

PUBLIC

Code Assessment

of the Xgov

Smart Contracts

September 17, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Open Findings 11

6 Resolved Findings 12

7 Informational 15

8 Notes 19

Curve - Xgov - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Curve team,

Thank you for trusting us to help Curve with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Xgov according to Scope to
support you in forming an opinion on their security risks.

Curve implements xGov, a system that extends the capabilities of the Curve DAO, allowing it to interact
with contracts on different networks.

The most critical subjects covered in our audit are the Merkle Patricia Proof verifier correctness, access
control, and cross-chain message decoding. Security regarding all the aforementioned subjects is high.

Other general subjects covered are denial of service, gas optimization, and RLP decoding. Security
regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Curve - Xgov - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Curve - Xgov - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Xgov repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

curve-xgov

V Date Commit Hash Note

1 28 April 2025 f2abf673c949d4852a382925856ebd7e07114384 Initial Version

2 18 August 2025 f2547d36711ca1159db89465f4cd636ae565fab3 Final Version

storage-proofs

V Date Commit Hash Note

1 29 July 2025 aaa88a56bf0b778b3957f253daf35bf3e7324b24 Initial Version

2 15 September 2025 3831873fa248d8269e4bad51d860f2ab78e296c0 Final Version

For the solidity smart contracts, the compiler version 0.8.18 was chosen. For the vyper smart contracts,
the compiler version 0.3.10 was chosen.

The following contracts were included in the scope of the assessment:

xgov:

contracts/xyz/XYZBroadcaster.vy
contracts/xyz/XYZRelayer.vy

storage-proofs:

contracts/xgov/verifiers/MessageDigestVerifier.sol
contracts/xdao/contracts/libs/MerklePatriciaProofVerifier.sol
contracts/xdao/contracts/libs/StateProofVerifier.sol

2.1.1 Excluded from scope
Anything not listed in scope of the assessment is considered out of scope. This includes tests, scripts
and external libraries such as Solidity-RLP@2.0.7.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Curve - Xgov - ChainSecurity - © Decentralized Security AG 5

https://github.com/curvefi/curve-xgov//tree/f2abf673c949d4852a382925856ebd7e07114384
https://github.com/curvefi/curve-xgov//tree/f2547d36711ca1159db89465f4cd636ae565fab3
https://github.com/curvefi/storage-proofs//tree/aaa88a56bf0b778b3957f253daf35bf3e7324b24
https://github.com/curvefi/storage-proofs//tree/3831873fa248d8269e4bad51d860f2ab78e296c0
https://chainsecurity.com

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Curve implements xGov, a system that extends the capabilities of the Curve DAO allowing it to interact
with contracts on different networks.

The system is designed to forward messages from Ethereum Mainnet to other networks.

2.2.1 Ethereum Contracts
On Ethereum, the XYZBroadcaster contract is responsible for broadcasting messages to other
networks. It has three privileged roles (agents) that must be given to one address each, where each
address can only hold one role at a time:

• OWNERSHIP

• PARAMETERS

• EMERGENCY

When calling broadcast, the privileged role holder must provide:

• The destination chain

• A list of messages to be sent

• A time to live (TTL) for the messages

The contract writes the digest (hash) of the messages and their deadline (based on the TTL) to state,
indexed by the agent that sent it, the chain ID, and the current nonce:

nonce: public(HashMap[Agent, HashMap[uint256, uint256]])
agent -> chainId -> nonce

digest: public(HashMap[Agent, HashMap[uint256, HashMap[uint256, bytes32]]])
agent -> chainId -> nonce -> messageDigest

deadline: public(HashMap[Agent, HashMap[uint256, HashMap[uint256, uint256]]])
agent -> chainId -> nonce -> deadline

Restricted Functions:

• broadcast: Can be called by the privileged roles to send messages to other networks.

• commit_admins: Allow the OWNERSHIP role to commit a new set of privileged roles.

• apply_admins: Allow the OWNERSHIP role to apply the committed set of privileged roles.

2.2.2 Other Chain Contracts
For the security of the message forwarding system, a trusted block-hash oracle is used to obtain block
hashes from Ethereum Mainnet. Given such a block-hash and Merkle Patricia proofs, it is possible to
permissionlessly provide messages to the MessageDigestVerifier contract on the destination chain
and verify that the messages were indeed sent by the XYZBroadcaster contract on Ethereum Mainnet.

2.2.2.1 MessageDigestVerifier
The MessageDigestVerifier contract is responsible for verifying provided messages against the
state of Ethereum Mainnet's XYZBroadcaster contract using the blockhash oracle. The contract is
permissionless and implements two entry points:

• verifyMessagesByBlockHash

• verifyMessagesByStateRoot

Curve - Xgov - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Both functions are very similar, while the first one allows for providing an RLP encoded block header to
be validated against the block-hash oracle, the second one allows for providing a block number to directly
query the block-hash oracle for the corresponding state root.

In both cases, the caller must provide:

• The Agent that sent the message (1, 2, or 4 for OWNERSHIP, PARAMETERS, and EMERGENCY
respectively)

• The list of messages to be verified

• Three RLP-encoded Merkle Patricia proofs:

1. The proof for the account of the XYZBroadcaster contract in the state root

2. The proof for the message digest slot in the account's storage root

3. The proof for the deadline slot in the account's storage root

Once all proofs are verified, and if the deadline has not passed, the messages are forwarded to the
XYZRelayer contract.

2.2.2.2 XYZRelayer
The XYZRelayer contract is responsible for relaying the messages to the right contracts for processing.

Using relay(), the messenger (here the MessageDigestVerifier contract) can forward the verified
messages to the appropriate destination contracts. The function will match the message to the
destination contract based on the provided agent.

Restricted Functions:

• relay: Can be called by the set messenger to forward messages to the destination contracts.

• set_messenger: Can be called by the OWNERSHIP role to set the messenger address.

2.2.3 Changelog
In Version 2 of the system, only fixes to previously reported issues were applied. No new features were
added.

2.3 Trust Model
The xGov system operates with a multi-tier trust model involving privileged roles, external dependencies,
and permissionless components. Below is a comprehensive analysis of the trust assumptions:

2.3.1 General Trust Assumptions

• The XYZBroadcaster contract is deployed on Ethereum Mainnet at address
0x7BA33456EC00812C6B6BB6C1C3dfF579c34CC2cc.

• All other contracts are deployed on other networks.

2.3.2 Privileged Roles
OWNERSHIP Agent

• Trust Level: Fully trusted

• Capabilities:

• Broadcast messages to all destination chains

Curve - Xgov - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• Commit and apply new admin sets via commit_admins() and apply_admins() in
XYZBroadcaster

• Modify the messenger address in relayer contracts via set_messenger()

• Risk Profile: Complete control over the system. Can:

• Broadcast potentially malicious messages

• Replace all privileged roles (including themselves)

• Disable message forwarding by setting invalid messenger addresses

PARAMETER Agent

• Trust Level: Fully trusted

• Capabilities:

• Broadcast parameter update messages

• Risk Profile: Can execute arbitrary parameter changes on destination contracts but cannot modify
system roles or infrastructure

EMERGENCY Agent

• Trust Level: Fully trusted

• Capabilities:

• Broadcast emergency messages

• Risk Profile: Can execute arbitrary emergency changes on destination contracts but cannot modify
system roles or infrastructure

2.3.3 External Dependencies
Block Hash Oracle (IBlockHashOracle)

• Trust Level: Fully trusted

• Critical Functions:

• get_block_hash(uint256 _number) - Returns Ethereum mainnet block hashes

• get_state_root(uint256 _number) - Returns state root for given block number

• Trust Assumptions:

• Oracle provides accurate, uncensorable access to Ethereum mainnet state

• Oracle remains operational and accessible

• Oracle data is not manipulated or delayed beyond acceptable bounds

• Risk Profile: Complete compromise of message verification system if oracle is compromised.
Malicious oracle could:

• Allow verification of fraudulent messages

• Prevent legitimate message verification

2.3.4 Contract Upgradeability
All contracts in the system are immutable once deployed.

Curve - Xgov - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Curve - Xgov - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Curve - Xgov - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Curve - Xgov - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Informational Findings 7

• Code CorrectedError Messages

• Code CorrectedMagic Value

• Code CorrectedMisleading Comments

• Code CorrectedMissing Events

• Code CorrectedMissing Future Admin Check

• Code CorrectedMissing NatSpec Comments

• Code CorrectedUnused Variable

6.1 Error Messages
Informational Version 1 Code Corrected

CS-CURVE-XGOV-002

The MessageDigestVerifier, StateProofVerifier and MerklePatriciaProofVerifier
often do not provide specific error when verification fails. This can make debugging and identifying issues
more difficult for developers. Implementing more descriptive error could improve the developer
experience and facilitate easier troubleshooting.

Similarly, the StateProofVerifier provide an error string in verifyBlockHeader. Instead of using
error strings, custom errors could be used to reduce deployment and runtime cost.

Code corrected:

Descriptive error messages were added through the codebase. In MerklePatriciaProofVerifier
and StateProofVerifier, custom errors were introduced to replace error strings.

6.2 Magic Value
Informational Version 1 Code Corrected

CS-CURVE-XGOV-004

Curve - Xgov - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

In MerklePatriciaProofVerifier, the magic value
0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421 could be
replaced by a constant defined to explicitly represent that this value is the Keccak256 hash of 0x80.

Code corrected:

The magic value was not replaced by a constant, but a comment was added to explain its meaning:
// keccak256(0x80).

6.3 Misleading Comments
Informational Version 1 Code Corrected

CS-CURVE-XGOV-006

The following comments may be misleading or inaccurate:

• In MessageDigestVerifier, several NatSpec comment mentions gauges and gauge types, even
though the system is expected to be used in a broader context.

• In MerklePatriciaProofVerifier, the following comments are misleading, as in the first case,
node[1] is expected to contain rlp(Keccak256(rlp(child))):

if (!node[1].isList()) {
 // rlp(child) was at least 32 bytes. node[1] contains
 // Keccak256(rlp(child)).
 nodeHashHash = node[1].payloadKeccak256();
} else {
 // rlp(child) was less than 32 bytes. node[1] contains
 // rlp(child).
 nodeHashHash = node[1].rlpBytesKeccak256();
}

Code corrected:

Both comments were updated to be more accurate.

6.4 Missing Events
Informational Version 1 Code Corrected

CS-CURVE-XGOV-007

• In XYZRelayer, no events are emitted by the function relay().

• In the MessageDigestVerifier, no events are emitted.

Code corrected:

Event emissions were added to relay() in XYZRelayer and to _verifyMessages() in
MessageDigestVerifier.

Curve - Xgov - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6.5 Missing Future Admin Check
Informational Version 1 Code Corrected

CS-CURVE-XGOV-008

In the XYZBroadcaster, the current admin can give ownership to a new admin by calling first
commit_admins(), which sets the storage variable future_admins and then apply_admins(),
which reads it and apply the changes. Since there are no check in apply_admins() to verify if
future_admins was written to, calling apply_admins() without a prior call to commit_admins()
will result in wiping the current admins structure and make the contract unusable.

Code corrected:

A check was added in apply_admins() to ensure that future_admins is not empty before applying
the changes.

6.6 Missing NatSpec Comments
Informational Version 1 Code Corrected

CS-CURVE-XGOV-009

Across the codebase, several functions are missing NatSpec comments:

XYZBroadcaster:

• __init__()

• commit_admins()

XYZRelayer:

• __init__()

• set_messenger() (param _messenger)

Code corrected:

All missing NatSpec comments were added to the functions listed above.

6.7 Unused Variable
Informational Version 1 Code Corrected

CS-CURVE-XGOV-012

In MerklePatriciaProofVerifier, the variable value is defined but never used. As this led in the
past to confusion in this library, removing it and explicitly reverting if the loop terminates would be
beneficial even if this should be an unreachable state provided a valid rootHash.

Code corrected:

The unused variable was removed and an explicit revert was added at the end of the function to indicate
that this point should be unreachable.

Curve - Xgov - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Canonicality & Type Checks
Informational Version 1 Acknowledged

CS-CURVE-XGOV-001

In MerklePatriciaProofVerifier, across the verification flow we always assume a trusted state
or storage root. Under that threat model, having the system accepting some non-canonical RLP/MPT
encodings or loose types in the proof does not enable forgery, since every node is always hash-linked to
the trusted root. However, adding strict canonicality & type checks would make verification fail faster on
malformed inputs and improve overall robustness.

The following non-exhaustive list of checks show potential areas for improvement:

In MerklePatriciaProofVerifier.extractProofValue:

• Enforce child pointer canonicality (branch/extension child)

• Inline child must be a non-empty list and len(RLP(child)) < 32 bytes.

• Hashed child must be the RLP encoding of a 32-byte short string.

• Enforce hex-prefix compact path canonicality:

• For even paths in leaf and extension nodes, the low half-nibble of first byte must be 0.

• The extension path must be non-empty.

• The parity of the decoded nibbles must match flag;

• Reject node leafs that are not length 2 or 17.

• Enforce proof structure:

• Revert at function end if inconclusive (no silent empty return).

• Enforce path.length == 32 if the library should be specific for Ethereum proofs and not generic

• List header sanity in RLPItem.toList():

• For short list: item.len == 1 + declaredLen.

• For long list: item.len == 1 + lenOfLen + declaredLen.

In StateProofVerifier:

• State root / storage root / code hash type: enforce exact 32-byte RLP string.

Acknowledged:

Curve has acknowledged this informational finding, and decided to not implement the suggested
improvements as they do not affect correctness, and without them, the code remains more generic.

Curve - Xgov - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

7.2 Gas Savings
Informational Version 1 Code Partially Corrected

CS-CURVE-XGOV-003

1. In MessageDigestVerifier, the function _verifyMessages() reads nonce twice from
storage, one SLOAD could be saved.

2. In the function extractProofValue of MerklePatriciaProofVerifier, rlpValue is
declared at the beginning of the function, only to be used before one of the return statements. It
could be declared just before that return statement, saving some gas.

Code partially corrected:

The second gas saving was implemented, for the first one, Curve answered:

Left `++nonce` update as is, so no intermediary code affects `cur_nonce`.

7.3 Merkle Library Limitations
Informational Version 1 Acknowledged

CS-CURVE-XGOV-005

While the system always expect to pass a path of length 32 bytes to
MerklePatriciaProofVerifier.extractProofValue(), in theory, the library is designed to
handle paths of varying lengths. However, given the type of the argument (bytes), it is not possible to
pass a path having an odd length in nibbles.

Acknowledged:

Curve acknowledged the limitation.

7.4 Missing Sanity Checks
Informational Version 1 Code Partially Corrected

CS-CURVE-XGOV-010

The following checks are missing:

1. None of the addresses in _admins is not validated to ensure they are not the zero address in
XYZBroadcaster.__init__()

2. Message are not ensured to have non-empty payloads and the chain-id is not validated (non-zero,
not current chain) in XYZBroadcaster.broadcast()

3. None of the addresses in _future_admins is validated to ensure they are not the zero address in
XYZBroadcaster.commit_admins()

4. The new _messenger is not validated to ensure it is not the zero address in
XYZRelayer.set_messenger()

5. The address parameters _block_hash_oracle and _relayer in the
MessageDigestVerifier's constructor are not validated to ensure they are not the zero
address.

Curve - Xgov - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6. In MessageDigestVerifier, verifyMessagesByStateRoot does not validate the
state_root to be non-zero.

Code partially corrected:

• Check 3 has been partially implemented as the ownership role is now validated to be non-zero.

• Check 4, 5 and 6 have been implemented.

Other missing sanity checks were not addressed. Curve answered:

Broadcaster is already in prod,
changes are not that important to update

7.5 Outdated Vyper Version
Informational Version 1 Acknowledged

CS-CURVE-XGOV-011

Across the system, the Vyper version 0.3.10 is used, which is outdated, and should be updated to a
more recent version in the 0.4.x series.

Acknowledged:

Curve acknowledged the use of an outdated Vyper version.

7.6 Vulnerability in Solidity-RLP Library
Informational Version 1 Acknowledged

CS-CURVE-XGOV-013

All released versions of the RLPReader library suffer from a vulnerability that allows an attacker to read
out-of-bound memory when parsing a byte array of RLP-encoded data.

Vulnerability Description

The toList() function in RLPReader.sol is vulnerable to out-of-bounds (OOB) memory reads. When
decoding an RLP-encoded list, toList() iterates over the payload and constructs RLPItem objects for
each sub-item. However, it does not verify that each sub-item's memory range is fully contained within
the bounds of the original buffer. As a result, a maliciously crafted RLP input can cause toList() to
create RLPItem objects that reference memory outside the intended buffer, leading to OOB reads and
potential leakage of adjacent memory contents.

Proof of Concept

The following Foundry test shows the vulnerability in action, as 0x70 is printed on the console, showing
that the out-of-bounds read can access unintended memory—in this case, the memory location of the
variable a.

pragma solidity 0.8.18;

import "forge-std/Test.sol";
import "forge-std/console.sol";

Curve - Xgov - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

import {RLPReader} from "hamdiallam/Solidity-RLP@2.0.7/contracts/RLPReader.sol";

contract RlpReaderTest is Test {

 using RLPReader for RLPReader.RLPItem;
 using RLPReader for bytes;

 function test_RlpDecoding() public {
 // This RLP-encoded data is crafted to trigger an out-of-bounds read and for the
 // out-of-bound to happen on the most significant byte of the next word in memory.
 // It is a list with 16 items, each being a list containing an empty list.
 // Except for the last item, which contains a list whose content is out of bound.
 // Note that the first `C1` is malformed, but the library don't check this.
 bytes memory rlpEncodedData = hex"C1C1C0C1C0C1C0C1C0C1C0C1C0C1C0C1C0C1C0C1C0C1C0C1C0C1C0C1C0C1C0C1";
 uint256[] memory a = new uint256[](1);
 assembly {
 mstore(a, 0x7000)
 }
 RLPReader.RLPItem[] memory rlpItem = rlpEncodedData.toRlpItem().toList();
 assertEq(rlpItem.length, 16);
 assertEq(rlpItem[15].toList().length, 1);
 console.logBytes(rlpItem[15].toList()[0].toBytes());
 }
}

Impact

No impact was found on the system, because:

1. An out-of-bounds read alone is not problematic, since the caller could have provided a byte array
containing the same content that was read out-of-bounds.

2. An issue would arise if multiple reads were to access different data in the out-of-bounds memory,
for example, if the first read passed a validation check and the second read returned unexpected
data.

3. What is described in point 2 was not observed in the system, as user-provided byte arrays of
RLP-encoded data are followed by other memory allocations that are not mutated once the
validation begins.

Remediation

As of commit da526be21b744d427d796a1cba6cfbc94934eaf3, the Solidity-RLP library has been
updated to include bounds checking in the toList() function. This prevents the creation of RLPItem
objects that reference memory outside the original buffer.

Acknowledged:

Curve acknowledged the vulnerability.

7.7 future_admins Not Cleared
Informational Version 1 Acknowledged

CS-CURVE-XGOV-014

In XYZBroadcaster, after applying new admins, the future_admins storage variable is not cleared
and will keep the last value set by commit_admins(). This can lead to confusion when reading the
public getter for future_admins.

Acknowledged:

Curve acknowledged the informational finding, but will not fix it as the code is already deployed.

Curve - Xgov - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Commit and Apply Admins
Note Version 1

In the XYZBroadcaster, the current admin can give ownership to a new admin by calling first
commit_admins() and then apply_admins(). Note that in this scheme, the old admin must call
apply_admins(), and not the future new admin.

8.2 Reverting Messages
Note Version 1

If a received message at nonce n fail to execute and consistently revert, the system will not be able to
process any further messages at nonce n+1 or higher until the deadline for the message at nonce n
expires, this is behavior is by design.

if (block.timestamp <= deadline.value) {
 IRelayer(RELAYER).relay(_agent, _messages);
}

Curve - Xgov - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Ethereum Contracts
	2.2.2 Other Chain Contracts
	2.2.2.1 MessageDigestVerifier
	2.2.2.2 XYZRelayer

	2.2.3 Changelog

	2.3 Trust Model
	2.3.1 General Trust Assumptions
	2.3.2 Privileged Roles
	2.3.3 External Dependencies
	2.3.4 Contract Upgradeability

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 Error Messages
	6.2 Magic Value
	6.3 Misleading Comments
	6.4 Missing Events
	6.5 Missing Future Admin Check
	6.6 Missing NatSpec Comments
	6.7 Unused Variable

	7 Informational
	7.1 Canonicality & Type Checks
	7.2 Gas Savings
	7.3 Merkle Library Limitations
	7.4 Missing Sanity Checks
	7.5 Outdated Vyper Version
	7.6 Vulnerability in Solidity-RLP Library
	7.7 future_admins Not Cleared

	8 Notes
	8.1 Commit and Apply Admins
	8.2 Reverting Messages

