PUBLIC

Code Assessment

of the Legend Scripts

Smart Contracts

July 14, 2025

Produced for

Q) LEGEND

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG

10
11
12
13
18
19

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Legend Labs with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of Legend Scripts according
to Scope to support you in forming an opinion on their security risks.

Legend Labs implements Legend Scripts, a suite of scripts that enable the Quark Wallet to interact with
external contracts. In particular, Legend Labs implements bridging scripts, looping scripts, wrapping
scripts, and swapping scripts.

The most critical subjects covered in our audit are reentrancies, MEV, and dangling approvals. Security
regarding all aforementioned subjects is high.

The general subjects covered are events, interaction with native tokens, and interoperability with
common Metatransaction standards. Security regarding aforementioned subjects is high, however we
have detailed the limitations of interoperability with batched operations in a note: TStoracle in bundled
operations.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

4 Code Corrected
¥ Specification Changed

(Low)-Severity Findings

¥ Code Corrected
¥ Risk Accepted

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Legend Scripts repository based on
the documentation files. The table below indicates the code versions relevant to this report and when

they were received.

V | Date Commit Hash Note

1 | 9 April 2025 €9269a00f717031d6faaelf63c00401774ea8944 Initial Version

2 | 5June 2025 b676704caf0eal62b32d30e929481f0503f6bela Updated Version
3 | 27 June 2025 | 167al1dfbd0090087c8859021b5af45f67a8b0f34 Updated Version 2
4 | 08 July 2025 bd0565e2771619d661ca5e8321442848902afba7 Final Version

For the solidity smart contracts, the compiler version 0. 8. 27 was chosen.

The following files were in scope:

src/

AaveScri pts. sol
AcrossScri pts. sol
Bri dgeScri pts. sol
DeFi Scri pts. sol
Filler.sol
LoopLong. sol
LoopShort. sol
Mer kl Scri pts. sol
Mor phoScri pts. sol
Mul ticall.sol

Or acl eExecut or. sol
Quot ePay. sol
SwapScri pts. sol
TSt or acl e. sol

Unl oopLong. sol

Unl oopShort . sol

W apper Scri pts. sol

The following files were already audited as part of a previous audit by ChainSecurity, and the differences
with respect to commit 24617d65b06937a25f f 78b77b555df f 9da41e649 have been reviewed:

src/

Bri dgeScri pts. sol
DeFi Scri pts. sol
Mor phoScri pt s. sol
W apper Scri pt s. sol

Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.1.1 Excluded from scope

Tests and files not explicitly listed above are excluded from scope. Moreover third party libraries are
assumed to behave correctly according to their specification.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Legend Labs offers scripts for the Quark Wallet, that allow performing a suite of actions on DeFi systems.
For a system overview of the Quark Wallet itself, please refer to our previous reports of Quark v1 and
Quark v2 .

2.2.1 Aave Script

AaveActions allows supplying liquidity to Aave to earn interest. The liquidity is not supposed to be used
as collateral, therefore the reserve that is supplied is disabled as collateral (Aave automatically enables
reserves as collateral when supplying). The supplying script should not be used by accounts that are
currently borrowing (or intend to borrow) on Aave, since disabling the reserve as collateral can decrease
its health.

Another function is provided to withdraw liquidity.

2.2.2 Across Script

The AcrossActions scripts allows bridging funds to other chains through the Across v3 protocol. The
deposi t V3() function of the SpokePool of the Across protocol is called with the arguments supplied by
the user, and the bridged token is pulled from the Wallet. The arguments supplied by the user are passed
to the SpokePool without changes. The special flag useNat i veToken can be used when bridging native
tokens (without an ERC20 wrapper). In that case the i nput Token needs to be specified as the wrapper
contract of the native token (WETH on Ethereum Mainnet).

2.2.3 Multicall

The Multicall script is a script that calls other scripts. The user supplies a list of script addresses and
payloads for each of the scripts (via the run() function). Each of the user supplied scripts is
delegatecalled. In case of a revert, the Multicall script reverts.

The Multicall script also handles possible callbacks to the executing scripts: When a callback is enabled
in the Quark Wallet, the currently executing script is saved in the CALLBACK_SLOT transient storage slot
of the wallet. When the wallet is called, its f al | back() function will forward calls to the contract in the
CALLBACK_SLOT. In case the Multicall script is currently executing, the intended behavior from users is
that the script that is currently called by the Multicall itself is the target of the callback, for this reason
Multicall implements callback forwarding to the currently executing script, by implementing a
fal | back() function on its own.

2.2.4 QuotePay script

Signed QuarkOperations are expected to be relayed on-chain by Legend Labs controlled relayers such
that users can interact with multiple chains without the need for native tokens on each one. The
QuotePay script allows users to perform an arbitrary token payment to the relayer to cover the gas fees
of relaying signatures.

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 6

https://cdn.prod.website-files.com/65d35b01a4034b72499019e8/6683faf863080a2260c57513_ChainSecurity_Compound_Quark_audit.pdf
https://cdn.prod.website-files.com/65d35b01a4034b72499019e8/672cf193350895fd70c85137_ChainSecurity_Legend_Labs_Quark_V2_and_Quark_Scripts_audit.pdf
https://chainsecurity.com

2.2.5 Looping

Legend Scripts offers a suite of scripts to perform looping operations. Looping can be long or short.

The idea of long looping is to buy an exposure asset that has greater value than the initial backing asset
amount in the user wallet. This is achieved by borrowing part of the backing token used to buy the
exposure token and using the exposure token acquired as collateral for the borrow. After the looping, the
user has a debt equal to the price paid for the exposure token acquired minus the initial backing token of
the user, and has a collateral equal to the total value of the exposure token acquired.

The ratio between the collateral value and the backing token provided is the looping factor. If the
exposure token appreciates 1%, and the looping factor is 5, the value of the user's position, which is
equaltocol | ateral - debt,increases by 5%.

Conversely, short looping consists in borrowing a greater amount of exposure token than the value of the
user's initial backing token and immediately exchanging it for backing token to be used as collateral. The
user therefore has a debt denominated in exposure tokens, and a collateral denominated in backing
tokens. The looping factor is given by the ratio between the value of the debt and the value of the
provided amount of backing token. In the short case, if the looping factor is 5 and the exposure token
depreciates 1%, the value of the user's position appreciates by 5%.

The looping scripts achieve looping by borrowing on Morpho Blue and swapping on Uniswap V3.
Uniswap V3 flash-swaps are used to buy a greater value than what is initially in the user wallet: Uniswap
V3 sends the token amount (exposure token in case of long, or backing token in case of short) to the
wallet, before receiving the payment for it, and calls back to the wallet in order to receive the payment. In
the callback, the wallet can use the received amount as collateral for a Morpho loan that is used to pay
back the swap.

Four scripts are provided:
e LoopLong: Opens a long looping position.
« Unl oopLong: Closes a long looping position.
e LoopShort : Opens a short looping position.

* Unl oopShort : Closes a short looping position.

To open a long looping position, LoopLong. | oop() takes as main arguments the exposur eAmount of
exposur eToken that the wallet will acquire and the naxSwapBacki ngAnount which is the maximum
amount of backi ngToken that will be paid the users themselves in order to get exposur eAnount . The
backi ngToken provided in the swap is composed partly by funds initially in the user's wallet, up to
parameter maxProvi dedBacki ngAnount, and partly by funds borrowed from Morpho using the
exposure token as collateral. Other parameters are the Morpho market used to borrow and the Uniswap
V3 pool used to swap.

To close a long looping position, Unl copLong. unl oop() is used by specifying the exposur eAnount
by which the collateral is reduced and nmi nSwapBacki ngAnount , which is the minimum amount of
backi ngToken received for swapping exposureAnount. When closing a long position, the
exposur eAmount is sold for backi ngToken and the backi ngToken is used to repay the debt.

Similarly, LoopShort . | oop() and Unl oopShort . unl oop() open and close short positions.

The Liquidation LTV (LLTV) of Morpho markets define the maximum looping factor that can be achieved
before a position becomes liquidatable. If the LLTV, for example, is 90%, the maximum looping factor is
10x (it can be computed as 1_1”tv). If the looping factor exceeds this amount, the user is liquidatable and
its position can suffer a sudden drop in value when it is liquidated. The looping factor can increase
because of user actions (for example calling w t hdrawBacki ngToken() on LoopLong or
LoopShor t), or because the price of the exposure token drops in case of a long / increases in case of a
short. Morpho allows user to reach exactly the LLTV when opening or modifying a position, therefore
users must use a margin of safety when creating or modifying their positions to stay clear of the

maximum looping factor.

(S: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

Users can also incur losses by slippage when swapping on Uniswap V3. The ratio between
exposur eAnount and maxSwapBacki ngAnount, or m nSwapBacki ngAnount defines the limit
average price at which swaps can be performed. maxSwapBacki ngAnmount or
m nSwapBacki ngAmount should be set according to the market price of exposur eToken.

2.2.6 TStoracle and OracleExecutor

The TStoracle is an on-chain key-value store where anybody can set values for a given key. The values
are held in transient storage and therefore persist for the duration of one transaction. The purpose of the
TStoracle is to pass data from the relayer of a QuarkOperation to the executed scripts. In general, the
messages will consist of signed asset prices or swap paths to execute trades. The put () function of the
TStoracle is unpermissioned, therefore scripts using the TStoracle should not trust the values but should
implement appropriate checks to guard against malicious values.

The Oracl eExecut or contract is a convenience contract used by relayers of QuarkOperations to set
given keys and values in the TStoracle before executing a QuarkOperation in a wallet, in the same
transaction.

2.2.7 Swap Script and Filler

Contract ApproveAndSwap implements an intent based script to swap assets. A user signs a
QuarkOperation to call Appr oveAndSwap. run(), supplying as arguments fi | | er, the address of the
Filler utility contract, sel | Token and sel | Anount, and buyToken and buyAnount . The arguments
signify an intent to buy at least buy Anount of buyToken for sel | Ambunt of sel | Token. No specific
way on how to conduct the swap is specified, as it is the role of the relayer of the QuarkOperation to
specify a swap mechanism. This is done through the Filler contract.

The Filler contract exposes a swap() function that takes as arguments sel | Token, buyToken,
sel | Amount and m nBuyAnount . It uses the TStoracle to retrieve the swap path, by reading the
TStoracle value at the SWAPPER_KEY key. The swap path is encoded as a swapContract and a
swapDat a. The Filler pulls the sel | Token from the caller, approves the swap contract to take the
sel | Token, and calls swapCont r act with swapDat a. This is a completely untrusted external call with
arbitrary data, and the filler ensures that it has received the required amount of buyToken after the call.
Since the Filler can perform arbitrary external calls, no approvals should be given to it, except atomically
just before calling the swap function and resetting the approval to zero afterwards.

The use of the TStoracle to obtain the swap data allows separating the concerns of the user who simply
signs an intent, and of the relayer who finds a way to solve the intent and execute the QuarkOperation.

2.2.8 Changes in Version 3

In of the code, Unl oopLong and Unl oopShort now allow the user to fully withdraw their
remaining collateral when their position has been liquidated beforehand.

2.2.9 Changes in Version 4

The Fi | | er contract now allows to specify a f eeAnpbunt and a f eeReci pi ent. The f eeAnpunt can
be a maximum of 1 percent of the output amount.

2.3 Trust Model

Users are responsible for signing operations that do not result in losses. Even if all scripts are initially
designed to be secure, certain configurations (e.g., execution of unknown scripts or contracts that are not
intended as scripts like Filler, uncapped max trades, insufficient slippage protection or careless bridging
of tokens) can result in problematic behavior.

Thefill er address used in Appr oveAndSwap is assumed to be a deployment of the Filler contract.

Relayers are patrtially trusted to execute operations in time (or at all).

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

Furthermore, all the trust assumptions in our reports of Quark v1 and Quark v2 apply here as well.

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG

https://cdn.prod.website-files.com/65d35b01a4034b72499019e8/6683faf863080a2260c57513_ChainSecurity_Compound_Quark_audit.pdf
https://cdn.prod.website-files.com/65d35b01a4034b72499019e8/672cf193350895fd70c85137_ChainSecurity_Legend_Labs_Quark_V2_and_Quark_Scripts_audit.pdf
https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings E
(C)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 1

+ Enabled Callback Can Be Persisted Over Multicall Scripts

5.1 Enabled Callback Can Be Persisted Over

Multicall Scripts
(Design [(CTYI VLTI Risk Accepted)

Using Multicall with scripts that do not disable callbacks is unsafe, even if the scripts are safe in isolation.

CS-LLS-004

Multicall keeps the status of the callback of the QuarkWallet between different sub-script executions (it
does not disable the callback before executing the next script). If a script does not disable the callback,
the next script could be vulnerable to unforeseen reentrancies.

It is possible that callbacks are not disabled because:

«the callback target might be optional (its execution is not guaranteed and so is
di sal | owCal | back())

« the callback target might be a view function

Risk accepted:
Client states:

We acknowledge the risk that is introduced when disallowCallback() is not called. In our
implementation, any script that allows callbacks will also explicitly disable them within the callback.

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 0
(Medium)-Severity Findings 3

« Missing Amount Check in Callback

* Multicall Reentrancy (SRS uiEal
« Slippage Check Race Condition EZalill N ENFCh]

(Low)-Severity Findings A
» Failing Native Token Transfers to Contracts
» Incorrect Handling of Native Tokens
» Loop Reentrancies
« Unexpected Approval

Informational Findings 2

« Inconsistent Events (LR IIEN L
« Payable Functions Not Reachable (SNl

6.1 Missing Amount Check in Callback
(Correctness JQIXITIVZETRBM Code Corrected

The LoopLong and Unl oopShort contract's uni swapV3SwapCal | back assume that when swapping
a backing token for an exact output of exposure token, the pool will always deliver the full requested
amount. It never verifies that the actual amount received equals the requested anmount Qut . In case of
low-liquidity, it is possible that Uniswap V3 pools will consume all liquidity before being able to fill the full
requested amount. In that case, the callback is performed with a smaller amount than requested
(compare with Uniswap V3 router implementation of exactOut swaps). Therefore, it is possible that the
callback receives fewer exposure token than requested, at a cost less than maxSwapBacki ngArmount .
Potentially, the amount received is only a very small fraction of the requested amount, but at the cost of
the full amount.

CS-LLS-001

The consequence is that the slippage protection imposed by naxSwapBacki ngAnount is ineffective in
defining a limit price. An attacker can exploit this to sandwich the swap.

In the same block or transaction:
1. The attacker consumes all liquidity of the pool by trading to an extreme price

2. The attacker supplies a very low amount of exposure token (att ackAnount) at a very high price
to the pool, such that purchasing at t ack Anount will cost max SwapBacki ngAmount

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 13

https://github.com/Uniswap/v3-periphery/blob/main/contracts/SwapRouter.sol#L197-L199
https://chainsecurity.com

3. The wuser performs a swap, receives attackAnpunt < anmountQut and pays
max SwapBacki ngAnount

4. The attacker swaps back to initial price, recovering most of the initial capital.

Calls to Unl oopShort are easier to exploit than calls to LoopLong:

LoopLong supplies the whole expected exposur eAnpbunt to the Morpho market in the callback. If the
actual exposure amount received is less than exposur eAnount , this call will fail unless the Wallet has
some pre-existing exposur eToken balance.

Unl oopShort uses the actual received amount of exposureToken to repay the debt and then
withdraws collateral for the whole backi ngTokensOmed amount. The repay can be of smaller
magnitude than expected, and as long as the position stays above Liquidation LTV after the collateral
withdrawal, the function does not revert. The attacker can tune the exploit to bring the position exactly to
the Liquidation LTV, making it liquidatable in the next block as soon as interest accrues.

The cost to the attacker is only the Uniswap V3 fee required to consume all the liquidity in the pool and
then trade back to normal price. This is a fixed cost, but the profit is proportional to the
exposur eAmount specified by the user.

The same issue can also arise in LoopShort and Unl oopLong but it cannot be profitable for any
attacker. Signing such an action for a Uniswap pool with low liquidity can, nevertheless, result in
unexpected behavior.

Code corrected:

In (Version 2), the LoopLong and Unl oopShort scripts validate the amount received, and raise the
SwapUnder fi | | ed error if the amount received is lower than expected. LoopShort and Unl oopLong
do not validate that the full input amount has been spent in the swap, however discrepancies there can
only benefit the wallet.

6.2 Multicall Reentrancy

() (Vi) (Version 1) CXEIREEED

If the Multicall script executes a script that allows callbacks and passes execution flow to untrusted code
(for example LoopLong with a malicious token), an attacker can execute arbitrary code in the context of
the wallet. Consider the following scenario:

CS-LLS-002

1. The wallet executes the multicall script, setting the active script to the multicall address.

2. The multicall script calls the LoopLong script.

3. LoopLong calls al | owCal | back() , then swaps on Uniswap using a malicious token.

4. The malicious token executes an attacker's contract.

5. The attacker contract calls back into the wallet executing the r un() function of the multicall script
6. The wallet now delegatecalls to an attacker controlled address.

Executing malicious code through delegatecalls amounts to the loss of all funds.

Code corrected:

In (Version 2), reentering the Multicall script with a call to run() forwards the call to the script currently
executed by the Multicall script. This prevents arbitrary execution through the Multicall script.

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6.3 Slippage Check Race Condition
D (Medium) (Version 1) TR

Several scripts are allowing the user to either set a cappedMax flag or set amount values to
t ype(ui nt 256) . max in order to allow the scripts to use their current balance of a given token.

CS-LLS-003

In some cases, however, this can lead to a race condition with unforeseen consequences if these values
are used in conjunction with a (pre-defined) slippage check as the slippage value remains constant while
the amount value is dynamic. Consider the following example:

1. A user holds 1000 USDC.

2.They sign a QuarkOperation which calls AcrossScripts.depositV3() with
cappedMax = true,input Anbunt == ui nt 256. max, and an out put Anount of 1000 USDT
on another chain.

3. After creating the message, the user creates another message that transfers 1000 USDC to their
wallet.

4. The second message is executed first. The user's wallet now holds 2000 USDC.
5. The first message is executed, allowing a relayer to obtain 2000 USDC.

6. The relayer, however, is responsible for paying out only 1000 USDT on the other chain.

The following scripts are affected by this issue:
1. AcrossScri pts. deposit V3()
2. Uni swapSwapAct i ons. swapAsset Exact | n()
3. Appr oveAndSwap. run() (the threat is documented here though)
4. Unl oopLong. unl oop()
5. Unl oopShort . unl oop()

Specificartion changed:

Uni swapSwapAct i ons has been removed completely. The issue is now documented for the other
functions, presenting a warning.

6.4 Failing Native Token Transfers to Contracts

(D (Low) (Version 1) ST

Transfer Acti ons.transferNativeToken() uses send() instead of a low-level call to transfer
native tokens. Transfers to contracts with fallback functions that consume more than 2300 gas are
therefore not possible. Amongst others, this applies to Ghosi sSaf e contracts, and even Quar kWl | et
if deployed behind a proxy.

CS-LLS-005

Code corrected:

Instead of send(), a low level CALL is used with a gas limit of 10000, to be compatible with smart wallet
recipients.

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.5 Incorrect Handling of Native Tokens

(Correctness JICTIWEETBY Code Corrected)

Acr ossActi ons. deposi t V3() allows the user to specify that their full balance of a given token should
be bridged. Furthermore, it allows the user to specify whether they want to bridge an ERC-20 token or the
current chain's native token. In either case, the full balance is calculated using the bal anceO ()
function of the given token and an approval is set.

CS-LLS-006

The Across bridge requires users to set the i nput Token to the respective wrapped native token
contract of the current chain. If native tokens are used, the function therefore always sets an approval on
the wrapped native token contract that will not be used by the bridge.

If the full balance should be used, the function uses the balance of the wrapped native token instead of
the native token, which can either result in reverts or unexpected behavior.

Code corrected:

In (Version 2), the amount is correctly computed for both ERC20 and native scripts, and the approval is not
set in case of native token.

6.6 Loop Reentrancies

D (Cow) (Version 1) CXEEIRD

Loop scripts call al | owCal | back() and then proceed to swap on Uniswap. In case the traded token is
malicious, execution flow can be redirected to an attacker who is then able to call the script's functions
that don't contain di sal | owCal | back() calls.

For example, the attacker could call back to wi t hdr awBacki ngToken() in LoopLong and bring the
user's borrow position into a vulnerable state.

CS-LLS-007

Code corrected:

Entrypoints of LoopLong, LoopShort, Unl oopLong, Unl oopShort have been marked as

nonReent r ant in (Version 2),

6.7 Unexpected Approval
7DD (Cow) (Version 1) (XTSI

Comret RepayAndW t hdr awMul ti pl eAsset s. run() gives an approval to a Compound contract and
then calls the suppl y() function of the same contract using the same amount.

CS-LLS-008

If the user passes t ype(ui nt 256) . max as the amount, the approval is set to t ype(ui nt 256) . max
while the suppl y() call uses only the user's balance. This leads to an unexpected approval that is not
reset back to O later.

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Code corrected:

In (Version 2), the approval is set to zero after supplying to Compound if the repay amount is
t ype(ui nt 256) . max.

6.8 Inconsistent Events

[Informational] [Version 1]

The following inconsistencies of emitted events can be observed:

CS-LLS-009

1. The event Tr ansf er Execut ed, Appr oveAndSwapExecut ed, "LoopLongExecuted™,
LoopShort Execut ed, Unl oopLongExecuted, and Unl oopShortExecuted, PayQuote
contain addr ess(t hi s) as a parameter. This address is always associated with the emitted event
by default.

2. The event Appr oveAndSwapExecut ed is emitted with the minimum buy amount as buy Anount .
The effective buy amount could be higher.

Legend Labs chooses to maintain the address(this) event parameters for explicitness. The
Appr oveAndSwapExecut ed event has been removed.

6.9 Payable Functions Not Reachable
(Informational] [Version 1]

Some scripts define payabl e functions. However, the Quar kWal | et has no payable entrypoints
(beside the fallback function), so it is unclear what the purpose of the payabl e modifier is. The following
functions are payable:

CS-LLS-012

1. Wapper Acti ons. wr apETH

2. W apper Acti ons. w apAl | ETH

3. Wapper Acti ons. unw apAl | VETH

4. W apper Acti ons. wr apAl | Li doSt ETH
5. AcrossScri pts. deposi t V3

Code corrected:

The functions are no longer payabl e.

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Missing Refund ACKNOWELDGED

(Informational] [Version 1]

CS-LLS-011

Filler.swap() takes a sel | Amobunt as input and tries to swap it for a given m nBuyAnount . This is
done using an arbitrary call. Depending on the calldata and the implementation of the target contract, it is
possible that not all of the sel | Arount is spent. The remaining amount, however, is not refunded to the
user and remains on the contract where it can be transferred out by anyone (using a regular
transfer () calland m nBuyAmount = 0).

Client states:

We acknowledge that not all of the sell token may be sold to fulfill the swap intent and that the
unused amount will initially sit in the Filler contract.

7.2 Inconsistent Interface
(Informational] [Version 1](]

CS-LLS-010

In most functions that allow this functionality, users can specify to use their full balance by setting the
respective amount to t ype(ui nt 256) . nax (e.g., Conet Suppl yActi ons. suppl y()).

W apper Act i ons, however, has special functions for that use case (e.g., w apAl | ETH()).

Furthermore, W apper Acti ons contains functions for topping up the WETH balance (e.g.,
wr apETHUpTo()) but not for topping up the wstETH balance.

Client states:

We acknowledge the inconsistent interface, but do not think any updates are warranted.

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Compound lll Default Behavior Changed

In certain cases, Compound Il (Comet) sets inputs equal to the user's balance if the values are set to
t ype(ui nt 256) . max (e.g., suppl y() sets the amount to the current borrow balance if the base token
is used).

This behavior is overridden by the new version of some of the scripts. For example, in the old version of
Comet Suppl yActi ons. suppl y(ui nt 256. max) would use the Compound Il behavior, while the new
version sets the supply amount to current user's balance before calling the Compound contract.

8.2 No Debt Allowed When Using Aave Scripts

Users supplying to Aave using the AaveAct i ons script must be aware that the suppl y() function can
decrease their health factor unintentionally when their account already holds a debt position and the
asset they are supplying is used as collateral for their debt position.

8.3 TStoracle in Bundled Operations

TSt or acl e is used by executors to dynamically solve variables of messages signed by users. The
contract only allows to set a variable once which will then persist during the execution of the whole
transaction.

Since variables (TSt or acl e values) are not modifiable after being set, execution of different operations
using the same TSt or acl e keys but with different values cannot be bundled in a single transaction. This
includes for example bundling the execution of several QuarkOperations in a single transaction with
ERC-4337, or the use of Mul ti cal | to perform several SwapScri pt executions.

I:$: Legend Labs - Legend Scripts - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Aave Script
	2.2.2 Across Script
	2.2.3 Multicall
	2.2.4 QuotePay script
	2.2.5 Looping
	2.2.6 TStoracle and OracleExecutor
	2.2.7 Swap Script and Filler
	2.2.8 Changes in Version 3
	2.2.9 Changes in Version 4

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Enabled Callback Can Be Persisted Over Multicall Scripts

	6 Resolved Findings
	6.1 Missing Amount Check in Callback
	6.2 Multicall Reentrancy
	6.3 Slippage Check Race Condition
	6.4 Failing Native Token Transfers to Contracts
	6.5 Incorrect Handling of Native Tokens
	6.6 Loop Reentrancies
	6.7 Unexpected Approval
	6.8 Inconsistent Events
	6.9 Payable Functions Not Reachable

	7 Informational
	7.1 Missing Refund ACKNOWELDGED
	7.2 Inconsistent Interface

	8 Notes
	8.1 Compound III Default Behavior Changed
	8.2 No Debt Allowed When Using Aave Scripts
	8.3 TStoracle in Bundled Operations

