

PUBLIC

Code Assessment

of the Sky OApp OFT

Smart Contracts

October 17, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 12

4 Terminology 13

5 Open Findings 14

6 Resolved Findings 15

7 Notes 19

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Sky with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Sky OApp OFT according to
Scope to support you in forming an opinion on their security risks.

Sky implements an OFT (Omnichain Fungible Token) adapter for the tokens of the Sky Ecosystem (SKY,
USDS, SUSDS and SDAO tokens) using the LayerZero V2 stack to bridge tokens across chains in a
standardized manner. Currently, implementations for EVM chains as well as Solana are provided.

The most critical subjects covered in our audit are functional correctness, correct integration with
LayerZero, Denial-of-Service resilience. The general subjects covered are gas efficiency and
trustworthiness.

Notably this token bridge has different security assumptions than the existing native bridges since it relies
on the DVN network as oracle and features shared escrowing of funds for different chains. Some general
considerations regarding this are provided, in particular:

• Denial of Service.

• Migration Considerations.

• Configuration Considerations.

• Configuration Ordering Considerations.

• LayerZero V2 Considerations.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• Code Corrected 2

• Code Partially Corrected 1

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
In Version 1 the scope of the assessment was limited to the smart contracts of the LayerZero EVM Token
Bridge:

contracts/
 MintAndBurnOFTAdapter.sol
 OFTAdapter.sol
 oft-dsrl/
 DoubleSidedRateLimiter.sol
 MABAOFTDSRLFee.sol
 OFTAdapterDoubleSidedRLFee.sol

In Version 2 the following file

contracts/oft-dsrl/OFTAdapterDoubleSidedRLFee.sol

due to refactoring, was replaced by the following files:

contracts/oft-dsrl/
 OFTAdapterDSRLFee.sol
 OFTAdapterDSRLFeeBase.sol

Version 4 adds the Solana OFT implementation to the scope:

programs/oft/
 build.rs
 src/
 compose_msg_codec.rs
 errors.rs
 events.rs
 instructions/
 init_oft.rs
 lz_receive.rs
 lz_receive_types.rs
 mod.rs
 quote_oft.rs
 quote_send.rs
 send.rs
 set_oft_config.rs
 set_pause.rs
 set_peer_config.rs
 withdraw_fee.rs
 lib.rs
 msg_codec.rs
 state/

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

 mod.rs
 oft.rs
 peer_config.rs

In Version 5 the EVM contracts have been refactored to the following files:

contracts/
 SkyOFTAdapterMintBurn.sol
 SkyOFTCore.sol
 SkyOFTAdapter.sol
 SkyRateLimiter.sol
 interfaces/
 IMintBurnVoidReturn.sol
 ISkyOFT.sol
 ISkyOFTAdapter.sol
 ISkyRateLimiter.sol

Note only the EVM Solidity contracts were reviewed in Version 5.

The assessment was performed on the source code files inside the Sky OApp OFT repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 05 May 2025 620bd8385c51b0769e08500559b3bd1488dd173
a

Initial Version

2 21 May 2025 d47aeea481f513c22182d5cf8af312425041cf29 After Intermediate Report

3 03 June
2025

272bac2ac752ce793922d17e341f5eb3501b21c6 Pausable quoteSend

4 14 July 2025 c48c3c0ea62df8dbf348339cc0227bbf92dc3100 Solana OFT

5 19 Sep 2025 c4e4f8caba41dd987c0b8fe564790762679792df OFT Updates

6 16 Oct 2025 5ad5cb6bbe624e2b1cb99acfe3e4140fa1c233b9 Final Version

For the solidity smart contracts, the compiler version 0.8.22 was chosen and evm_version was set to
shanghai.

For the solana smart contracts, the rust version v1.75.0, the anchor version v0.29 and the solana CLI
version v1.17.31 were chosen.

2.1.1 Excluded from scope
The migration process from the existing bridges to this new bridge is out of scope of this review.

LayerZero V2 itself is out of scope and assumed to function correctly as per its documentation.

The configurations of OApp and its settings (e.g. choice of libraries) on LayerZero V2 are out of scope.
The DVN, executor, send and receive libraries are assumed to be properly configured.

Tests and imports, including the OFT-EVM contracts are out of scope and treated as external
dependencies for this review. While the core OFT-EVM contracts are out of scope, we reviewed their
implementation to understand their behavior and to confirm that the in scope contracts integrate with and
use them correctly. The OFT/OApp smart contracts were previously reviewed by ChainSecurity
(LayerZero OFT/OApp Audit). These contracts are particularly relevant, as the contracts in scope inherit
from them.

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 6

https://github.com/sky-ecosystem/sky-oapp-oft/tree/620bd8385c51b0769e08500559b3bd1488dd173a
https://github.com/sky-ecosystem/sky-oapp-oft/tree/620bd8385c51b0769e08500559b3bd1488dd173a
https://github.com/sky-ecosystem/sky-oapp-oft/tree/d47aeea481f513c22182d5cf8af312425041cf29
https://github.com/sky-ecosystem/sky-oapp-oft/tree/272bac2ac752ce793922d17e341f5eb3501b21c6
https://github.com/sky-ecosystem/sky-oapp-oft/tree/c48c3c0ea62df8dbf348339cc0227bbf92dc3100
https://github.com/sky-ecosystem/sky-oapp-oft/tree/c4e4f8caba41dd987c0b8fe564790762679792df
https://github.com/sky-ecosystem/sky-oapp-oft/tree/5ad5cb6bbe624e2b1cb99acfe3e4140fa1c233b9
https://www.chainsecurity.com/security-audit/layerzero-oft-oapp
https://chainsecurity.com

Further, the Solana programs make use of the Anchor framework and integrate with SPL / SPL2022
programs, which are assumed to function properly and work as documented.

2.2 System Overview
This system overview describes the latest version of the contracts as defined in the Assessment
Overview.

At the end of this report section, we have added a changelog subsection for each of the changes
according to the versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Sky implements an OFT (Omnichain Fungible Token) adapter for the tokens of the Sky Ecosystem (SKY,
USDS, SUSDS and SDAO tokens) using the LayerZero V2 stack to bridge tokens across chains in a
standardized manner. Currently, implementations for EVM chains as well as Solana are provided.

2.2.1 OFT Overview
In general, two implementations with the following main differences are provided:

• Escrow Adapter: This implementation works by locking the tokens to be bridged into an escrow and
releasing them when bridged back.

• Mint/Burn Adapter: This implementation works by burning tokens when bridged out and minting
tokens when bridged in.

Integration and Interaction Flow of the OFT is outlined below:

1. Source Chain User. Instructs the source chain OFT to send tokens to a destination chain.

2. Source Chain OFT: Performs fee computation, slippage check, and rate limit checks. Then it takes
the tokens from the user. Finally, it sends a message through the LayerZero V2 endpoint with the
configured send library to the destination OFT. Note that the execution fee (denominated in native
token or LZ token) is paid in this step.

3. LayerZero V2: Handles the message. Eventually, the message is verified on the LayerZero V2
endpoint, marking its validity. Note that this step includes on- and off-chain components.

4. Destination Chain OFT: lzReceive() is triggered and tokens are credited to the receiver. Note
that this adheres to the receive library. If a compose message is attached, it will be registered in the
endpoint.

5. Compose Receiver: If a compose is registered, the compose data can be consumed in a separate
call by the designated receiver.

However, note that depending on the configuration and the chain the exact details may vary.

Rate Limit A double-sided rate limiting mechanism is implemented. The rate limit will decrease if
consumed, and will gradually refill over time with a configured rate until it reaches its limit. It supports
both net and gross accounting modes:

• Net accounting allows bidirectional traffic to offset each other, meaning tokens sent and received
can reduce the effective in-flight amount of each other.

• Gross accounting counts the total traffic in one direction, without any offset, applying stricter limits.

Messaging Note that the messages passed between the OFT follow the generic format below:

sendTo bytes32 Receiver of the bridged tokens

amountShared u64 Bridged amount in shared decimals

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

composeFrom bytes32 Initiator of the compose

composeMsg Variable Actual compose payload

For sending tokens to another chain, the following holds:

• The OFT is not paused and the slippage is respected.

• The peer is configured, namely there is a corresponding OFT deployed on the destination chain.

• The rate limit is respected and updated.

For receiving tokens from another chain, the following holds:

• The OFT is not paused.

• The sender matches the configured peer on the source chain.

• The rate limit is respected and updated.

Quote Before triggering a cross-chain transfer, one can use the following view functions to estimate the
amounts being transferred and fees:

• Quote OFT: computes the oftLimit, the amount actually being sent and received based on an
input amount, and the fee detail.

• Quote Send: computes the LayerZero bridging fee for the send operation given the send parameters
including the potential options and compose messages.

Privileged Roles can configure the OFT as well as its configuration on the LayerZero V2 endpoint.
Below, the generally available functionalities are listed.

The following general owner-privileged actions exist for all OApps:

• Set Rate Limit: Set the inbound or outbound rate limit configurations for an Eid.

• Set Pauser: Sets the privileged pauser or unpauser (if exists). Further the owner can pause /
unpause the OFT.

• Set Enforce Options: Set enforced options that is attached with a send or send_and_call.

• Set (Default) Fee Bps: Set the OFT fees per Eid or default fees.

• Set Delegate: Set the delegate of the OFT on EndpointV2.

• Set Peer: Set the peer address (the corresponding OFT) of an Eid.

• Withdraw Fees: Withdraw the OFT fees to a designated receiver.

Below are the relevant actions on the LayerZero V2 endpoint for the delegate (and technically the OFT
itself):

• Burn: Marks a nonce as non-executable and non-verifiable. The nonce can never be re-verified or
executed.

• Nilify: Marks a packet as verified, but disallows execution until it is re-verified.

• Clear: Clears a message that is efficiently burnt.

• Skip: Skips the next nonce to prevent message verification.

• Set Send Library: Sets the send library.

• Set Receive Library: Sets the receive library.

• Set Receive Library Timeout: Sets the timeout for a receive library change during which the previous
library could be used.

• Set Config: Sets an OApp's configuration on a registered message library.

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

In general, the OFT should be configured correctly, for more details please consult Configuration
Considerations.

2.2.2 EVM OFT
The EVM OFT follows the general design. An OFT adapter contract needs to be deployed for each token
to be bridged.

Sending: To initiate a cross-chain transfer on the source chain to a supported peer, send() is called on
the OFT; after the fees are charged, a bridge message is constructed and eventually a call is made to
EndpointV2.send().

Receiving: once a cross-chain transfer is verified, it is ready to be executed by anyone with
lzReceive() on the destination chain's EndPointV2 contract. The token is credited to the toAddress.
The compose message will be stored in the endpoint if it is used and can be executed in a separate
transaction with EndpointV2.lzCompose().

Further the following features exist on EVM OFT:

• A getter approvalRequired() is provided to indicate whether user needs to approve the tokens
to be transferred before calling send().

• The owner further has privilege over setMsgInspector() and setPreCrime() to set an
inspector or preCrime address.

• migrateLockedTokens() is only implemented in SkyOFTAdapter, the owner can transfer all the
innerToken except fees to an address to facilitate a future upgrade.

Governance: The EVM OFT is expected to be governed by the respective governance contracts on
Mainnet or governance relays on other EVM chains.

Note for Mint/Burn Adapter, the EVM OFT contract itself bears the minting and burning privileges.

2.2.3 Solana OFT
The Solana OFT follows the general design while multiple OFT instances (represented by distinctive
OFTStore PDAs) can be created using the same program.

Namely, the instruction oft::init_oft is provided to create an OFT with a given token_escrow
while setting other configurations. Note that this generates an OFTStore PDA that will be registered on
the LayerZero V2 endpoint with endpoint::register_oapp to set its delegate and should be used on
the source-chain as the peer address of the LayerZero V2 cross-chain message.

On Solana, some instructions should be to be called prior to the message reception, especially the
delegate-only ones:

• init_receive_library / init_config: (delegate-only) init the receive library and relevant
configurations.

• set_receive_library / set_config: (delegate or OApp) set the receive library and relevant
configurations.

• init_nonce: (delegate-only) initialize the Nonce and PendingInboundNonce PDAs.

• init_verify: (permissionless) initialize the PayloadHash PDA for each message to be received.

Additionally, instruction oft::lz_receive_types is provided to help the executor to prepare the
necessary account list for oft::lz_receive.

Sending: To initiate a cross-chain transfer on the source chain to a supported peer, send() is called on
the OFT program with the specific OFTStore PDA attached; after the fees are charged, a bridge
message is constructed and eventually a CPI is made to EndpointV2::send().

Receiving: the verified message can be consumed by anyone (typically the paid executor) with
oft::lz_receive which consumes the message on the endpoint with endpoint::clear. Then, the

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

program proceeds to perform a CPI to the spl-token program to credit the tokens by either transfer or
mint. In case a compose message is attached, another CPI EndpointV2::send_compose will register
the compose, which can be later cleared by the designated receiver with a CPI
EndpointV2::clear_compose.

Note for Mint/Burn Adapter, the Solana OFTStore PDA is expected to be the spl-token's
mint_authority or it is one of the signers of the spl-token multisig account, and the quorum is 1-of-n.
Otherwise, it cannot mint or burn tokens.

Governance: The Solana OFT is expected to be governed by the respective cpi_authority of the
Governance OApp.

For both EVM OFTs and Solana OFTStore PDAs, configurations need to be set for each OFT and
there is no shared configurations.

2.2.4 Changelog
Version 2In , function _debit() will decrease the rate limit by amountReceivedLD, excluding the fee

and dust.

Version 3In , function _debitView() is now guarded by the whenNotPaused modifier, hence view
functions quoteOFT() and quoteSend() will revert if contract is paused.

Version 4In , Solana OFT has been added.

Version 5In , the EVM OFT has been refactored with the following changes:

• quoteOFT() has been overridden to return the oftLimit based on the rate limits and the actual
fee charged in fee detail.

• The feeBalance is no longer accounted in the Mint/Burn Adapter, and all its underlying balance is
regarded as fees.

• migrateLockedTokens() in Escrow Adapter migrates all underlying tokens except fees.

Version 5In , the default rate limit for a peer has been changed to 0 in Solana OFT.

2.3 Trust Model
Owner (EVM OFT) / Admin (Solana OFT). Set at deployment. Fully trusted. Can set rate limits, fees,
and other OFT configurations (e.g. peers and enforced options). Is expected to perform these
configuration changes correctly. In the worst case, the OFT could be maliciously configured to allow
receiving malicious cross-chain messages. Additionally, it could DoS or censor the message relay or
prevent the cross-chain token transfers. Additionally, in the OFTAdapter this role can execute
migrateLockedTokens(), effectively transferring all locked tokens except fees (for the underlying
token only) to any address.

Delegate of the OApp in LayerZero. Fully trusted. Initially set to the owner of the OApp who can
reassign this role. Can configure the library and manipulate the message handling on the EndPointV2
contract. In the worst case, the OApp could be maliciously configured to allow receiving malicious
cross-chain messages. Additionally, it could DoS or censor the message relay or prevent the execution of
messages.

Pauser. Semi-trusted. In the worst case can temporarily DoS the OFT.

Unpauser. Semi-trusted. In the worst case can prevent pauser from pausing the OFT in emergency.

Upgrade Authority. Fully trusted if exists. On Solana, programs can have an upgrade authority (typically
the account that originally deployed the program), which bears the privileges to upgrade the program
code. If the OFT program is intended to be immutable, its upgrade authority should be removed.

LayerZero. LayerZero is out of scope for this review and is trusted to behave correctly and deliver
messages to the correct destination. In general, the libraries are trusted, otherwise for instance, the

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Solana OFT's send library may impersonate signers passed for privilege escalations. For more details
please consult LayerZero V2 Considerations.

Tokens. Tokens are expected to be the Sky-ecosystem tokens: Sky, USDS, SUSDS, SDAO:

• Tokens without CpiGuard, otherwise the transfer CPI will fail.

• Tokens without malicious hooks.

• For Solana Native adapter, the OFTStore is expected to be the mint_authority or a signer of the
1-of-n multisig account for minting.

The configuration required for managing the LayerZero applications on multiple chains is considered out
of scope for this review and should be performed by the delegate or its owner through the utility functions,
please consult Configuration Considerations for more details.

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code Partially CorrectedInconsistent Rate Limiting Logic Between EVM and Solana OFT

5.1 Inconsistent Rate Limiting Logic Between
EVM and Solana OFT
Design Low Version 4 Code Partially Corrected

CS-SOA-001

The following discrepancies exist between the Solana and EVM OFT implementations:

• The EVM OFT's rate limit of a peer is 0 by default, limiting any inbound or outbound transfers.
However the Solana OFT's rate limit, implemented as an option, is infinite by default.

• The EVM OFT's rate limit accounting type is either Net or Gross for both Inbound and Outbound
rate limiter of a given peer. However on Solana OFT's, the Inbound and Outbound rate limiters for
a given peer can have different accounting types.

• When the capacity of a rate limiter is set, the Solana implementation will reset the rate limiter
whereas the EVM one will not.

Code partially corrected:

The Solana OFT implementation has been changed to prevent transfers if the corresponding rate limit is
not configured yet.

Other inconsistencies still exit.

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Code CorrectedIncorrect Amount Passed in quote_send

• Code CorrectedUnable to Receive Transfers to address(0) or Token Contract Address

Informational Findings 5

• Specification ChangedIncorrect Comments

• Code CorrectedRedundant Checks

• Code CorrectedChange Event Emitted Even if No Change

• Code CorrectedDirect Burn in Case of No Fees

•
Code Corrected

Incorrect Natspec and Redundant Logic _amountCanBeSent/_amountCanBeReceived

6.1 Incorrect Amount Passed in quote_send
Correctness Low Version 4 Code Corrected

CS-SOA-006

In the Solana OFT, instruction quote_send calls EndpointV2::quote with the encoded message to
query the bridging fees. However, when encoding the message, the field amount_sd (amount in shared
decimals) is incorrectly set as amount received in local decimals. In case the estimated fee is dependent
on the amount in shared decimals, wrong quote results will be returned.

Code corrected:

The amount passed into quote has been corrected to be in shared decimals.

6.2 Unable to Receive Transfers to address(0)
or Token Contract Address
Correctness Low Version 1 Code Corrected

CS-SOA-002

The Sky tokens this adapter is designed to work with do not support transfers or minting to address(0)
or to the token contract address itself.

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

To illustrate, the USDS token implements the following check in its transfer() function:

function transfer(address to, uint256 value) external returns (bool) {
 require(to != address(0) && to != address(this), "Sky/invalid-address");
}

The same checks are present in mint().

This causes any message attempting to bridge tokens to the address(0) or to the token contract
address to fail in the OFTAdapter.

The MABAOFTAdapter which uses minting and burning instead of token locking partially mitigates this if
the recipient is address(0). In that specific case address(0) is translated to 0xDEAD. However, it is
still affected if the recipient is the token contract address.

Code corrected:

Logic has been implemented in both adapters to credit tokens to address(0xdead) in case the
recipient is set to address(0) or the token contract address.

6.3 Incorrect Comments
Informational Version 4 Specification Changed

CS-SOA-007

In lz_receive_types, multiple comments indicate that for the clear instruction, 9 accounts (0..9)
are required. However, get_accounts_for_clear() returns 8 accounts.

Specifications changed:

The comments have been updated to reflect the correct amount of accounts.

6.4 Redundant Checks
Informational Version 4 Code Corrected

CS-SOA-008

In Solana OFT, before doing the CPI to endpoint::send the oft::send instruction checks the
oft_store matches the second account of the remaining accounts.

require!(
 ctx.accounts.oft_store.key() == ctx.remaining_accounts[1].key(),
 OFTError::InvalidSender
);

However, this is already checked in oapp::endpoint_cpi::send, hence the check above is
redundant.

if sender != accounts[1].key() {
 return Err(ErrorCode::ConstraintAddress.into());
}

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Code corrected:

The redundant check has been removed.

6.5 Change Event Emitted Even if No Change
Informational Version 1 Code Corrected

CS-SOA-003

Some events indicating a state update are emitted even if no state change occurred. This only applies to
admin functions that update the configuration.

• _setRateLimits() with the RateLimitsChanged event

• _resetRateLimits() with the RateLimitReset event

• _setRateLimitAccountingType() with the RateLimitAccountingTypeSet event

• setPauser() with the PauserStatusChange event

Code corrected:

Version 4In setPauser() performs an idempotency check to prevent unnecessary state changes. For
other functions, the privileged role (Governance) is expected to call them only with meaningful changes.

6.6 Direct Burn in Case of No Fees
Informational Version 1 Code Corrected

CS-SOA-004

The mint and burn adapter first transfers tokens from the user to itself before burning them in a second
step. This is required if fees are enabled since the fee amount remains in the contract and isn't burned.
However, if the fee is disabled, the adapter could skip the transfer and instead burn the tokens directly
from the caller using their allowance. This would save a notable amount of gas. The Sky tokens this
adapter is intended to be used support burning tokens using allowances:

function burn(address from, uint256 value) external {
 uint256 balance = balanceOf[from];
 require(balance >= value, "Sky/insufficient-balance");

 if (from != msg.sender) {
 uint256 allowed = allowance[from][msg.sender];
 if (allowed != type(uint256).max) {
 require(allowed >= value, "Sky/insufficient-allowance");

 unchecked {
 allowance[from][msg.sender] = allowed - value;
 }
 }
 ...

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Code corrected:

The adapter now directly burns tokens from the caller when fees are disabled avoiding an unnecessary
transfer and thereby reducing gas used.

Version 5In , instead of transferring the fee, the amountSentLD is burned and the fee is minted if
non-zero.

6.7 Incorrect Natspec and Redundant Logic
_amountCanBeSent/_amountCanBeReceived
Informational Version 1 Code Corrected

CS-SOA-005

DoubleSideRateLimiter implements two separate functions _amountCanBeSent and
_amountCanBeReceived to calculate the transferable amount.

The natspec of _amountCanBeReceived() incorrectly starts with @notice Checks current amou
nt in flight and amount that can be sent for a given rate limit window.
describing send instead of receive.

While separating send and receive functions may help keep the interface generic, both currently
implement identical logic and could be unified into a single function to reduce redundancy.

Code corrected:

The natspec has been corrected. The separate functions have been kept since they were already audited
and used in production. Moreover, in Version 2 the code has been refactored, the shared functionality of
the Adapters has been moved into a base contract.

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Bridge Amount Considerations
Note Version 1

Due to the OFT fee and potential transfer fees, the bridged amount may not match the input amount.
Assuming 6 shared decimals:

EVM OFT: In both adapters, function _debit will compute the amount to be received by deducting fees
and dust:

1. Any amount below 1e12 cannot be bridged.

2. The dust is also accumulated as fees.

3. The computation of the fee is slightly rounded down.

Solana OFT: In the send instruction, function compute_fee_and_adjust_amount will compute the
amount to be received by deducting fees, token transfer fees and dust:

1. Any amount below 1e3 cannot be bridged.

2. The dust is not accumulated as fees.

3. The computation of the token transfer fee is rounded up while the OFT fee is rounded down.

7.2 CPI Depth Limitations
Note Version 4

In Solana, CPI (Cross-Program Invocation) has a depth limitation of 4. Hence, some operations may not
be supported and revert. If users are using an executor program to trigger the Governance OApp's
lz_receive and further call the EndpointV2 / OFT, there would be 3 CPIs left:

• For configuring OFT on EndpointV2, 3 CPIs are sufficient.

• For configuring OFT directly on the OFT itself, 3 CPIs are sufficient.

• For withdraw OFT fees, in case the token has a hook which further triggers another CPI, the transfer
will revert due to exceeding 4 CPIs.

• For sending tokens with OFT, at least another 4 CPIs are needed due to the nested calls into OFT,
EndpointV2, SendLibrary, and token. Hence, this will revert.

If users are triggering lz_receive directly without an executor contract, one more CPI will be available,
and some operations above may become possible.

7.3 Configuration Considerations
Note Version 1

Both the EVM and SVM OFTs require correct configurations to work correctly. In general, this includes:

• Correctly setting the shared decimals.

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

• Correctly setting peers (and their configurations) on each chain.

• Correctly setting a DVN configuration, including optional settings such as block confirmations,
security threshold, the Executor, max message size, and send/receive libraries. If no send and
receive libraries are explicitly set, the Endpoint will fall back to the default settings set by LayerZero
Labs. In case LayerZero Labs changes the default settings, the OApps will be impacted and use the
new default settings which implies a trust in LayerZero Labs.

• Correctly setting the enforcedOptions to ensure users pay a predetermined amount of gas for
delivery on the destination transaction. It should be computed such that messages sent from a
source have sufficient gas to be executed on the destination chain. Setting a gas limit too small
could mean that no executor has an incentive to pay for the delivery of the message at the
destination, and the message should either be dropped by the admin, or some executor should
execute it at a loss to resume message handling.

7.4 Configuration Ordering Considerations
Note Version 4

The Solana OFT is expected to be governed by the Solana Governance OApp, namely a cpi-authority is
expected to be its admin and delegate. The cpi-authority is expected to be used as signer during the
governance dictated CPI, and is responsible for configuring both the OFT and the OFT on the
EndpointV2.

Since execution order on LayerZero V2 is not enforced, measures should be taken to ensure the
necessary ordering of some configurations is respected.

For instance, when setting up a new peer and eid:

1. First several governance messages setup the send / receive library and the peer address of the
eid.

2. Following governance messages setup the rate limits.

Since these actions are non-atomic, after Step 1 one can potentially already send or receive unlimited
amounts, bypassing the intended limits set up in Step 2.

Alternatively, a multicall instruction can help to aggregate the configurations with ordering requirement,
however:

• This adds up complexity to the encoded calls in the governance message.

• This consumes one more CPI call hence further restricting the CPIs available to the governance
action.

To summarize, multiple governance messages may need to be relayed for OFT configurations, and
measures should be taken to ensure the ordering dependency.

Version 5Since , the rate limit has been changed to be 0 by default, restricting transfers from / to peers
with no rate limit configurations.

7.5 Default Library Can Be Updated by LayerZero
Note Version 1

The owner of LayerZero's MessageLibManager can register and update the default send or receive
libraries. If the default library is implicitly used by the OApp, it may be subject to future changes by

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

LayerZero. The OApp needs to explicitly select the default library if an automatic update by LayerZero is
not expected.

7.6 Denial of Service
Note Version 1

It is known and documented that denial of service scenarios against the bridge exist.

Inherent to rate limits, if active, they may be abused to deny service:

• When gross accounting is active, the limit can be consumed by repeated back and forth transfers.

• When net accounting is active, DoS is possible by bridging in circles using other methods to return
the value to the origin chain.

Bridging cost (Bridge fee if active, LayerZero fee, and transaction fee) are comparatively low, making
such attacks feasible if sufficient capital is available.

The SKY and SDAO tokens feature a special role as governance tokens used for voting. If large amounts
of such governance tokens are on another chain, a DoS against the bridge may prevent them from
bridging back and participating in votes. In case too many governance tokens are stuck in flight,
governance attacks may become cheaper.

A mempool observer can see transactions and may attempt to block individual transactions by
consuming the available limit.

Further reasons why users may be unable to use the bridge:

• Executor is down, hence the lzReceive() function needs to be triggered by someone else.

• Gas on the destination chain spikes too high, so the executor cannot execute it immediately with the
gas reimbursed.

7.7 Discrepancies Between OApp and Existing
Bridges
Note Version 1

In the existing Optimism bridge, the caller to bridgeERC20() is restricted to be an EOA to prevent user
accidentally bridge from / to a smart wallet account since some smart contract wallets cannot be
deployed at the same address on every blockchain.

Note different from the existing bridges, such check does not exist in the OApp anymore. In addition, the
introduction of EIP-7702 enables setting code for an EOA, rendering the original check meaningless.

In addition, address translation (implemented in EVM OFT) does not exist in the existing Optimism and
Arbitrum bridges.

The existing bridges use separate escrow contracts to lock funds separately, while:

• The EVM OFT locks all funds transferred to all supported destinations within the OFTAdapter
contract itself.

• The Solana OFT locks the funds into a designated token escrow that may or may not be shared
between different destinations.

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 21

https://github.com/makerdao/op-token-bridge/blob/82918f4853d50c6520dac53fdb70a42fd4ce671b/src/L1TokenBridge.sol#L183-L192
https://github.com/makerdao/op-token-bridge
https://github.com/makerdao/arbitrum-token-bridge/tree/master
https://chainsecurity.com

7.8 EVM OFT Net Mode Considerations
Note Version 1

The rate limit accounting mode can be switched to NET, where change of one rate limit may influence its
opposite one. For a flow A configured with a rate limit, if its opposite flow B is not configured:

1. B will not have any available capacity even if A and B are working in NET mode.

2. In NET mode the lastUpdated timestamp of B can be updated when rate limit of A is updated.
Hence, the lastUpdated field should not be assumed to be zero for unconfigured flows.

7.9 LayerZero V2 Considerations
Note Version 1

OFTs and OFT integrators should be aware of the considerations below:

• Execution Order: According to the design of LayerZero V2, the delivery of messages on the
destination is not guaranteed to be in the same order as they were dispatched on the source.
Consequently, in case multiple sends are relayed to the same destination, they might be reordered
and lead to unexpected results.

• Censorship: Denial-of-Service and censorship are possible since it is not guaranteed the DVN will
verify the send messages in time.

• Sandwiching: The execution of receiving messages is permissionless. Hence, anyone can trigger
the execution once the message is verified. Consequently, the reception can be sandwiched by an
attacker with other operations for MEVs or attacks with flashloans in particular.

• Refund: When sending messages a refund address can be provided. This refund target should be
able to receive the refund. For example, on the EVM OApp the refund address should be able to
receive native token transfers (e.g. by implementing receive() or fallback() if it is a contract or
an EOA using EIP-7702) and LayerZero token transfers (i.e. non-zero address). Otherwise, sending
may revert if there is a refund.

• Alternative Native Token: LayerZero implements endpoints with alternative native tokens (e.g.
EndPointV2Alt for EVM chains) where the native token has no significant value. Note that chains
with such endpoints are unsupported.

7.10 Migration Considerations
Note Version 1

The existing Optimism and Arbitrum bridges lock funds into (release funds from) an escrow on mainnet
and mint (burn) tokens on L2. Transfers in flight during migration might be stuck in the following
scenarios:

• Assume a L1->L2 transfer is not yet finalized after the L2 bridge is migrated. Consequently, this
transfer cannot be finalized anymore since L2 bridge already loses its minting rights.

• Assume a L2->L1 transfer is not yet finalized after the L1 escrow is migrated. Consequently, this
transfer cannot be finalized anymore since insufficient funds can be transferred from the escrow.

The migration should be carefully planned and care should be taken to ensure there is no pending
transfers blocked because of the bridge migration.

Note similar situations may also apply to the OFTAdapter. Once migrateLockedTokens() is called,
in-flight cross-chain transfers may fail due to insufficient funds.

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 22

https://github.com/makerdao/op-token-bridge
https://github.com/makerdao/arbitrum-token-bridge/tree/master
https://chainsecurity.com

7.11 No Additional Minting Roles on L2
Note Version 1

Generally the OFTAdapter can only complete redemptions if it has the amount of tokens available. The
underlying assumption is that only bridged tokens exist on L2, i.e. the bridge is the only minting role on
L2.

This adapter is intended to replace the old canonical bridges. Assumption is that upon migration the
token balances are transferred from the old escrows and starting balances are correct.

7.12 Pausing Outbound Flow Using High Fees
Note Version 1

The system allows accounts with pauser role (granted by owner) to pause all inbound / outbound
transfers entirely. Note that in addition to the intended and documented pausing functionality the owner
can also pause all outbound transfers by simply setting a high fee.

7.13 Rate Limit May Not Match Each Other
Note Version 1

To bridge funds from chain A and B, outbound limit on A and inbound limit on B should be configured.

In case the outbound limit on A is less than the inbound limit on B, there could be a "traffic jam" of
inbound transfers on B, which can only be finalized later when the demand of this flow decreases.

7.14 Receive Flow Can Be Paused
Note Version 1

Unlike the existing native Optimism and Arbitrum bridges of Sky where outbound transfers can be
paused but inbound finalizations cannot, this bridge allows pausing the receive flow on the destination
chain. As a result finalization of in-flight cross-chain transfers can be blocked potentially leaving funds
stuck (either held in the source chain’s OApp or already burned).

This design is intentional due to different security assumptions. On L1, all funds are held in a single
escrow, without distinction between destination chains. In the event of an oracle compromise, the ability
to pause receive flows is a critical safety mechanism.

Users should be aware that paused receive flows may delay access to funds.

7.15 Send Context in Callbacks
Note Version 1

When initiating a send(), the EVM OApp eventually calls EndpointV2.send() which will cache the
dstEid and msg.sender into the current context. If extra native token is provided, a refund will happen
by a lowlevel call to the refund address.

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

Consequently, any sender can trigger a callback by passing a little bit more native token, during which
the following view functions on EndpointV2 will return the current context:

• isSendingMessage()

• getSendContext()

Third party integrators should be aware of this feature to avoid unexpected usage.

7.16 Sharing DVN Makes Rate Limit Ineffective
Note Version 1

The OFT rate limit, by design, restricts the potential loss incurred by a compromised DVN. Namely, a
compromised DVN can only bridge limited tokens by forging validated cross-chain messages.

However, if the OFT and the Governance OApp share the same DVN, in case of a compromise, the DVN
can directly forge governance messages to configure everything on the OFT including the rate limit itself,
effectively renders the rate limit meaningless.

7.17 Token With Transfer Fees
Note Version 4

The Solana OFT implementation supports tokens with transfer fees. However, the EVM OFT does not.

7.18 lzReceive May Fail on Solana OFT
Note Version 4

The EVM OFT adapters implement address translation where transfer or mint to certain addresses will be
redirected to ensure it will succeed.

However, such address translation is not implemented on Solana OFT due to the way Solana SPL token
works. Token transfer and minting may fail due to many reasons for instance:

• If CpiGuard is enabled on the token, the CPI call to transfer will revert.

• If the destination token account is frozen, no tokens can be transferred or minted to it.

• If the token uses hook extension, it may revert during the hook CPI.

To summarize, a cross-chain token transfer message to Solana OFT may be never consumed and stuck.

7.19 quote_oft() Does Not Consider Rate Limits
Note Version 1

The natspec of struct OFT states: “These amounts can change dynamically and are up to the specific
OFT implementation”.

Version 1In of the EVM OFT, quoteOFT() returns 0 and token.totalSupply() as limits without
considering rate limits.

Version 4In of the Solana OFT, oft::quote_oft returns max(uint64) as the upper limit and also
ignores rate limiter configurations.

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

Version 5 Version 6Rate limits are now considered in the both the EVM OFT () and the Solana OFT ().

7.20 sendTo Address May Contain Garbage
Note Version 1

In function _lzReceive() of the EVM OFT, the toAddress is casted from sendTo field (bytes32),
taking only the least significant 160 bits. If garbage exists at the 96 bits of prefix, it will be ignored.
Consequently, different sendTo field may point to the same toAddress.

Sky - Sky OApp OFT - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 OFT Overview
	2.2.2 EVM OFT
	2.2.3 Solana OFT
	2.2.4 Changelog

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Inconsistent Rate Limiting Logic Between EVM and Solana OFT

	6 Resolved Findings
	6.1 Incorrect Amount Passed in quote_send
	6.2 Unable to Receive Transfers to address(0) or Token Contract Address
	6.3 Incorrect Comments
	6.4 Redundant Checks
	6.5 Change Event Emitted Even if No Change
	6.6 Direct Burn in Case of No Fees
	6.7 Incorrect Natspec and Redundant Logic _amountCanBeSent/_amountCanBeReceived

	7 Notes
	7.1 Bridge Amount Considerations
	7.2 CPI Depth Limitations
	7.3 Configuration Considerations
	7.4 Configuration Ordering Considerations
	7.5 Default Library Can Be Updated by LayerZero
	7.6 Denial of Service
	7.7 Discrepancies Between OApp and Existing Bridges
	7.8 EVM OFT Net Mode Considerations
	7.9 LayerZero V2 Considerations
	7.10 Migration Considerations
	7.11 No Additional Minting Roles on L2
	7.12 Pausing Outbound Flow Using High Fees
	7.13 Rate Limit May Not Match Each Other
	7.14 Receive Flow Can Be Paused
	7.15 Send Context in Callbacks
	7.16 Sharing DVN Makes Rate Limit Ineffective
	7.17 Token With Transfer Fees
	7.18 lzReceive May Fail on Solana OFT
	7.19 quote_oft() Does Not Consider Rate Limits
	7.20 sendTo Address May Contain Garbage

