

PUBLIC

Code Assessment

of the Spark ALM Controller

Smart Contracts

September 11, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 17

4 Terminology 18

5 Open Findings 19

6 Resolved Findings 23

7 Informational 30

8 Notes 32

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help SparkDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Spark ALM Controller
according to Scope to support you in forming an opinion on their security risks.

SparkDAO implements the Spark ALM Controller, a suite of contracts of the Spark Liquidity Layer
designed to manage and control the flow of liquidity originating from DSS Allocator. It provides several
integrations with DeFi protocols and bridges.

The most critical subjects covered in our audit are functional correctness, access control, and the
integration with 3rd-party protocols. The general subjects covered are gas efficiency, documentation and
composability.

The most recent audit covers the SparkVault integration, removal of the Superstate redemption
functionality and bytecode size optimizations for the MainnetController.

Security regarding all the aforementioned subjects is high.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 14

• Code Corrected 4

• Specification Changed 2

• Code Partially Corrected 2

• Risk Accepted 5

• Acknowledged 1

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Spark ALM Controller repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V
Date Commit Hash Note

1
15 Sep
2024

7a0535ee07815a2c8604d58469393c5
6a62d5b81

Initial Version - v1.0.0-beta.0

2
26 Sep
2024

2087250fc5988d3f0117f23e3f959f9423
d04909

Second Version

3
03 Oct
2024

c76b422b053dd055aeb2cd555acfe353
f05b316e

Fixes And Deployment Scripts -
v1.0.0-beta.1

4
07 Oct
2024

342fe537b020ffa8ea7fcedf166b59b7ed
e21232

Fix Deployment Scripts

5
08 Oct
2024

52deda866ec8abdeaae9ace8574457d
3e4209c36

Setting USDS And sUSDS Rate Limits

6
22 Oct
2024

6058f68f79520eb06ea8eded146da130
39c47525

Bump Version - v1.0.0

7
29 Nov
2024

f81a7366f339d806a07a992c3aef2afe9
a063e13

Aave And Ethena Integrations -
v1.1.0-beta.0

8
06 Dec
2024

ad4391c37aa262d3c578a757700c1b6
e86a96060

Withdrawals Rate Limit - v1.1.0-beta.1

9
13 Dec
2024

2bb2680893aa3e42210c8f907ec4d577
8ace9fe6

Release v1.1.0

1
0

30 Dec
2024

eb8192199ee7713b583dd1b4920ec15
6c2333830

Updated Init Scripts - v1.2.0-beta.0

1
1

30 Jan
2025

6a35adaddc38666ae2f75f0d4792f9f52
6de0cab

RWAs And Morpho Integrations -
v1.3.0-beta.0

1
2

25 Mar
2025

3de54c3f91d219401406459ac66e4b9b
1b9fce44

Release v1.3.0

1
3

10 Mar
2025

3dd606c2cd4a5f06a726b059397202dc
48e47165

v.1.4.0-beta.0

1
4

03 Apr
2025

b618c3fb1508ce29ac9e92e3bf55229c
d1a66d8a

v1.4.0

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 5

https://github.com/sparkdotfi/spark-alm-controller/tree/7a0535ee07815a2c8604d58469393c56a62d5b81
https://github.com/sparkdotfi/spark-alm-controller/tree/7a0535ee07815a2c8604d58469393c56a62d5b81
https://github.com/sparkdotfi/spark-alm-controller/tree/2087250fc5988d3f0117f23e3f959f9423d04909
https://github.com/sparkdotfi/spark-alm-controller/tree/2087250fc5988d3f0117f23e3f959f9423d04909
https://github.com/sparkdotfi/spark-alm-controller/tree/c76b422b053dd055aeb2cd555acfe353f05b316e
https://github.com/sparkdotfi/spark-alm-controller/tree/c76b422b053dd055aeb2cd555acfe353f05b316e
https://github.com/sparkdotfi/spark-alm-controller/tree/342fe537b020ffa8ea7fcedf166b59b7ede21232
https://github.com/sparkdotfi/spark-alm-controller/tree/342fe537b020ffa8ea7fcedf166b59b7ede21232
https://github.com/sparkdotfi/spark-alm-controller/tree/52deda866ec8abdeaae9ace8574457d3e4209c36
https://github.com/sparkdotfi/spark-alm-controller/tree/52deda866ec8abdeaae9ace8574457d3e4209c36
https://github.com/sparkdotfi/spark-alm-controller/tree/6058f68f79520eb06ea8eded146da13039c47525
https://github.com/sparkdotfi/spark-alm-controller/tree/6058f68f79520eb06ea8eded146da13039c47525
https://github.com/sparkdotfi/spark-alm-controller/tree/f81a7366f339d806a07a992c3aef2afe9a063e13
https://github.com/sparkdotfi/spark-alm-controller/tree/f81a7366f339d806a07a992c3aef2afe9a063e13
https://github.com/sparkdotfi/spark-alm-controller/tree/ad4391c37aa262d3c578a757700c1b6e86a96060
https://github.com/sparkdotfi/spark-alm-controller/tree/ad4391c37aa262d3c578a757700c1b6e86a96060
https://github.com/sparkdotfi/spark-alm-controller/tree/2bb2680893aa3e42210c8f907ec4d5778ace9fe6
https://github.com/sparkdotfi/spark-alm-controller/tree/2bb2680893aa3e42210c8f907ec4d5778ace9fe6
https://github.com/sparkdotfi/spark-alm-controller/tree/eb8192199ee7713b583dd1b4920ec156c2333830
https://github.com/sparkdotfi/spark-alm-controller/tree/eb8192199ee7713b583dd1b4920ec156c2333830
https://github.com/sparkdotfi/spark-alm-controller/tree/6a35adaddc38666ae2f75f0d4792f9f526de0cab
https://github.com/sparkdotfi/spark-alm-controller/tree/6a35adaddc38666ae2f75f0d4792f9f526de0cab
https://github.com/sparkdotfi/spark-alm-controller/tree/3de54c3f91d219401406459ac66e4b9b1b9fce44
https://github.com/sparkdotfi/spark-alm-controller/tree/3de54c3f91d219401406459ac66e4b9b1b9fce44
https://github.com/sparkdotfi/spark-alm-controller/tree/3dd606c2cd4a5f06a726b059397202dc48e47165
https://github.com/sparkdotfi/spark-alm-controller/tree/3dd606c2cd4a5f06a726b059397202dc48e47165
https://github.com/sparkdotfi/spark-alm-controller/tree/b618c3fb1508ce29ac9e92e3bf55229cd1a66d8a
https://github.com/sparkdotfi/spark-alm-controller/tree/b618c3fb1508ce29ac9e92e3bf55229cd1a66d8a
https://chainsecurity.com

1
5

30 May
2025

9f24f17f9dbd79e55e556b8ad29aa874
7c4f2297

v1.5.0-beta.0

1
6

11 July
2025

38da45689cacc6bb402045bb3a57736
4bd3d8e33

v1.5.0

1
7

14 Aug
2025

c0292396956dabfdfcf7fce2f21b2438d7
a41f3b

v1.6.0-beta.0

1
8

18 Aug
2025

83defcbd38280e2279c1bbd42409e06c
e05ebf6c

Updated Readme

1
9

27 Aug
2025

cc8b6e30e74ad1d5eef554df17d88bc4
d1cb4a00

v1.7.0-beta.1

2
0

03 Sep
2025

8d06c0dffc0310b6f6e1d243077408d06
0589635

v1.7.0

For the solidity smart contracts, the compiler version 0.8.21 was chosen with the evm version set to
shanghai. Since version 10, the compiler version used is 0.8.25. Since version 11, the evm version
used is cancun. In addition, this review was based on the integrations with 3rd-party protocols'
implementations at the time of respective Spark ALM releases and cannot account for future updates and
changes of the 3rd-party protocols.

The files in scope were:

src/
 ALMProxy.sol
 ForeignController.sol
 MainnetController.sol
 RateLimitHelpers.sol
 RateLimits.sol
 interfaces/
 IALMProxy.sol
 IRateLimits.sol
 CCTPInterfaces.sol

Version 3In the following files were further added to scope:

deploy/
 ControllerDeploy.sol
 ControllerInit.sol
 ControllerInstance.sol

Version 10In the following files were removed from the scope:

deploy/ControllerInit.sol

Version 10In the following files were added to the scope:

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 6

https://github.com/sparkdotfi/spark-alm-controller/tree/9f24f17f9dbd79e55e556b8ad29aa8747c4f2297
https://github.com/sparkdotfi/spark-alm-controller/tree/9f24f17f9dbd79e55e556b8ad29aa8747c4f2297
https://github.com/sparkdotfi/spark-alm-controller/tree/38da45689cacc6bb402045bb3a577364bd3d8e33
https://github.com/sparkdotfi/spark-alm-controller/tree/38da45689cacc6bb402045bb3a577364bd3d8e33
https://github.com/sparkdotfi/spark-alm-controller/tree/c0292396956dabfdfcf7fce2f21b2438d7a41f3b
https://github.com/sparkdotfi/spark-alm-controller/tree/c0292396956dabfdfcf7fce2f21b2438d7a41f3b
https://github.com/sparkdotfi/spark-alm-controller/tree/83defcbd38280e2279c1bbd42409e06ce05ebf6c
https://github.com/sparkdotfi/spark-alm-controller/tree/83defcbd38280e2279c1bbd42409e06ce05ebf6c
https://github.com/sparkdotfi/spark-alm-controller/tree/cc8b6e30e74ad1d5eef554df17d88bc4d1cb4a00
https://github.com/sparkdotfi/spark-alm-controller/tree/cc8b6e30e74ad1d5eef554df17d88bc4d1cb4a00
https://github.com/sparkdotfi/spark-alm-controller/tree/8d06c0dffc0310b6f6e1d243077408d060589635
https://github.com/sparkdotfi/spark-alm-controller/tree/8d06c0dffc0310b6f6e1d243077408d060589635
https://chainsecurity.com

deploy/
 ForeignControllerInit.sol
 MainnetControllerInit.sol

Version 15In the following files were added to the scope:

src/
 interfaces/ILayerZero.sol
 libraries/
 CCTPLib.sol
 CurveLib.sol
 PSMLib.sol

2.1.1 Excluded from scope
All other files are out of scope.

In addition, the inherent centralization risks of USDC are out of the scope of this review:

• USDC is deployed behind a proxy, and its implementation can be upgraded by an admin.

• CCTP relies on a set of centralized offchain signers to provide the bridging attestation.

All other 3rd-party protocols that the ALMProxy integrates with are out of scope and assumed to work
honestly and correctly as documented.

For the curve integration, it is assumed only the Stableswap-NG Plain pools will be used.

Note that the deployment script is in scope. However, governance should validate the deployment.

2.2 System Overview
This system overview describes the latest version of the contracts as defined in the Assessment
Overview.

At the end of this report section, we have added a changelog section for the changes according to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

SparkDAO offers Spark ALM Controller, a set of on-chain components of the Spark Liquidity Layer
designed to manage and control the flow of liquidity between Ethereum mainnet and L2s by leveraging
DSS Allocator.

On each chain, the following contracts are deployed:

1. ALMProxy: Entity that holds funds and interacts with external contracts (e.g. DssAllocator, PSM).
Thus, it holds the required privileges to interact with other contracts.

2. Controllers: Dictate which operations an ALMProxy shall perform. Note that multiple controllers
could point to the same ALMProxy.

3. RateLimits: Computes limits for liquidity flows.

All of the contracts inherit the standard AccessControl and grant the DEFAULT_ADMIN_ROLE role to an
admin which can configure other roles. For simplicity of notation, admin, referring to the
DEFAULT_ADMIN_ROLE on respective contracts, will be used in following sections.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.1 ALMProxy
The ALMProxy provides the following privileged functions that are restricted to addresses with the
CONTROLLER role (denoted as controller):

1. doCall(): triggers a call from ALMProxy to a target contract with msg.value.

2. doCallWithValue(): triggers a call from ALMProxy to a target contract with a specific value.

3. doDelegateCall(): triggers a delegatecall from ALMProxy to a target contract.

Version 3In , function receive() has been added to the ALMProxy to support receiving ETH.

2.2.2 Rate Limits
RateLimits defines a limit on a rate for a given key. The rate limit will linearly grow from lastAmount with
slope over the time elapsed (tracked with lastUpdated), and is capped maxAmount. The full rate limit
data or the current rate limit can be queried from getRateLimitData() and
getCurrentRateLimit(), respectively.

The data can be set by the admin with setRateLimitData() (two signatures available) or
setUnlimitedRateLimitData().

The following functions are introduced to update the rate limit by the controller:

1. triggerRateLimitDecrease(): It deducts an amount from the current rate limit and sets
lastUpdated to block.timestamp. In case of the rate limit is insufficient, the call will revert.

2. triggerRateLimitIncrease(): It adds an amount to the current rate limit (capped by the
maxAmount) and sets lastUpdated to block.timestamp.

Note both functions will revert in case the rate limit is not configured
(RateLimitData.maxAmount==0).

Library RateLimitHelpers is provided to construct keys depending on different inputs:

• makeAssetKey(): computes the key based on an asset.

• makeAssetDestinationKey(): computes the key based on an asset and a destination address.

• makeDomainKey(): computes the key based on a domain.

2.2.3 Controllers
MainnetController and ForeignController are implemented that define operations in the context of
respective ALMProxy. They share a similar structure but feature some different third-party integrations
and operations.

For emergency response, both controllers implement function removeRelayer(), enabling the
FREEZER role (denoted as freezer) to directly remove a compromised relayer. Each controller is
intended to have a main relayer and a configured backup. If all relayers are removed by freezer, the
contract becomes effectively frozen. To resolve such a situation, the admin can grant the RELAYER role
(denoted as relayer) again.

2.2.3.1 Existing Integration
This section aims to provide an overview of integrations in the system. Note that most functions are
restricted to the relayer (only exceptions are explicitly mentioned).

Version 11

Version 19

Arbitrary Token Transfer: introduced in ; integration in both controllers (foreign controller
since).

transferAsset(): ERC-20 assets can be transferred out manually using this function respecting the
rate limit including the destination address. Note that asset-destination pairs are rate limited. Further, the

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

function is intended to be used for integration with other systems where direct token transfers are needed
(e.g. BUIDL minting, Spark Vaults V2).

Version 1DSS Allocator: introduced in ; only in mainnet controller.

mintUSDS() / burnUSDS() leverage AllocatorVault to mint or burn (draw() or wipe()) USDS. Minting
is rate limited while burning performs cancelling of the rate limit.

Version 1Dss LitePSM: introduced in ; only in mainnet controller.

swapUSDSToUSDC() / swapUSDCToUSDS() leverage the PSM to swap between USDS and USDC
without fees (buyGemNoFee() and sellGemNoFee()) and are subject to rate limits where swapping
back to USDS cancels the rate limit.

Version 1Spark PSM: introduced in ; only in foreign controller.

depositPSM() / withdrawPSM() enable depositing / withdrawing specific assets to / from Spark PSM
with respect to separate rate limits.

Version 1Circle CCTP: introduced in ; in both controllers.

1. setMintRecipient(): restricted to the admin; sets the token recipient of a destination domain
when bridging USDC with CCTP (Circle's Cross-Chain Transfer Protocol).

2. transferUSDCToCCTP(): leverages CCTP to bridge USDC to a recipient (expected to be
another ALMProxy) on a foreign domain which is subject to rate limits. Additionally, there is a rate
limit for all CCTP transfers.

Version 7ERC-4626: introduced in ; in both controllers.

Version 17

depositERC4626() / withdrawERC4626() / redeemERC4626() enables integrations with
ERC-4626 vault. Deposits / withdrawals should respect the respective rate limit on each vault, the shares
minted / assets withdrawn will be credited to the ALMProxy. Since , the deposit rate limit will be
replenished during a withdrawal or redemption, which is subject to the cap (maxAmount) of the limit and
will revert if the limit is not configured (maxAmount==0).

Version 7Aave: introduced in ; in both controllers.

Version 17

depositAave() / withdrawAave() enables integrations with ERC-4626 vault. Deposits / withdrawals
should respect the respective rate limit on each aToken, and the newly minted aToken / underlying
withdrawn will be credited to the ALMProxy. Note that both functions are separately rate limited per
aToken. Since , the Aave deposit rate limit will be replenished during a withdrawal, which is
subject to the cap (maxAmount) of the limit and will revert if the limit is not configured (maxAmount==0).

Version 7Ethena: introduced in ; only in mainnet controller.

1. setDelegatedSigner() / removeDelegatedSigner(): enables configuring any amount of
delegated signers. The assigned delegated signers must explicitly accept the delegation with
confirmDelegatedSigner() on Ethena before they can sign any Order on behalf of the
ALMProxy. An Order is an expirable intent to mint or redeem USDe with fixed spending collateral
and outcome USDe. In addition, it requires a minter and burner role on Ethena minting contract to
submit the tx with the Order and signature prepared by the delegated signers.

2. prepareUSDeMint() / prepareUSDeBurn(): to mint or burn USDe, an approval can be
triggered from the ALMProxy to the Ethena minting contract. Further operations from the delegated
signers, Ethena minter and burners are required to complete the action.

3. Once the ALMProxy obtained USDe, it can be deposited into sUSDe to earn an interest. The
deposit into sUSDe follows the typical ERC-4626 deposit interface.

4. cooldownAssetsSUSDe() / cooldownSharesSUSDe() : initiates a withdrawal of sUSDe that
requires a cooldown period followed by an unstake() call since the instant withdrawal of sUSDe
is currently blocked. These functions burn the shares and credit the USDe to the USDeSilo
contract.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5. unstakeSUSDe(): enables the exit of USDe to the ALMProxy once the cooldownDuration is
reached.

Note that minting, burning and the cooldown are separately rate limited.

Version 11Morpho: introduced in ; only in foreign controller.

setSupplyQueueMorpho() / updateWithdrawQueueMorpho() / reallocateMorpho() allows to
call the respective function on Morpho. To successfully execute these calls on vaults, the ALM proxy
must have the allocator role in the MorphoVault. Deposits and withdrawals to the vault are handled via
the existing ERC-4626 functions which enforce rate limits and hence restrict interactions to explicitly
whitelisted vaults.

Version 11Superstate Minting: introduced in ; only in mainnet controller.

subscribeSuperstate() allows minting USTB with USDC. Function is subject to rate limits and
approvals are granted before calling respective functions on Superstate.

Note that redemptions are not supported but USTB can be transferred if necessary.

Version 11Maple: introduced in ; only in mainnet controller.

1. Deposits happen through the existing ERC-4626 deposit function.

2. requestMapleRedemption() / cancelMapleRedemption(): withdrawals are not ERC-4626
compliant and work based on redemption requests, which can also be cancelled. It is assumed that
manual withdrawal is disabled for ALMProxy on Maple, hence tokens will be pushed to ALMProxy
once the redemption is processed. Should ALMProxy be configured to manual withdrawal on
Maple, relayers have to trigger an explicit ERC-4626 redeem() on ALMProxy to retrieve the
tokens, which further requires a withdrawal limit being configured for the maple pool.

Note that rate limits apply to all functions, respectively.

Version 11BlackRock BUIDL Minting: introduced in ; integration in mainnet controller.

Note that this integration is with the arbitrary token transfers (transferAsset()). BUIDL tokens are
expected to be issued by privileged roles to the ALMProxy.

Centrifuge: only in mainnet controller.

1. Version 11requestDepositERC7540(): introduced in ; allows to initiate a call to
requestDeposit() where assets are transferred to an escrow.

2. Version 11claimDepositERC7540(): introduced in ; allows to finalize the deposit and claim all
the available shares once the deposit request is fulfilled.

3. Version 11requestRedeemERC7540(): introduced in ; initiates a withdrawal with shares
transferred to escrow.

4. Version 11claimRedeemERC7540(): introduced in ; finalizes the redeem and retrieves the max
withdrawable assets.

5.
Version 12

cancelCentrifugeDepositRequest() / cancelCentrifugeRedeemRequest(): introduced
in ; allows to cancel an unfinalized deposit / redeem request.

6.
Version 12

claimCentrifugeCancelDepositRequest()
claimCentrifugeCancelRedeemRequest(): introduced in ; allows to finalize the
cancel deposit / redeem and claim the available assets / shares once the request is fulfilled.

Note that request operations are rate limited individually per token while other operations require that the
respective rate limit exists.

Version 13Curve StableSwapNG: introduced in ; only in mainnet controller.

1. setMaxSlippage(): the admin can configure maximum slippage for the whitelisted pools.

2. swapCurve() / addLiquidityCurve() / removeLiquidityCurve(): enables swaps and
liquidity management respecting the defined slippage and rate limits.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Version 13DaiUsds: introduced in ; only in mainnet controller.

swapDAIToUSDS() / swapUSDSToDAI() support converting DAI to USDS and vice versa using the
DAI-USDS converter without rate limits.

Version 15LayerZero: introduced in ; in both controllers.

1. setLayerZeroRecipient(): the admin can set the LayerZeroRecipient of each
destinationEndpointId.

2. transferTokenLayerZero(): triggers a send() operation on an OFT to bridge the OFT
supported token to a destinationEndpointId. Fees are estimated and attached and rate limit
per OFT and destinationEndpointId is respected.

Version 17SPK Farm: introduced in ; only in mainnet controller.

1. depositToFarm(): deposits USDS into the farm, limited by the rate limit configured for this farm
and asset.

2. withdrawFromFarm(): withdraws USDS which at the same time claims the rewards for the
ALMProxy.

Version 19Spark Vaults V2: introduced in ; in both controllers.

takeFromSparkVault() enables taking assets from SparkVault. The function is rate limited per
SparkVault. Note that funds can be returned with transferAssets().

2.2.3.2 Deprecated Integration
This section aims to provide an overview of deprecated (i.e. removed) integrations in the system. Note
that most functions are restricted to the relayer role (only exceptions are explicitly mentioned).

Version 1 Version 7SUSDS: exists from to (exclusive); only in mainnet controller.

depositToSUSDS() / withdrawFromSUSDS() / redeemFromSUSDS() wraps USDS to SUSDS or
vice-versa. They are replaced with the ERC-4626 functions.

Version 11 Version 13Morpho integration on mainnet controller exists from to (exclusive). See the
Morpho integration description above for more details.

Version 11 Version 15BlackRock BUIDL Redemptions: integration in mainnet controller. exists from to
(exclusive).

redeemBUIDLCircleFacility() enables initiating buildRedeem.redeem() from the ALMProxy,
expecting to return USDC in exchange for the buildRedeem.asset. Note that the function is rate
limited.

Version 11 Version 19Superstate redemptions: integration in mainnet controller. exists from to
(exclusive).

redeemSuperstate() allows redeeming USTB for USDC. Function is subject to rate limits and
approvals are granted before calling respective functions on Superstate.

2.2.4 Deployment Scripts
Deployment scripts have been added that can be used in governance spells.

Version 3Since , MainnetControllerDeploy and ForeignControllerDeploy libraries both offer the functions
deployController() and deployFull() to deploy on mainnet and on the foreign chain,
respectively. While deployController() solely deploys a controller with a given ALM proxy and rate
limit contract, the deployFull() function deploys the ALM proxy and rate limit contract as well.

Version 10Since , both MainnetControllerInit and ForeignControllerInit support the functions
initAlmSystem() and upgradeController() for initialization:

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

•

Version 3

initAlmSystem() corresponds to the initialization of the initial deployment where sanity checks
are performed, contracts are wired to each other, and roles and CCTP mint recipients are
configured. (previously: subDaoInitFull() / init() with the previous controller being 0x0 in

)

•

Version 3

upgradeController() corresponds to a controller upgrade where the previous controller (not
being 0x0) is removed. (previously: subDaoInitController() / init() with the previous
controller not being 0x0 in).

Note that L1 addresses are not published to the Chainlog (which is intended).

2.2.5 Changelog
Version 2In :

1. transferUSDCToCCTP function has an additional limit on the amount of USDC that can be
bridged to a given domain.

2. The MainnetController's swapUSDCToUSDS function now uses the PSM's fill function to allow
filling the PSM if needed. As a consequence, swaps will be repeated as long as the full USDC
amount has not been swapped (with filling happening before the swap). In case the USDC amount
cannot be swapped, a revert will occur as before.

3. The unused immutables usds and susds have been removed from the ForeignController.

Version 3In :

1. Function receive() has been added to the ALMProxy to support receiving ETH.

2. Events will be emitted when changing the controller's active status and setting the mint recipient
on a destination domain.

3. Deployment scripts have been included in scope, see Deployment Scripts.

Version 4In , on the foreign controller's initialization, limits for USDS and sUSDS are set up for PSM
deposits and withdrawals.

Version 7In , the integration with any ERC-4626 compliant vault, Aave V3, and Ethena was added. As a
consequence of adding the generic ERC-4626 support, the sUSDS-only integration was deprecated.

Version 8In , withdrawal rate limits for ERC-4626 and Aave have been added. Hence the ALMProxy will
only interact with authorized ERC-4626 and Aave aTokens with limited rates.

Version 10In , the init script library has been refactored:

1. Version 3pauseProxyInit() introduced in is deprecated now; before it is intended for Sky
Governance; calls kiss on the PSM to allow fee-less swaps on the PSM. Note that no checks are
performed. Thus, this should be performed only after the expected spell to setup the ALM controller
has been performed by the SubDAO.

2. Note that rate limits are not configured anymore in the initialization scripts. Further, the helper
function setRateLimitData() calling IRateLimits.setRateLimitData() has been moved
to the RateLimitHelpers library which governance spells could use if necessary. Additionally, a
getter unlimitedRateLimit() for generating the parameters used for setting an unlimited rate
limit is provided.

Version 11In :

1. Morpho, Superstate, Maple, BlackRock BUIDL, and Centrifuge (ERC7540) integrations are added.

2. A new freezer behavior is introduced in both controllers. The contract no longer includes an active
flag that the freezer could toggle to pause the contract. More specifically, the freezer role could
pause all operations (in a controller) with freeze() while the admin could resume operations with
reactivate(). This was intended as a safeguard against a compromised relayer, allowing the
admin to replace them through governance which is a slow process. The new implementation

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

replaces freeze()/ reactivate() with removeRelayer(), enabling the freezer to directly
remove a compromised relayer. The contract is intended to have a main relayer and a configured
backup. If all relayers are removed by freezer, the contract becomes effectively frozen.

3. Library RateLimitHelpers (for deployment scripts) has been extended with custom errors and new
functions makeAssetDestinationKey(), unlimitedRateLimit() (a helper function
returning the maximum amount with a slope of 0), and setRateLimitData() (performs sanity
checks before calling setRateLimitData() on the RateLimit contract). The library now ensures
that rate limit parameters are within reasonable bounds before setting them in the contract:

• Max amount bounds: Must fall within a meaningful range (e.g., 1 unit and 1 trillion unit of
tokens).

• Slope validity: Replenishing rate must not be excessively fast or slow. Specifically, the
slowest replenishment can refill an equivalent amount of lower bound in one hour, and the
fastest replenishment can refill an equivalent amount of upper bound in one hour.

Version 12In , Centrifuge deposit / redeem request cancellation support is added.

Version 13In , Curve-Stableswap-NG-Plain pool integration and DaiUsds conversion are added, and
Morpho support has been removed from MainnetController (while it still exists in ForeignController).

Version 14In , after asking SparkDAO about swap rate limit decreases during adding liquidity, SparkDAO
introduced rate limit decrease for swaps on Curve when liquidity is added in an imbalanced way.

Version 15In :

1. LayerZero integration is added.

2. Internal _approve() is modified to achieve similar functionality as forceApprove() where the
allowance is reset to 0 first.

3. redeemBUIDLCircleFacility() is removed.

4. The CCTP, DSS LitePSM, and Curve integration are extracted to dedicated libraries.

5. Helper functions unlimitedRateLimit() and setRateLimitData() are removed.

6. The initialization script now allows to configure an array of relayers.

Version 16In , function transferTokenLayerZero() now supports a wider range of OFTs that require
approval prior to send(). And it is modified to be payable, hence the relayers or the controller itself (if it
holds native token) pay the bridging fee. Further, setLayerZeroRecipient() is called in the
deployment scripts of the Mainnet and Foreign Controllers to set the peer addresses on respective
destination issued.

Version 17IN . SPK Farm integration has been added to the mainnet controller. Further, for both the
Mainnet and Foreign controller functions withdrawERC4626(), redeemERC4626() and
withdrawAave() have been changed to replenish the deposit rate limit of the asset for the amount
withdrawn.

Version 19In :

1. The integration with Spark Vaults V2 has been added.

2. The immutable and constant keywords have been removed from MainnetController to reduce
bytecode size.

3. The redeemSuperstate() function has been removed as it was not used in production.

4. transferAsset() has been added to the foreign controller so that the foreign controller can
return taken funds to the Spark Vaults V2.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

2.3 Trust Model
ALMProxy: The admin is fully trusted, otherwise, it can setup controllers and trigger any calls with the
privilege of ALMProxy. The controller is also trusted.

In addition, the ALMProxy requires several roles to operate, which are assumed to be setup properly by
governance, for instance:

1. It requires bud role to swap without fee on DSS LitePSM.

2. It requires wards role on AllocatorVault to draw() and wipe() USDS.

3. It needs sufficient allowance from AllocatorBuffer to move minted USDS.

MainnetController and ForeignController:

1. The admin is fully trusted, otherwise they can DoS the controller, or steal the bridged money on the
destination domain by changing the mint recipient.

2. The relayer is semi-trusted, and they can only change the liquidity allocation in the worst case. The
freezer is also semi-trusted which can temporarily DoS the controller in the worst case.

Before initializing the contracts, the governance should always carefully examine whether the deployed
contracts match the expectations.

RateLimits: The admin is fully trusted to configure the limit data and controller correctly.

The following 3rd-party integration requires an extended trust model:

• It is assumed Spark ALM Controller will not interact with weird ERC-20 (rebasing / low decimals / ...)
and ERC-4626 vault (low token decimals / without share inflation protection / ...). Otherwise, for
instance, in case an ERC-4626 has low decimals, a relayer may amplify the loss due to rounding
errors in shares conversion with many calls for ALMProxy on L2s.

• Spark ALM Controller is subject to the inherent risks of these protocols (i.e. risks of upgradeability,
RWAs, governance ...) and generally the third party protocols receiving funds are assumed to be
non-malicious.

Arbitrary ERC-4626: The admin should only configure a deposit rate limit for trusted and correct external
ERC-4626 vaults.

Aave and Aave-like protocols: Aave governance can adjust the parameters for the reserves such as
setting it inactive, paused or frozen or upgrading the pool / aToken implementations. Spark ALM
Controller is subject to the potential risks of Aave, and Aave governance is fully trusted to not misbehave.
Similarly, note that other Aave-like protocols such as Spark are trusted in the same way if support for the
respective LP tokens is added.

Ethena: The funds deposited to Ethena are subject to the risks of depegging and minting / burning limits
of Ethena. The minter and burner of USDe are fully trusted, otherwise, they can DoS the USDe minting
and burning. The delegated signers assigned by relayers are semi-trusted:

1. There could be a race condition if multiple delegated signers exist, who can sign orders with
different volume and quotes.

2. The signers may not sign any order or not use all the allowance prepared by the ALMProxy.

3. The signers can sign with bad quotes regardless of the ones Ethena returned. It is assumed the
fully trusted Ethena minter / redeemer will never submit these malicious orders. (see A
Compromised Ethena Minter Or Redeemer May Execute A Bad Order)

4. Holding sUSDe further implies the risks of blacklisting (for deposit / withdraw / transfer) and
confiscating, the admins and other privileged roles of sUSDe are trusted to not misbehave.

5. The relayers are semi-trusted, a compromised Relayer Can DoS SUSDE Unstaking, which requires
admin privilege to remove the malicious relayer. In addition, as a relayer can assign any

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

delegated signer, a compromised relayer can incur all the aforementioned risks of a malicious
delegated signer.

Superstate USTB: The owner of USTB is fully trusted, otherwise it can for instance:

1. Block the deposit / withdrawals by pausing USTB and its redemption contract.

2. Manipulate the conversion price by changing the oracle. It is assumed the owner of AllowList is
trusted and will whitelist the Spark ALMProxy. Instant redemption is not possible if there is
insufficient USDC on the RedemptionIdle contract. In addition, USTB, AllowList and
RedemptionIdle contracts are deployed behind upgradeable proxies, hence the proxy admins are
trusted to not upgrade to malicious implementations.

Maple: Maple governance is fully trusted which oversees the protocol, who can upgrade the
implementations of the manager contracts which feature important logic and accounting. The redeemer
of MapleWithdrawalManager is trusted to process the redemptions in time. The governor and the pool
delegator is trusted since they can trigger the update of unrealized loss accounting on the LoanManager
contract, which will influence the redemption conversion rate. The protocol admin and pool delegator are
also trusted, otherwise they may interfere with the automatic redemption by setting the manual
withdrawal for the ALMProxy.

Morpho: It is assumed the Spark ALMProxy has allocator role on the specified Morpho Vault. Other
privileged roles of Morpho Vault: owner (assumed to be the Spark sub-proxy), curator, and guardian are
generally trusted to facilitate the operations.

BUIDL: Since the minting process is centralized, the issuer and master of BUIDL token is fully trusted to
issue the correct amount of tokens to Spark ALMProxy after the underlying assets transfer, otherwise,
the full deposit may be lost. BUIDL token is deployed behind an upgradeable proxy, hence the proxy
owner is trusted to not upgrade to a malicious implementation. The owner of the Redemption contract is
also trusted, otherwise it can DoS the redemption by pausing the contract. In addition, it is assumed there
is sufficient liquidity in the holder of the LiquiditySource contract to facilitate the redemptions.

Centrifuge: Centrifuge is assumed to be the only ERC-7540 integrated. The wards of the ERC-7540
vaults are fully trusted, otherwise they can DoS the system by changing the manager contract. The
wards of the InvestmentManager is fully trusted, otherwise they may 1) stop fulfilling deposits,
redemptions, or cancellation requests; 2) fulfilling the requests with bad conversion rate and incur loss to
the users. It is further assumed the tranche token being used supports authTransferFrom() without
prior approval, otherwise, function requestRedeemERC7540() will always revert due to insufficient
allowance.

Curve StableswapNG pools:

1. The tokens in the pool are pegged. Otherwise, swaps (or add imbalanced liquidity) to the depegged
tokens are allowed by the controller, hence incur a loss to the ALM Proxy.

2. The admin will set up the slippages properly (setMaxSlippage()). Otherwise, curve-related
functions could be DoSed if it is >100%, or significant slippage could be allowed if it is too small.

LayerZero:

LayerZero is out of scope for this review, it is assumed to work as documented, and trusted to behave
correctly, and deliver messages to the correct destination:

1. The OFT and recipient of each destinationEndpointId configured are fully trusted, otherwise,
it can steal the funds being transferred, or upgrade and bridges unexpected tokens. The
configuration required for managing the OFT on multiple chains is considered out of scope and
assumed to be correct.

2. The LayerZero executor is trusted to always deliver messages with the correct provided options.
However in case LayerZero behaves incorrectly, for example due to a compromise, an L2 finality
issue, or any other failure the rate limit functionality caps the amount of funds at risk.

SparkVault:

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

The SparkVault is expected to implement the take function and transfer the requested assets to the
ALMProxy.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 8

• Code Partially Corrected AcknowledgedLack of Rate Limits

• Code Partially Corrected AcknowledgedLayerZero Approvals

• Risk AcceptedCentrifuge Deposit / Redemption Can Be DoSed by Cancellation

•
Risk Accepted

Centrifuge Tranche Token Price May Change Between Request Submission and Execution

• Risk AcceptedMaple Redemption Can Be DoSed

• Risk AcceptedOver-reduced Limit in Maple Redemption

• Risk AcceptedRelayer Can DoS SUSDE Unstaking

• AcknowledgedRevoking Unused Approval

5.1 Lack of Rate Limits
Design Low Version 15 Code Partially Corrected Acknowledged

CS-SPRKALM-021

The LayerZero integration implements rate limits per OFT and destination pair. In contrast, the CCTP
integration implements a limit per destination and a global CCTP limit (always in USDC). The LayerZero
integration however lacks a notion of global limits per token and, hence, an inconsistency between the
bridging rate limits for CCTP and LayerZero exists.

Further, the LayerZero integration might pay fees in native tokens. However, the outbound amount of
native tokens is not rate limited. Thus, a relayer colluding with an endpoint operator could drain the native
token balance.

Code partially corrected and acknowledged:

Version 16In , function transferTokenLayerZero() has been marked as payable and will attach
exactly fee.nativeFee when calling the ALMProxy. Hence the relayers or the controller itself (if holds
any native tokens) will pay the bridging fee. SparkDAO has acknowledged the inconsistency between the
bridging rate limits for CCTP and LayerZero.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

5.2 LayerZero Approvals
Correctness Low Version 15 Code Partially Corrected Acknowledged

CS-SPRKALM-022

The MainnetController.transferTokenLayerZero() always approves the OFT while
ForeignController.transferTokenLayerZero() never does. While that implementation
supports the USDT implementation of OFTs, it may not support other implementations. Namely, not all
L1 OFTs require approvals and some L2 OFTs require approvals. As a consequence, unnecessary
approvals could be given while necessary approvals are not given. Note that the OFT standard defines
IOFT.approvalRequired() which defines whether an approval should be given.

Ultimately, the controllers could consider IOFT.approvalRequired() to support a wider range of
OFTs.

Further, pending approvals might remain. Namely, the OFTReceipt contains the amountSentLD and
the amountReceivedLD amounts where amountSentLD corresponds to the amount actually debited
from the user. Hence, send() could potentially pull less tokens than approved (e.g. LayerZero dust
removal) and pending approvals could exist. Optimally, the approvals should be revoked to prevent
dangling approvals.

Note that pending approvals might introduce a corner case if ZRO are held and bridged. Namely, a
dangling approval could allow for a lzTokenFee > 0 to be collected for ZRO OFTs.

To summarize, a wider range of OFTs could be supported and dangling approvals could nonetheless
exist.

Code partially corrected and acknowledged:

Version 16In the getter approvalRequired() is queried to determine either an approval should be
granted prior to send(), hence a wider range of OFTs are now supported. SparkDAO has
acknowledged the dangling approvals could still exist.

5.3 Centrifuge Deposit / Redemption Can Be
DoSed by Cancellation
Security Low Version 12 Risk Accepted

CS-SPRKALM-010

In Version 12, the relayers can request to cancel pending deposits / redemptions on Centrifuge and claim
them later once being fulfilled. Note that in case there is a pending deposit cancellation, no new deposit
can be made (same for redemption). Consequently, a compromised relayer can DoS new deposit
requests by triggering a deposit cancellation (same for redemption) until the existing pending deposit is
cancelled or fulfilled.

Risk accepted:

SparkDAO is aware of the risk.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

5.4 Centrifuge Tranche Token Price May Change
Between Request Submission and Execution
Correctness Low Version 11 Risk Accepted

CS-SPRKALM-011

When requesting a redemption from a Centrifuge ERC-7540 vault, the rate limit is decreased by an
estimation of the withdrawable assets (convertToAssets(shares)) based on the latest tranche token
price.

However, the tranche token price may change between the redemption request submission and
execution, hence the actual withdrawable assets after execution may not match the rate limit decreased
at submission time.

5.5 Maple Redemption Can Be DoSed
Security Low Version 11 Risk Accepted

CS-SPRKALM-012

Maple redemption can be DoSed by a compromised relayer in two ways:

1. Each user can have at most 1 redemption request in MapleWithdrawalManager. Hence a
compromised relayer can keep triggering dust redemptions and block the legitimate redemptions
from honest relayers. In this case, the honest relayers have to cancel the dust redemptions first
before triggering a legitimate one.

2. Requesting a maple redemption will consume rate limit, whereas cancelling a redemption will not
recharge the limit. Consequently, if the whole rate limit is consumed by a compromised relayer,
other relayers will not be able to trigger future redemptions.

Risk accepted:

SparkDAO has added a test (Attacks.t.sol,
test_attack_compromisedRelayer_delayRequestMapleRedemption) to demonstrate the
mitigation: if a malicious relayer delays redemption, the freezer can remove the compromised relayer and
revert to the governance relayer. This prevents the compromised relayer from continuing the attack,
allowing the governance relayer to cancel and submit the legitimate request.

5.6 Over-reduced Limit in Maple Redemption
Correctness Low Version 11 Risk Accepted

CS-SPRKALM-014

In requestMapleRedemption(), the redemption limit will be reduced given the conversion rate
between the shares and the assets with convertToAssets().

In MaplePool, function convertToAssets assumes the pool holds totalAsset() without unrealized
loss. However, when the redemption is processed with processRedemptions(), the withdrawable
amount takes the unrealized loss into consideration.

Consequently, there would be a discrepancy between the rate limit decrease and the actual received
tokens in the event of unrealized loss.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

5.7 Relayer Can DoS SUSDE Unstaking
Security Low Version 7 Risk Accepted

CS-SPRKALM-016

In Ethena, two steps are required to convert sUSDe to USDe:

• A cooldown must be initiated first, which (1) burns the shares and credit the USDe to the USDeSilo
contract (2) reset the cooldownEnd to be cooldownDuration from current block.timestamp.
Note the step (2) will extend any existing cooldown asset to another cooldownDuration.

• When the cooldownEnd is reached, the sUSDe can be unstaked and the USDe will be credited to a
specified receiver.

Consequently, a malicious relayer can keep triggering new cooldowns with as little as 1 wei asset to
block previous exits from sUSDe to USDe, hence DoS the sUSDe to USDe conversion.

Note: SparkDAO was aware of this issue and had reported to us before the audit. In addition, in case a
malicious relayer DoSed the sUSDe unstake(), SparkDAO will freeze the controller, remove the
malicious relayer, and reactivate the controller again.

In version 11, since function freeze() has been removed, instead of freezing the whole controller, the
freezer should revoke the RELAYER role from the malicious relayer.

5.8 Revoking Unused Approval
Design Low Version 7 Acknowledged

CS-SPRKALM-015

The freezer can remove relayers from the MainnetController which prevents relayers from triggering any
more interactions or funds transfers from the ALMProxy.

However, since the Ethena integration requires actions from several external parties (see Allowance For
Ethena Minter May Not Be Consumed), the actual transfers of underlying assets to mint or redeem USDe
may happen even after the relayer is disabled.

Version 11Note that prior to , the issue was reported in regards to the freezing with freeze().

Acknowledged:

SparkDAO acknowledged the issue and decide not to change the code since Ethena is fully trusted.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 6

• Specification ChangedWithdrawal May Be Blocked if Deposit Limit Is Reset

• Code CorrectedIncorrect Approval Return Decoding

• Code CorrectedIncorrect Slippage Protection for Curve

• Code CorrectedRounding Error in Slippage Calculation

• Specification ChangedOutdated README

• Code CorrectedLoosely Restricted Specific Calls to Arbitrary Address

Informational Findings 7

• Code CorrectedMint Recipient Is Not Initialized

• Code CorrectedSanity Checks In Deployment Scripts

• Code CorrectedUnused Parameters

• Code CorrectedALM Proxy Cannot Receive

• Code CorrectedConstructor Parameters

• Code CorrectedEvents

• Code CorrectedGas Optimizations

6.1 Withdrawal May Be Blocked if Deposit Limit Is
Reset
Design Low Version 17 Specification Changed

CS-SPRKALM-025

In this version, for both the Mainnet and Foreign controllers functions withdrawERC4626(),
redeemERC4626() and withdrawAave() have been changed to replenish the deposit rate limit of the
asset for the amount withdrawn.

However, this also implies withdrawals can only be made if there is an active deposit limit
(maxAmount!=0), otherwise the call to increase deposit rate limit will revert due to the following check in
contract RateLimits:

require(maxAmount > 0, "RateLimits/zero-maxAmount");

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

Consequently, in case deposit is blocked by resetting its rate limit (namely maxAmount==0), withdrawal
will also be accidentally blocked.

Specification Changed:

The README has been updated to clarify the following requirement:

Withdrawals using withdrawERC4626/redeemERC4626/withdrawAave must always have a non-zero
deposit rate limit set for their corresponding deposit functions in order to succeed.

6.2 Incorrect Approval Return Decoding
Correctness Low Version 15 Code Corrected

CS-SPRKALM-023

SparkDAO self-reported an issue about _approve function in the controllers and the curve lib.

Namely, the following code intended to retrieve the boolean return value from the low-level call:

(bool success, bytes memory data)
 = address(proxy).call(abi.encodeCall(IALMProxy.doCall, (token, approveData)));

// Decode the first 32 bytes of the data, ALMProxy returns 96 bytes
bytes32 result;
assembly { result := mload(add(data, 32)) }

However, the low-level call's data to be a pair of length of the data and the boolean returned by the call
of the proxy. However, note that the proxy returns bytes. Thus, the data wraps around the returned
bytes so that the boolean has a 64 byte offset in data.

Code corrected:

SparkDAO has corrected the problem accordingly.

6.3 Incorrect Slippage Protection for Curve
Correctness Low Version 13 Code Corrected

CS-SPRKALM-008

When adding/removing liquidity the amount minted and burned in form of LP tokens are slippage
protected. The maximum slippage check when adding/removing liquidity will assume that LP tokens have
a value of 1 for all times. However, note that this assumption may be incorrect.

Note that while the below will focus on adding liquidity, the idea is similarly applicable to the removal of
liquidity.

Within addLiquidityCurve(), the following condition on minLpAmount is required:

minLpAmount >= valueDeposited * maxSlippage / 1e18

The comparison implemented

• either compares an LP amount with "value" (e.g. USD) which is generally unsuitable,

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

• or assumes a one-to-one redeemability of LP tokens with "value" which is an incorrect assumption.
Note that the Curve Documentation specifies the following for get_virtual_price():

Getter for the current virtual price of the LP token, which represents a price
relative to the underlying.

As a consequence,

• the minimum minLpAmount must be set larger than necessary which might lead to reverts,

• or the maxSlippage configuration will be required to account for the share price which would,
however, affect the slippage for swaps.

Note that the documentation's definition is in accordance with the implementation of add_liquidity().
The function mints as follows:

mint_amount = unsafe_div(total_supply * (D1 - D0), D0)

where D0 and D1 correspond to the prior and new stableswap invariant, respectively.

Note that D value corresponds to the "total effective value". Hence, the amount minted corresponds the
pro rata shares according to the value added. However, also note that total_supply/D0 corresponds
to 1/get_virtual_price(). Hence, that this is in accordance with the documentation.

Ultimately, the comparisons implemented for adding and removing liquidity compare two values with
different meanings.

Code corrected:

get_virtual_price() is now being used to correctly compute the values required for the slippage
computation.

6.4 Rounding Error in Slippage Calculation
Correctness Low Version 13 Code Corrected

CS-SPRKALM-009

Version 13Support for Curve swaps and liquidity management were added in . A maxSlippage can be
configured to prevent bad operations on a pool. Whereas the slippage checks are subject to rounding
errors in the following cases.

swapCurve(): The minimumMinAmountOut is rounded down as follows:

uint256 minimumMinAmountOut = (amountIn * rates[inputIndex] /
 rates[outputIndex]) * maxSlippage / 1e18;

• The rounding error in the first division will be amplified in the next multiplication. In addition,
Assuming amountIn * rates[inputIndex] * maxSlippage will result in a value with 54
decimals, uint256 should have sufficient precision to store the result without overflow in practice.

• If the amountIn is small enough, the minimumMinAmountOut can be rounded down to zero,
especially when tokenIn has more decimals than tokenOut.

addLiquidityCurve(): The following slippage computation is rounded down (possibly to zero) similarly as
swapCurve(), which is subject to the same error amplification.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 25

https://docs.curve.fi/stableswap-exchange/stableswap-ng/pools/oracles/#get_virtual_price
https://chainsecurity.com

uint256 valueDeposited;
for (uint256 i = 0; i < depositAmounts.length; i++) {
 _approve(curvePool.coins(i), pool, depositAmounts[i]);
 valueDeposited += depositAmounts[i] * rates[i] / 1e18;
}

require(
 minLpAmount >= valueDeposited * maxSlippage / 1e18,
 "MainnetController/min-amount-not-met"
);

removeLiquidityCurve(): Similarly the following slippage computation is rounded down (possibly to
zero).

require(
 valueMinWithdrawn >= lpBurnAmount * maxSlippage / 1e18,
 "MainnetController/min-amount-not-met"
);

General:

Further, in all three operations (swapCurve(), addLiquidityCurve() and
removeLiquidityCurve()) the rate limit decreases are slightly under-estimated due to the decreases
being rounded down.

Code corrected:

While still some rounding errors could occur, the code has been improved.

6.5 Outdated README
Correctness Low Version 11 Specification Changed

CS-SPRKALM-013

The README has not been updated to reflect the changes introduced in Version 11. The new external
system integrations are not described.

A detailed description of transferAssets(), which allows value to exit the ALM system, is missing.
While this behavior is intentional and the destination address is restricted by the rate limit, it may conflict
with the statement in the trust assumptions section: "The logic in the smart contracts must prevent the
movement of value anywhere outside of the ALM system of contracts." If only system addresses are
whitelisted, this may align with the intended assumptions, but clarification might be good.

The description of the freezer permissions has not been updated and still reflects the previous behavior.
Technically by removing all relayers, the freezer can still "freeze all actions".

Specification changed:

The README has been updated:

• The controller functionality no longer lists individual protocols and supported actions but now refers
to external protocols.

• The freezer description has been updated.

• The TransferAsset function is now described in the README.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

6.6 Loosely Restricted Specific Calls to Arbitrary
Address
Security Low Version 7 Code Corrected

CS-SPRKALM-020

ERC4626 Integration: The integrator can freely trigger calls (respecting the ERC-4626 withdraw and
redeem interfaces) from the ALMProxy to arbitrary addresses.

Aave Integration: The integrator can freely call withdrawAave() for any aToken and amount without
any rate limit. In addition, since the Aave pool address is fetched from the aToken instead of being
hardcoded, the ALMProxy may eventually call an arbitrary contract with the Aave pool withdraw interface.

These calls are loosely restricted and could be unexpected if there is a function selector collision on
contracts where ALMProxy has privileges.

Code corrected:

Withdrawal rate limits have been added to the withdraw / redeem logic of ERC-4626 and Aave's withdraw
logic.

6.7 Mint Recipient Is Not Initialized
Informational Version 3 Code Corrected

CS-SPRKALM-007

In the controller initialization library, the RateLimit of bridging tokens with CCTP has been configured,
however, the mint recipients are not. As a result, USDC cannot be bridged after initialization and another
spell is required to set the mint recipients.

Code corrected:

Mint recipients are now configured in the initialization library.

6.8 Sanity Checks In Deployment Scripts
Informational Version 3 Code Corrected

CS-SPRKALM-005

1. The initialization code doesn't check if the Foreign Controller is active.

2. The status of the Spark PSM is not validated in the Foreign Controller initialization library. The
Spark ALM would be subjected to Share Inflation Attack if the deployer of Spark PSM does not
make the proper first deposit.

3. In the initialization library for both the Mainnet and Foreign controllers, there is no validation to
ensure that the new controller address (controllerInst.controller) is different from the old
controller address (params.oldController). If both addresses are the same, the script will first
grant the necessary permissions to the controller and then immediately revoke them. As a result,
the controller address will not obtain the CONTROLLER role.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Code corrected:

Code has been corrected to perform the respective checks.

6.9 Unused Parameters
Informational Version 3 Code Corrected

CS-SPRKALM-006

The initialization function init() of the Foreign Controller takes as parameters params.usds and
params.susds. However, these parameters are not used in the function.

Code corrected:

Code has been corrected by removing usds and susds from the AddressParams struct.

6.10 ALM Proxy Cannot Receive
Informational Version 1 Code Corrected

CS-SPRKALM-001

The ALM proxy contract is intended to be used for use-cases beyond the implementations of the current
controllers. In the future, scenarios might exist where a controller requires that the proxy can receive ETH
(e.g. by withdrawing from WETH). However, such use cases are not possible to implement due to the
lack of a receive function.

Code corrected:

Function receive() has been added to support receiving ETH.

6.11 Constructor Parameters
Informational Version 1 Code Corrected

CS-SPRKALM-002

The constructor of the mainnet controller receives buffer as an input. However, the buffer could be
retrieved from the vault. Ultimately, retrieving the buffer on-chain could make the code more consistent
(e.g. dai is retrieved from daiUsds).

Code corrected:

Code has been corrected to retrieve buffer from the vault.

6.12 Events
Informational Version 1 Code Corrected

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

CS-SPRKALM-003

The controller contracts lack events on important state changes. More specifically no event is emitted on

1. setMintRecipient()

2. freeze()

3. reactivate()

which involve important state changes.

For other functions, such as MainnetController::mintUSDS no event is emitted. Note that the
relevant events can be retrieved from the external contracts. However, that is also true for CCTP which
emits DepositForBurn making CCTPTransferInitiated redundant. Nevertheless, emitting an
event on every action could also be reasonable to easily allow distinguishing which controller (of the
potentially many) initiated a certain sequence of calls.

Code corrected:

The following events have been added to the privileged functions in both mainnet and foreign controllers:

1. event Frozen.

2. event MintRecipientSet.

3. event Reactivated.

6.13 Gas Optimizations
Informational Version 1 Code Corrected

CS-SPRKALM-004

In the MainnetController's swapUSDSToUSDC and swapUSDCToUSDS functions,
to18ConversionFactor is always queried. However, the factor is expected to be a constant and could
be made an immutable.

Version 7In of the MainnetController, the susds immutable is no longer needed as the SUSDS related
logic are replaced by the general ERC-4626 integration logic.

Code corrected:

Version 8The conversion factor has been set as an immutable in the constructor. In the susds
immutable has been removed.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 msg.value Validation in
transferTokenLayerZero
Informational Version 16 Acknowledged

CS-SPRKALM-024

The relayer attaches msg.value to calls to transferTokenLayerZero() to pay for the LayerZero V2
fees. Note that there might be two scenarios:

• The relayer does not provide sufficient value (e.g. pricing changed between transaction sending and
arrival). Then, if the controller does not hold the relevant native token delta, the call reverts.
However, that works as expected.

• Similarly, the relayer might provide a msg.value that is too high due to similar reasons. In such
cases the native token could be stuck in the controller.

Ultimately, the second scenario could lead to native tokens in the controller. Typically, they will not be
used. However, technically the relayer could reuse them to future LayerZero V2 fees. However, refunding
the relayer with remaining delta might be more meaningful.

7.2 Maple Manual Withdraw May Be Enabled
Informational Version 11 Risk Accepted

CS-SPRKALM-017

A maple redemption requires two steps:

1. The user submits a redemption request.

2. The privileged redeemer processes the request.

In a typical path, no more user interactions are required after step 1, and the underlying tokens will be
automatically send to the user in step 2.

However, in case manual withdrawal is enabled for the user, another call to MaplePool.redeem()
must be initiated to fulfill the withdrawal and trigger the underlying token transfer.

Note that manual withdrawals can only be enabled by the privileged roles (pool delegator and protocol
admins) of MapleWithdrawalManager with setManualWithdrawal(). In this case, the ALM Proxy has
to explicitly call redeem (ALM Controller's redeemERC4626()) to finalize the redemption. And this
requires a LIMIT_4626_WITHDRAW configured on the ALM Controller for this MaplePool. In addition, the
manually withdrawable shares will be internally accounted in the MapleWithdrawalManager, hence the
share balance of ALMProxy (balanceOf()) will not contain this.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

7.3 Allowance For Ethena Minter May Not Be
Consumed
Informational Version 7 Acknowledged

CS-SPRKALM-018

The integration with Ethena minter for USDe minting and burning requires external parties' (delegated
signers, Ethena minter and redeemer) actions. The relayer can only trigger the approve() from the
ALMProxy and expect the consecutive actions will be completed by the external parties.

In the following cases the allowance may not be fully consumed:

• The delegated signers sign orders with smaller volume which do not consume all the allowance.

• The Ethena minter or redeemer refuse to submit the order, which blocks the minting or redeeming
and does not consume the allowance.

• The expected minting and burning may not be executed successfully due to the restrictions on
Ethena minter such as the volume exceeds per block limit.

Consequently, the actual amount used in the interactions may be less than the amount tracked by the
rate limit.

Acknowledged:

SparkDAO acknowledged the issue and decide not to change the code.

7.4 Withdraw From Aave Can Be Blocked By
LTV=0 Asset
Informational Version 7 Acknowledged

CS-SPRKALM-019

When an asset is deposited under a user for the first time, the asset will be automatically configured as
collateral if its LTV is non-zero and it is not in isolation mode.

In case a user has an asset enabled as collateral which has LTV==0, the user will not be able to
withdraw any other assets that has LTV>0.

As a consequence, the following theoretical attack is possible:

• An attacker observed an asset that has LTV>0 is going to be configured to LTV==0 on Aave.

• It can supply on behalf of the ALMProxy (or send directly) a dust amount of this aToken.

• After the parameter change on Aave, the asset has LTV==0. The attacker successfully DoS the
ALMProxy, which will not be able to withdraw the desired aToken (i.e. aUSDS, aUSDC...) from
Aave.

Note that there is no rate limit and token restriction on function withdrawAave(). The relayer can
withdraw the full balance of the asset with LTV==0, which resets the usingAsCollateral flag to
false and recovers the ALMProxy from the DoS.

Acknowledged:

SparkDAO has acknowledged this issue and stated a rate limit for the LTV=0 asset will be added to
withdraw this asset in case this attack happens.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 A Compromised Ethena Minter Or Redeemer
May Execute A Bad Order
Note Version 7

Ethena's minter and redeemer are two crucial roles that can submit the signed orders to the Ethena
minting contract. Since the delegated signers are only semi-trusted and can be malicious, the minter and
redeemer are fully trusted to never submit bad orders signed by the malicious delegated signers (also
described in Trust Model).

In the worst case if Ethena' minter or redeemer are compromised, they may collude with a malicious
delegated signer to execute an order with bad quote that drains the approved USDC from ALMProxy.

8.2 Aave Interprets Uint256 Max Withdrawal as
Full Withdrawal
Note Version 7

The relayers should be aware that Aave will interprets a withdrawal with type(uint256).max amount
as a full withdrawal with user's balance. The relayers should be careful of this special behavior if they are
dependent on the input amount.

8.3 Asynchronous Operations May Be Interfered
Note Version 13

The execution of some asynchronous operations may be interfered and unable to finalize due to another
operation. For instance, the operation of prepareUSDeMint() will be initiated to mint USDe, which
simply grants allowance of tokens to be deposited. Before the 3rd-party operation to consume the
allowance, another operation, i.e. swapCurve(), may use up the tokens. This may cause the 3rd-party
operation to fail due to insufficient token balances.

The relayers should be careful of the asynchronous operations and avoid the interference of different
operations.

8.4 Avoid Morpho Deposit Into Market With Bad
Debt
Note Version 11

Upon a deposit into MetaMorpho vault, shares will calculated based on the aggregated expected balance
over all the markets in the withdrawQueue. In case there is unrealized bad debt in any of the underlying

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

markets, the new deposits will bear this impairment. The relayers should monitor the markets conditions
and not deposit or reallocate into markets with unrealized bad debt.

8.5 BUIDL Deposit Cap
Note Version 11

ALMProxy should only deposit into BUIDL if there is any space before the BUIDL deposit cap is reached
in issueTokens(). Otherwise, less BUIDL tokens can be minted than the USDC deposited. Though
there is no deposit cap (cap==0) on BUIDL by the time of version 11. The relayers should be careful of
the potential cap changes in the future.

8.6 BUIDL Redemption Will Be Blocked by USDC
Transfer Fees
Note Version 11

Upon a redemption (redeem()), the BUIDL Redemption contract will check the pre- and post-transfer
USDC balance difference of the user matches the input redemption amount, otherwise it will revert. This
requires no transfer fee or loss on USDC, otherwise the redemption will be blocked.

Version 15As of , the redemption feature has been removed. However, the note is left is for completeness
reasons for earlier deployments.

8.7 Curve Withdrawal Slippage
Note Version 13

When removing liquidity from Curve with removeLiquidityCurve() a balanced withdrawal is
performed. Note that the performed slippage protection is not strictly necessary. Namely, assuming
tokens are pegged, that is due to no negative slippage in terms of "underlying value" being possible.

As a consequence, note that the relayer will typically be forced to simulate the transaction to be able to
provide rough values suitable to pass the check.

8.8 Inconsistent Swap Rate Limit Decrease for
Curve
Note Version 14

When adding liquidity to Curve, a swap can occur. Note that the rate limit adjustment is inconsistent with
the adjustment in the swap function. Consider the following example:

1. Assume that swapping 50 token A returns 49 token B.

2. When using the swap function, the rate limit is reduced by 50.

3. Assume that when adding liquidity with 100 token A and 0 token B, the internal swap swaps so that
50 token A and 49 token B are added.

4. The swap performed is effectively the swap from 1.

5. However, the rate limit adjustment will be the average of the input and output deltas and will thus be
49.5.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

Ultimately, there can be swap rate limit discrepancies between swap and adding liquidity. However, note
that this is intended according to SparkDAO.

8.9 Maple Deposit Ignores Unrealized Losses
Note Version 11

When depositing into the MaplePool, shares are minted assuming there are no unrealized losses from
the underlying loan managers, hence this deposit will bear part of the impairment immediately. In
addition, withdrawals from MaplePool will bear existing unrealized loss and forfeit the potential recovery
of the impairment. The relayers should monitor the Maple's loan and unrealized loss status before
deposits and withdrawals to avoid loss to the ALMProxy.

8.10 MorphoAllocations updateWithdrawQueue
Subject to Front Running
Note Version 11

In Morpho vaults, any user can supply on behalf of the vault. Since updateWithdrawQueue() requires
the market to be empty, malicious actors can front-run this call, blocking its intended execution. This is a
known issue documented in Morpho's documentation. The recommended workaround is for the allocator
to bundle a reallocation that withdraws the maximum from the affected market alongside the
updateWithdrawQueue call.

The Spark-ALM-Controller provides separate updateWithdrawQueue() and reallocate()
functions. Although there’s no bundled variant that combines them atomically, the expectation is that
including both operations within a single transaction will mitigate the frontrunning risk.

8.11 OFT Considerations
Note Version 15

Governance should be aware that certain OFTs are not supported. Below is a list of considerations to
make when adding support for an OFT:

• OFTs that try to pull more than it was specified are not supported due to lack of sufficient approval.

• OFTs could try to burn (without approval) more than it was specified are generally not supported. If
more would be burned than specified, the rate limit accounting could be incorrect. Thus, such OFTs
should not be added.

• OFTs with inherent rate limits could lead to unsuccessful operations. More specifically, the
executions could revert due to OFT rate limits.

• OFTs should be ensured to follow the OFT standard correctly. Additionally, the underlying token
should not be allowed to change or similar as this could lead to rate limit violations.

• The gas cost for configured destinationEndpointId should be carefully monitored to ensure
that the hardcoded value of 200_000 is sufficient.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

8.12 OFTs With Mandatory Fee in lzToken Are Not
Supported
Note Version 15

Function transferTokenLayerZero() queries the fees with quoteOFT() prior to send() to prepare
the fee payment by attaching required native tokens. Even though it quotes OFT with flag
_payInLzToken=false, it does not guarantee the fee contains 0 lzToken. Hence, in case part of the
fee must be paid in lzToken, send() will fail due to insufficient approval of lzToken.

In summary, OFTs that always require part of the fee in lzToken are not supported by Spark ALM
Controller hence should not be used.

8.13 Special Cases Handling
Note Version 1

The ALM's functionality can be extended by allowing new controllers. Some currently unresolvable
scenarios, could be resolved in the future if needed. For example:

1. Assume it is desired that for an L2, all funds are bridged back to mainnet. However, in case the
PSM3 never holds sufficient USDC to bridge back to L1, funds will remain on L2. As a result,
another controller could be whitelisted that initiates redeeming the PSM shares against the other
two assets to then bridge them back to mainnet through the respective bridges.

2. The mint recipient for CCTP could be blacklisted. That effectively could DoS the USDC bridging. In
that case, a new controller could be added that allows calling CCTP's replaceDepositForBurn
to resolve the issue.

Ultimately, some unlikely (and intentionally unhandled) issues may arise with the existing controllers. To
resolve such issues, new controllers can be added.

SparkDAO - Spark ALM Controller - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 ALMProxy
	2.2.2 Rate Limits
	2.2.3 Controllers
	2.2.3.1 Existing Integration
	2.2.3.2 Deprecated Integration

	2.2.4 Deployment Scripts
	2.2.5 Changelog

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Lack of Rate Limits
	5.2 LayerZero Approvals
	5.3 Centrifuge Deposit / Redemption Can Be DoSed by Cancellation
	5.4 Centrifuge Tranche Token Price May Change Between Request Submission and Execution
	5.5 Maple Redemption Can Be DoSed
	5.6 Over-reduced Limit in Maple Redemption
	5.7 Relayer Can DoS SUSDE Unstaking
	5.8 Revoking Unused Approval

	6 Resolved Findings
	6.1 Withdrawal May Be Blocked if Deposit Limit Is Reset
	6.2 Incorrect Approval Return Decoding
	6.3 Incorrect Slippage Protection for Curve
	6.4 Rounding Error in Slippage Calculation
	6.5 Outdated README
	6.6 Loosely Restricted Specific Calls to Arbitrary Address
	6.7 Mint Recipient Is Not Initialized
	6.8 Sanity Checks In Deployment Scripts
	6.9 Unused Parameters
	6.10 ALM Proxy Cannot Receive
	6.11 Constructor Parameters
	6.12 Events
	6.13 Gas Optimizations

	7 Informational
	7.1 msg.value Validation in transferTokenLayerZero
	7.2 Maple Manual Withdraw May Be Enabled
	7.3 Allowance For Ethena Minter May Not Be Consumed
	7.4 Withdraw From Aave Can Be Blocked By LTV=0 Asset

	8 Notes
	8.1 A Compromised Ethena Minter Or Redeemer May Execute A Bad Order
	8.2 Aave Interprets Uint256 Max Withdrawal as Full Withdrawal
	8.3 Asynchronous Operations May Be Interfered
	8.4 Avoid Morpho Deposit Into Market With Bad Debt
	8.5 BUIDL Deposit Cap
	8.6 BUIDL Redemption Will Be Blocked by USDC Transfer Fees
	8.7 Curve Withdrawal Slippage
	8.8 Inconsistent Swap Rate Limit Decrease for Curve
	8.9 Maple Deposit Ignores Unrealized Losses
	8.10 MorphoAllocations updateWithdrawQueue Subject to Front Running
	8.11 OFT Considerations
	8.12 OFTs With Mandatory Fee in lzToken Are Not Supported
	8.13 Special Cases Handling

