() which will always result in
a revert for numbers big enough to cause an overflow.

Code Corrected:

Enzyme Foundation has corrected the issue by splitting the __updateValueOwed() function into two
separate functions: __increaseValueOwed() which increases the value owed to a user and the total
value owed, and _decreaseValueOwed which accordingly decreases both variables. Both functions
exclusively work with uint256, therefore removing the need for casts to and from int256.

6.2 Unburned Exit Fee Shares Permanently Inflate
Total Supply and Deflate Share Price
Correctness Medium Version 1 Code Corrected

CS-ONYX-002

An accounting bug in the redemption process causes exit fee shares to never be burned. They remain in
the ERC7540LikeRedeemQueue contract's balance while still being counted in the Shares contract's
totalSupply(). This permanently inflates the total supply, which is the denominator of all share price
calculations. As a result, every redemption with a non-zero exit fee deflates the share price for all
remaining investors, causing a direct and accumulating loss of value. When a non-privileged user
initiates a redemption, their shares are transferred to the ERC7540LikeRedeemQueue contract. During
execution, the system calculates the exit fee in shares (feeSharesAmount) but only burns the
netShares.

Code Corrected:

Enzyme Foundation has corrected the code by burning the gross shares (request.sharesAmount)
when executing redemption requests.

6.3 Performance Fee High-Water Mark (HWM)
Misalignment
Design Low Version 1 Code Corrected

CS-ONYX-005

The performance fee calculation has a subtle flaw in how the high-water mark (HWM) is updated. The
process is as follows:

1. The ValuationHandler calls the FeeHandler to settle dynamic fees.

2. The FeeHandler passes a _netValue (total value minus previous fees and current management
fee) to the ContinuousFlatRatePerformanceFeeTracker.

3. The settlePerformanceFee() function calculates valuePerShare based on this _netValue
and uses it to determine the performance fee due.

4. Crucially, it then updates the HWM to this valuePerShare.

5. Afterwards, the ValuationHandler calculates the final share value for investors by subtracting
all fees, including the just-calculated performance fee.

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

This creates a misalignment: The HWM is set based on a pre-performance-fee valuation, while the actual
share valuation is post-performance-fee. The HWM is thus always set higher than the value per share at
the end of the period. This means the fund must not only generate a profit in the next period but also
make up for the value of the last performance fee before new performance fees can be charged.

Code Corrected:

Enzyme Foundation has corrected the code by changing how the HWM is updated. The function
settlePerformanceFee() subtracts the performance fees from _netValue, obtaining
netValueIncludingFee. The HWM is then set to the value per share computed using
netValueIncludingFee.

6.4 Rounding Precision Error
Correctness Low Version 1 Code Corrected

CS-ONYX-006

ValueHelpersLib.convert() can be imprecise when the quote asset has low decimals. This is
exacerbated by the fact that asset conversions are only performed for 1 share. Consider the following
example:

1. A user redeems 10 000 shares from a redeem queue with GUSD as the asset.

2. The oracle price of GUSD has 8 decimals.

3. The current share price is 1.019 * 10**18.

4. sharePriceInRedeemAsset is calculated as follows:

1.019 * 1018 * 108 * 102

108 * 1018 = 101.9

1. The user will receive 10 100 GUSD.

2. Performing the same calculation with all withdrawn shares results in 10 190 GUSD.

Code Corrected:

Enzyme Foundation has corrected the code by changing the logic inside
executeDepositRequests() and executeRedeemRequests(). The conversion is now done
without intermediate scaling down the share price to the deposit / redemption asset, leaving enough
precision for only miniscule rounding errors.

6.5 Valuation Race Condition
Design Low Version 1 Code Corrected

CS-ONYX-007

ValuationHandler.updateShareValue() calls the FeeHandler to get the amount of fees
currently owed to fee receivers. This amount is then subtracted from the total positions value to get the
total fund value with which the value of the fund's shares can be calculated.

FeeHandler.getTotalValueOwed() returns all fees that have been accrued since the start of the
fund and have not been claimed yet. This means that, for accurate calculation, admins must pass a total
fund value that includes fees only as long as they haven't been claimed yet (either directly through
_untrackedPositionsValue or indirectly through items in an associated positions tracker).

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

When an admin submits such a position value containing some unclaimed fees on-chain and at the same
time, a fee recipient (which might be a different entity) claims fees, a race condition can occur when the
fee recipient's transaction is executed before the transaction of the admin. In this case, the total fees
owed would be reduced while the positions value submitted by the admin stays the same, resulting in an
inflated total value of the fund.

Code Corrected:

Enzyme Foundation has corrected the code by only allowing admins to claim fees. Since both price
update and fee claiming are performed by the admins, race conditions are avoided.

6.6 Inconsistent Error Handling
Informational Version 1 Code Corrected

CS-ONYX-009

The contract ValuationHandler exhibits inconsistent behavior in some functions. For example,
ValuationHandler.removePositionTracker() reverts if the tracker being removed does not
exist. However, ValuationHandler.unsetAssetOracle() simply uses delete on the mapping
entry and does not revert if an oracle for the given asset was not set. This inconsistency can lead to
developer confusion and potentially hide state-related bugs in off-chain software interacting with the
contract.

Code Corrected:

Enzyme Foundation has removed the unsetAssetOracle() function when removing ChainLink
oracles in favour of manualy-set rates.

6.7 Mismatched Namespace ID in NatSpec
Annotation
Informational Version 1 Code Corrected

CS-ONYX-004

ContinuousFlatRateManagementFeeTracker and
ContinuousFlatRatePerformanceFeeTracker violate a requirement of EIP-7201. The EIP
requires:

A namespace in a contract should be implemented as a struct type. These structs should be
annotated with the NatSpec tag
@custom:storage-location <FORMULA_ID>:<NAMESPACE_ID>, where <NAMESPACE_ID>
identifies a formula used to compute the storage location where the namespace is rooted, based on
the namespace id.

The two contracts have a mismatch between the namespace identifier used in the code to derive the
storage location and the identifier documented in the @custom:storage-location NatSpec tag. The
code computes the namespace ID by prefixing the given string with enzyme. (e.g.,
enzyme.ManagementFeeTracker), but the NatSpec annotation incorrectly includes an extra
.storage segment (e.g., enzyme.storage.ManagementFeeTracker). This can mislead developers
and cause tooling that relies on this annotation to fail to locate storage variables correctly.

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Code Corrected:

Enzyme Foundation has corrected the code by removing the extra .storage segments.

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Denial of Service Due to Rounding Error
Informational Version 1 Acknowledged

CS-ONYX-008

The executeDepositRequests() function is vulnerable to a (minor) Denial of Service attack. The
function processes an array of request IDs in a batch. If a request included in the batch is submitted with
an asset amount of 1 wei and the share value is greater than 1e18, the function calculates zero shares,
triggering a require(netShares > 0) check that reverts the entire transaction. This same
vulnerability exists in ERC7540LikeRedeemQueue if the share price is below 1e18.

Acknowledged:

Enzyme Foundation has acknowledged with the following statement:

Actively filtering-out requests that are too small is part of the intended admin process, so there is no
DoS

7.2 Missing Event Indexes
Informational Version 1 Acknowledged

CS-ONYX-010

With the exception of the events in IERC7540LikeDepositHandler and
IERC7540LikeRedeemHandler, none of the events emitted by Enzyme Onyx contracts have indexes
set up for any of their parameters. It is recommended to index the relevant event parameters to allow
integrators and dApps to quickly search for these and thus simplify off-chain computation.

Acknowledged:

Enzyme Foundation has decided not to index events, as they do not rely on indexed events for off-chain
computation.

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Admin / Owner Assumptions
Note Version 1

The protocol's design allows fund owners and their chosen admins a great amount of flexibility. There
are, however, certain cases where this flexibility can result in problematic behavior. The following list
examines these cases:

1. Valuation updates should only be performed with the correct values. Otherwise, the fund's share
price will be inflated / deflated, affecting user deposits and redemptions.

2. Executions of deposit / redemption requests should only happen directly (i.e., atomically, to prevent
front-running) after the valuation has been updated. Otherwise, the share price will not reflect the
actual value of the fund at the time of execution, allowing users to either benefit or lose unfairly.

3.
Version 2

Changing the asset on any of the contracts also requires setting up a corresponding oracle in the
ValuationHandler beforehand. Otherwise, the contracts will no longer be usable. In ,
admins are responsible for manually setting the correct rate of an asset.

4. ContinuousFlatRateManagementFeeTracker.resetLastSettled() should only be called
right before the fund is started. Setting the settlement date earlier allows to unfairly accumulate
additional management fees during the first settlement.

5. ContinuousFlatRatePerformanceFeeTracker.resetHighWaterMark() should not be
called in a way that disadvantages users. For example, if 1e18 is deposited after deployment and
then 1 wei is reported as total value, the share price is set to 1, allowing the fund to unfairly
accumulate additional performance fees during the first settlement.

6. Valuation updates with a positive total value should not be performed on a fund with no shares.
Otherwise, management fees are accrued unfairly for subsequent depositors.

7. minRequestDuration should always be set to a positive value in ERC7540LikeDepositQueue
and ERC7540LikeRedeemQueue. Otherwise, request executions might unexpectedly fail due to
the controllers of the executed requests cancelling them before they can be executed.

8. When the LinearCreditDebtTracker is used, a maximum number of items should not be
exceeded to prevent DoS due to out-of-gas. Items can be aggregated to prevent this.

9. Funds should not be misappropriated.

10. Admins should not execute deposit / redemption requests of very low value. Otherwise, the
transaction could revert. Additionally, in new funds, this could lead to an inflation attack vector.

11. Version 2In , admins should claim the fees on behalf of the fee recipient(s) appropriately.

8.2 Inflexible Performance Fee
Note Version 1

Performance fees are calculated based on a high watermark that is updated each time the performance
fee is settled. The high watermark is the highest value of the fund's shares at the time of the last
performance fee settlement.

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

It is stored on the fund-level instead of the individual user-level. This can lead to an advantage for late
joiners in the following scenario:

1. The valuation of a fund starts at 1.

2. Over time, the valuation increases to 2.

3. Users that deposited in the beginning paid performance fees on the full gain from 1 up to 2.

4. Now the fund incurs losses of 50%, bringing its valuation back to 1.

5. New users can now deposit and will not pay performance fees until the fund reaches a valuation of
2 again, even though they will experience 100% gains along the way.

8.3 Management Fee Compound Depreciation
Note Version 1

ContinuousFlatRateManagementFeeTracker settles the management fee of a fund each time its
valuation is updated. The fees are calculated as a percentage of the value of the fund minus the already
accrued fees. This results in compound depreciation behavior - the amount of fees decreases with the
frequency at which the valuation is updated.

For example, if the total value (1000 USD) of a fund stays the same throughout one year (i.e., the funds
are not invested), calculating a management fee of 10% after 1 year results in a fee of 100 USD.
However, if the same fee is calculated monthly, it amounts to only 95.54 USD.

8.4 Unexpected Behavior Due to Third Party Fee
Funds
Note Version 1

ValuationHandler.updateShareValue() calls the FeeHandler to get the amount of fees
currently owed to fee receivers. This amount is then subtracted from the total positions value to get the
total fund value with which the value of the fund's shares can be calculated.

Fees have to be actively sent to a fee source address from which they can then be claimed. If no funds
exist at the address, no fees can be claimed even though they might be owed, allowing the fund owner
some flexibility.

Fund owners should be aware that third parties could theoretically send funds to the fee source address
which would allow claiming fees. In such a case, the total fees owed would be reduced without the funds
knowledge, leading to an inflated valuation in the next valuation update if the address and / or the
FeeHandler are not monitored properly and the fund owner / its admins are submitting position values
that still include the already claimed fees.

Enzyme Foundation - Enzyme Onyx - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Shares
	2.2.2 Components
	2.2.2.1 ValuationHandler
	2.2.2.2 FeeHandler
	2.2.2.3 Deposit and Redeem handlers
	2.2.2.4 Roles Contracts
	2.2.2.5 Wallets
	2.2.2.6 Auxiliary contracts

	2.2.3 Deployment
	2.2.4 Changes in Version 2
	2.2.5 Changes in Version 4

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Deposits Can Be Stolen By Inflating The Share Price RISKACCEPT
	5.2 Fee Change After Requests

	6 Resolved Findings
	6.1 Unsafe Downcast in Fee Claiming Allows Theft of Funds and Permanent DoS
	6.2 Unburned Exit Fee Shares Permanently Inflate Total Supply and Deflate Share Price
	6.3 Performance Fee High-Water Mark (HWM) Misalignment
	6.4 Rounding Precision Error
	6.5 Valuation Race Condition
	6.6 Inconsistent Error Handling
	6.7 Mismatched Namespace ID in NatSpec Annotation

	7 Informational
	7.1 Denial of Service Due to Rounding Error
	7.2 Missing Event Indexes

	8 Notes
	8.1 Admin / Owner Assumptions
	8.2 Inflexible Performance Fee
	8.3 Management Fee Compound Depreciation
	8.4 Unexpected Behavior Due to Third Party Fee Funds

