

PUBLIC

Code Assessment

of the Sky Governance OApp

Smart Contracts

October 17, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 11

4 Terminology 12

5 Open Findings 13

6 Resolved Findings 14

7 Informational 16

8 Notes 17

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Sky with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Sky Governance OApp
according to Scope to support you in forming an opinion on their security risks.

Sky implements a Governance OApp using the LayerZero V2 stack to facilitate the relaying of messages
in a standardized manner for EVM chains and Solana.

The most critical subjects covered in our audit are functional correctness, access control, and
compatibility with Sky governance. After the intermediate report, Arbitrary Call in lzReceive has been
resolved and security regarding all the aforementioned subjects is now considered high.

The general subjects covered are gas efficiency and documentation. Documentation can be enriched.

Further, some general considerations are provided for secure integration with LayerZero V2, in particular:

• LayerZero V2 Considerations

• Message Passing Considerations

• OApp Call Validation

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code Corrected 1

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Sky Governance OApp repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 29 June
2025

3aa51c88f9fa2f6660c99a807b120d8705b88932 Initial Version

2 15 Sep 2025 efc7a928fd9053b9e7d61ded2b7ac1a5358609f2 After Intermediate Report

3 09 Oct 2025 175f63c940a33e9037f82b16d0e7fa034e2d3e34 Permissioned Initialization

4 16 Oct 2025 5ad5cb6bbe624e2b1cb99acfe3e4140fa1c233b
9

Final Version

For the solidity smart contracts, the compiler version 0.8.22 was chosen and evm_version is set to
shanghai.

For the solana programs, the rust version v1.75.0, the anchor version v0.29 and the solana CLI
version v1.17.31 were chosen.

The following files were in scope:

contracts/
 GovernanceControllerOApp.sol
 GovernanceMessageEVMCodec.sol
 GovernanceMessageGenericCodec.sol
 IGovernanceController.sol

programs/governance/
 error.rs
 lib.rs
 msg_codec.rs
 instructions/
 init_governance.rs
 lz_receive_types_info.rs
 lz_receive_types_v2.rs
 lz_receive.rs
 mod.rs
 set_oapp_config.rs
 set_remote.rs
 state/
 governance.rs
 mod.rs
 remote.rs

Version 2Since , the EVM contracts were refactored and the following solidity smart contracts were in
scope:

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 5

https://github.com/sky-ecosystem/sky-oapp-oft/tree/3aa51c88f9fa2f6660c99a807b120d8705b88932
https://github.com/sky-ecosystem/sky-oapp-oft/tree/efc7a928fd9053b9e7d61ded2b7ac1a5358609f2
https://github.com/sky-ecosystem/sky-oapp-oft/tree/175f63c940a33e9037f82b16d0e7fa034e2d3e34
https://github.com/sky-ecosystem/sky-oapp-oft/tree/5ad5cb6bbe624e2b1cb99acfe3e4140fa1c233b9
https://github.com/sky-ecosystem/sky-oapp-oft/tree/5ad5cb6bbe624e2b1cb99acfe3e4140fa1c233b9
https://chainsecurity.com

contracts/
 GovernanceOAppReceiver.sol
 GovernanceOAppSender.sol
 interfaces/
 IGovernanceOAppReceiver.sol
 IGovernanceOAppSender.sol

2.1.1 Excluded from scope
Generally all other files are out of scope.

LayerZero V2 itself is out of scope and assumed to function correctly as per its documentation.

The configurations of OApp and its settings (e.g. choice of libraries) on LayerZero V2 are out of scope.
The DVN, executor, send and receive libraries are assumed to be properly configured.

Tests and imports, including the OApp-EVM contracts are out of scope and treated as external
dependencies for this review. While the core OApp-EVM contracts are out of scope, we reviewed their
implementation to understand their behavior and to confirm that the in scope contracts integrate with and
use them correctly. The OFT/OApp smart contracts on EVM were previously reviewed by ChainSecurity
(LayerZero OFT/OApp Audit). These contracts are particularly relevant, as the contracts in scope inherit
from them.

Further, the Solana programs make use of the Anchor framework which is assumed to function properly
and work as documented.

2.2 System Overview
Version 2This system overview describes the latest received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Sky offers a Governance OApp using the LayerZero V2 stack to facilitate the relaying of messages in a
standardized manner. Currently, implementations for EVM chains as well as Solana are provided. Note
that the terminology may vary depending on the chain and that the system overview might use one
terminology.

2.2.1 Governance OApp Overview
Overview. The governance OApp (Omnichain Application) implements a standardized message passing
framework for sending and receiving cross-chain messages that internally leverages the LayerZero V2
stack. It implements a unified approach that allows governors (e.g. Sky governance or Sky SubDAOs) to
use a managed framework for message passing to trigger cross-chain governance actions.

A general overview of the integration and interaction flow of the OApp is outlined below:

1. Source Chain Governor. Instructs the source chain OApp to send a message on its behalf.

2. Source Chain OApp: Validates the message. Then, sends the message through the LayerZero V2
endpoint with the configured send library to the destination OApp. Note that the execution fee
(denominated in native token or LZ token) is paid in this step.

3. LayerZero V2: Handles the message. Eventually, the message is verified on the LayerZero V2
endpoint, marking its validity. Note that this step includes on- and off-chain components.

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 6

https://www.chainsecurity.com/security-audit/layerzero-oft-oapp
https://chainsecurity.com

4. Destination Chain OApp: The execution of the cross-chain message is triggered and the
cross-chain governance action is executed. Note that this adheres to the receive library.

5. Destination Chain Governor: The target receives the call and performs the action if and only if the
message originates from an expected governor and source chain pair.

However, note that depending on the configuration and the chain the exact details may vary. Similarly,
note that not all OApps will necessarily send or receive messages. For details relevant to either sending
or receiving, we will refer to "sending OApp" and "receiving OApp" accordingly in this system overview.

Messaging. Note that the messages passed between the OApps follow the generic format below:

Origin Caller 32 bytes Address of the OApp caller on the source chain.

Destination Target 32 bytes Address of the Target to be called.

Destination Calldata Variable The calldata to be executed on the destination target.

For sending OApps, the following holds for messaging:

• The destination EIDs must be whitelisted which implies that the OApp has been deployed on the
destination chain (i.e. linking of OApps is required).

• The origin caller must be the initiator of the OApp cross-chain message (e.g. msg.sender on EVM)
to prevent impersonation.

• The origin caller must be whitelisted by the OApp governor if whitelisting is activated.

• The origin caller should ensure the correctness of the additional data as this might be chain-specific.

For receiving OApps, the following holds for messaging:

• The message is not replayable and is expected to be correct (given the LayerZero V2 correctness
assumption).

• The destination EID must be the EID of the chain the OApp is deployed on (however, should be
generally handled by the above).

• The receiving OApp provides a mechanism allowing the receiving target to validate the origin of the
message (based on source chain EID and origin caller).

Governance Functionality. Several privileged roles can configure the Governance OApp as well as its
configuration on the LayerZero V2 endpoint. Below, the generally available functionalities are listed.

The following general owner-privileged actions exist for all OApps:

• Set Owner: Sets the OApp's owner.

• Set Delegate: Sets the OApp's delegate address on the LayerZero V2 endpoint.

• Set Peer: Sets the peer address for a specific EID.

The following owner-privileged actions exist for sending OApps:

• Set Enforced Options: Sets the enforced options for specific endpoint and message type
combinations.

• Adding and Removing from Allowlist: Manage allowlist entries.

• Enabling and Disabling Allowlist: Activate and deactivate the allow list.

Below are the relevant actions on the LayerZero V2 endpoint for the delegate (and technically the OApp
itself):

• for all OApps:

• Set Config: Sets an OApp's configuration on a registered message library.

• useful for sending OApps:

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• Set Send Library: Sets the send library.

• useful for receiving OApps:

• Burn: Marks a nonce as non-executable and non-verifiable. The nonce can never be
re-verified or executed.

• Nilify: Marks a packet as verified, but disallows execution until it is re-verified.

• Clear: Clears a message that is efficiently burnt.

• Skip: Skips the next nonce to prevent message verification.

• Set Receive Library: Sets the receive library.

• Set Receive Library Timeout: Sets the timeout for a receive library change during which the
previous library could be used.

In general, the OApps should be configured correctly for Sky Cross-Chain Governance, for more details
please consult Configuration Considerations.

Last, note that the OApp itself is not expected to hold any privileges on governed contracts.

2.2.2 EVM
Overview. Two OApps are implemented for sending (GovernanceOAppSender) and receiving
(GovernanceOAppReceiver) respectively. Note that receiving a message executes a call according to
the data provided by the message.

Messaging. The messages of the EVM Sender and Receiver OApps are outlined as follows:

Origin Caller 32 bytes Address of the OApp caller on the source chain.

Destination Target 32 bytes Address of the Target to be called.

Destination Calldata Variable The calldata to be executed on the destination target.

For the sending OApp, quoteTx() can be called to estimate the fee by forwarding the call to the
EndpointV2. Then another call to sendTx() can send the message through the EndpointV2. Note
authorization is checked upon sending that restricts the msg.sender is allowed to call a target contract
at a destination chain.

For the receiving OApp, the verified message can be consumed by anyone (typically the paid executor)
with EndpointV2.lzReceive() which further triggers OApp.lzReceive(). That initiates the
cross-chain governance action to the governed contract with the calldata and the attached msg.value.
If the call reverts, the execution reverts.

Note that the messageOrigin defines the source EID as well as the initiator of the OApp message. For
validating calls performed by the OApp, please consider OApp Call Validation.

Please refer to Configuration Considerations for more details about the EVM Configuration for
Cross-Chain Governance.

2.2.3 Solana
Overview. The Solana OApp program implements the logic for an OApp that only allows receiving
cross-chain messages. Note that the program can be used for multiple OApps.

Namely, the instruction oapp::init_governance is provided to create an OApp with a given ID while
setting the admin (owner) and relevant Address-Lookup-Tables (ALTs). Note that this generates a
governance PDA that will be registered on the LayerZero V2 endpoint with
endpoint::register_oapp to set its delegate and should be used on the source-chain as the
recipient address of the LayerZero V2 cross-chain message.

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

On Solana, some instructions should be to be called prior to the message reception, especially the
delegate-only ones:

• init_receive_library / init_config: (delegate-only) init the receive library and relevant
configurations.

• set_receive_library / set_config: (delegate or OApp) set the receive library and relevant
configurations.

• init_nonce: (delegate-only) initialize the Nonce and PendingInboundNonce PDAs.

• init_verify: (permissionless) initialize the PayloadHash PDA for each message to be received.

Note for Solana, we refer to the program with the context of the governance PDA as the OApp. Hence,
the general descriptions apply to the individual OApps. Note that there is no global configurations.

Additionally, note that so-called CPI authority PDAs will sign the CPI for an OApp and are derived based
on the origin caller and the source (and the governance PDA as part of the OApp definition).

Messaging. The Solana OApp implements only receiving messages and the payload layout is defined as
follows:

Origin Caller 32 bytes Caller on the origin domain

Program ID 32 bytes Target program the OApp will invoke with its CPI Authority
PDA.

Accounts Length 2 bytes Number of accounts present in the item below.

Accounts Accounts
Length * 34
bytes

List of accounts
(account, is_signer, is_writable) to be passed
to the target program with the respective length.

Data Variable The data to be passed to the program.

To receive, the verified message can be consumed by anyone (typically the paid executor) with
oapp::lz_receive which consumes the message on the endpoint with endpoint::clear. Then,
the program proceeds to perform a CPI to the target program with the data and accounts. The signer of
the invocation's signer correspond to the CPI authority PDA. Given the definition of the CPI authority
PDA, it can be used for validating the origin of cross-chain governance actions. For details regarding
validation, please consider OApp Call Validation.

Last, note that two helper functions are provided for aggregating accounts so that the executor can
successfully execute oapp::lz_receive. oapp::lz_receive_types_v2 defines these compactly
using the ALTs. oapp::lz_receive_types_info provides the accounts needed for
oapp::lz_receive_types_v2.

Governance Functionality. Note that additional governance functionality is required for Solana. Namely,
the following owner-privileged actions are provided:

• Set ALTs: Updates the ALTs.

Please refer to Configuration Considerations for more details about the Solana Configuration for
Cross-Chain Governance.

2.2.4 Changelog
Version 1

Version 2

Version 1

Version 2

In , the EVM GovernanceControllerOApp allows both sending and receiving messages. It also
provides two different entrypoints to send messages: sendEVMAction() and
sendRawBytesAction(). This has been changed since , where a different message layout is
implemented. Further, in , an allowlist is defined to whitelist address that can send messages to
any targets on any peers; since fine-grained access control is implemented that restricts calls to
specific target contract on target destination.

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

2.3 Trust Model
Owner of the Governance OApp. Fully trusted. Can set the canCallTarget authorization mapping
and OApp configurations (e.g. peers and enforced options). Is expected to perform these configuration
changes correctly. In the worst case, the OApp could be maliciously configured to allow receiving
malicious cross-chain messages. Additionally, it could DoS or censor the message relay or prevent the
execution of messages.

Delegate of the OApp in LayerZero. Fully trusted. Initially set to the owner of the OApp who can
reassign this role. Can configure the library and manipulate the message handling on the EndpointV2
contract. In the worst case, the OApp could be maliciously configured to allow receiving malicious
cross-chain messages. Additionally, it could DoS or censor the message relay or prevent the execution of
messages.

Addresses authorized to send. Fully trusted. Expected to be configured correctly by the owner of the
OApp. These address have privileges to trigger calls specific targets on foreign domains. In the worst
case the target contracts can be compromised by the respective authorized address.

LayerZero. LayerZero is out of scope for this review and is trusted to behave correctly and deliver
messages to the correct destination, the LayerZero executor is trusted to always deliver messages with
the correct provided message value and gas limit. Depending on the exact configuration, LayerZero
might be fully trusted to not censor messages or similar. However, the configuration is out-of-scope for
this review.

The governed contracts would be in danger in case LayerZero behaves incorrectly, for example
due to a compromise, an L2 finality issue, or any other failure. Because the lzReceive() function
cannot be paused in emergency, compromised DVNs and executors may verify and execute unintended
or malicious governance calls.

The configuration required for managing the LayerZero applications on multiple chains is considered out
of scope for this review and should be performed by the delegate or its owner through the utility
functions, please consult Configuration Considerations for more details.

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedArbitrary Call in lzReceive

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code Correctedinit_governance Can Be DoSed

Informational Findings 1

• Code CorrectedUnchecked Program ID

6.1 Arbitrary Call in lzReceive
Security Critical Version 1 Code Corrected

CS-SOAG-001

The EVM contract GovernanceControllerOApp implements the _lzReceive() function to allow for
arbitrary calls to arbitrary targets which could allow for by-passing access control so that messages could
potentially be forged arbitrarily.

_lzReceive() allows for arbitrary call targets and calldata. As a consequence, any message could call
endpoint to call privileged functions such as EndpointV2.setDelegate(). As a consequence,
configurations could be changed in critical ways. For example, the required DVN configuration could be
changed to allow for forging malicious messages.

Additionally, endpoint.lzToken() could be selected as the target to pull funds from users that have
approved the GovernanceControllerOApp contract (as part of paying fees in such token).

In general, arbitrary call allows abusing the privileges over all contracts that
GovernanceControllerOApp has.

Note that the likelihood is limited if allowlists on all source domains are activated due to the partial trust in
allowed addresses. However, by default the EVM contracts do not activate the allowlist.

To summarize, a severe escalation of privileges is possible due to arbitrary function calls.

Code corrected:

Version 2Since , the EVM Gov OApp has been redesigned to require authorization for each triplet
(_srcSender,dstEid,dstTarget). Consequently calling EndpointV2 is by default prohibited and
authorization needs to be granted explicitly.

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6.2 init_governance Can Be DoSed
Security Low Version 1 Code Corrected

CS-SOAG-004

In the SVM Governance OApp, an instruction init_governance is defined where a governance PDA
can be initialized with an id as the only variable part of the seeds. However, the governance initialization
is permissionless, hence Sky Governance's call to init_governance can be front-run by an attacker
which occupies the same id. Consequently, the governance initialization could be temporarily DoSed,
and it may not be initialized with a desired id.

Code corrected:

Version 3Since , the initialization of new governance instance has been restricted to the Governance
Program's upgrade authority, which is fully trusted if exists.

6.3 Unchecked Program ID
Informational Version 1 Code Corrected

CS-SOAG-005

In the SVM Governance OApp, lz_receive expects several accounts for the execution which includes
an executable unchecked program account. This account, expected to match the program_id of the
CPI call, however, is neither validated nor used.

Code corrected:

Version 2Since it is checked that the supplied program id matches the governed program id from the
message.

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 dstTarget May Contain Garbage Leading
Bytes
Informational Version 2 Acknowledged

CS-SOAG-006

During lzReceive(), the GovernanceOAppReceiver computes the dstTarget by casting bytes32 to an
address (bytes20) ignoring the leading 12 bytes. Consequently, if the message is malformed (i.e. by a
compromised DVN, or a wrong governance call with L1GovernanceRelay.relayRaw()), it will still be
accepted.

7.2 Account Lookup Tables Are Not Validated
Informational Version 1 Acknowledged

CS-SOAG-007

Account Lookup Tables (ALTs) are configured for compact address passing in Solana's V0 transactions,
which are set during init_governance or set_oapp_config instructions. However, these accounts
of ALTs are not verified to be valid PDAs of the ALT program.

Acknowledged:

Sky states:

We don't want to validate ALTs. Even though the admin sets something wrong,
it will just break the view-only lz_receive_types function for the executor.
Execution is permissionless anyway so there may be other actors that can execute
transactions if a malicious administrator forcefully breaks lz_receive_types.

7.3 Gas Optimization
Informational Version 1 Acknowledged

CS-SOAG-003

The storage variable messageOrigin in the EVM OApp is used to store the srcEid and
originCaller context temporarily for the governed contract during lzReceive(). It is always reset to
0 by the end of lzReceive() execution. Hence, transient storage could potentially be used to improve
gas efficiency, while it is not available for the current compiler setting.

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 CPI Depth Limitations
Note Version 1

In Solana, CPI (Cross-Program Invocation) has a depth limitation of 4. Hence some operations may not
be supported and revert. If users are using an executor program to trigger the Governance OApp's
lz_receive and further call the EndpointV2 / OFT, there would be 3 CPIs left:

• For configuring OFT on EndpointV2, 3 CPIs are sufficient.

• For configuring OFT directly on the OFT itself, 3 CPIs are sufficient.

• For withdraw OFT fees, in case the token has a hook which further triggers another CPI, the transfer
will revert due to exceeding 4 CPIs.

• For sending tokens with OFT, at least another 4 CPIs are needed due to the nested calls into OFT,
EndpointV2, SendLibrary, and token. Hence this will revert.

If users are triggering lz_receive directly without an executor contract, one more CPI will be available
and some operations above may become possible.

8.2 Configuration Considerations
Note Version 1

Configuration for Cross-Chain Governance

Typically it is expected that one chain per user of the OApp will serve as the governing chain and that the
remaining chains are receiving chains. Otherwise, two competing governances exist. The expected
configuration for the respective chains is outlined below:

• Governance Chain: The owner of the OApp and the delegate in the endpoint are set to the
governance contract. In case of Sky, that would be MCD_PAUSE_PROXY (or another designated
contract) on mainnet.

• Relayed-To Chains: The owner of the OApp and the delegate in the endpoint are set to a trusted
address. Typically, it is expected that this trusted address is commanded through cross-chain
messages by the governance contract on the governance chain. Note that it should be ensured that
all governed contracts follow the appropriate validation, see OApp Call Validation.

However, note that there might be message patterns other than sending messages from A to B (e.g.
ABA). In such cases, similar access control should be in place to ensure the validity of messages.

For EVM chains, it is expected that the governance actions will be calls to relays which hold the privileges
on the given relayed-to chain as current infrastructure would not validate the privileges accordingly as
outlined in OApp Call Validation. Similarly, that is the case for alternative messaging patterns.

For Solana, note that for executing governance actions in the context of Sky the validity of sent
messages can only be guaranteed if the respective CPI authority is guaranteed to have initiated the
action (e.g. admin of governed programs is the CPI authority, execution queue that governs but receives
actions from the CPI authority). However, note that due the constraints the capabilities might be limited
(e.g. initializing libraries or setting the messaging library configurations). Thus, the configuration should
be considered carefully.

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Configuration for OApps and EndpointV2

Both the EVM and SVM Governance OApp require correct configurations to work correctly. In general,
this includes:

• Correctly setting peers to whitelist on each chain.

• Correctly setting a DVN configuration, including optional settings such as block confirmations,
security threshold, the Executor, max message size, and send/receive libraries. If no send and
receive libraries are explicitly set, the Endpoint will fall back to the default settings set by LayerZero
Labs. In case LayerZero Labs changes the default settings, the OApps will be impacted and use the
new default settings which implies a trust in LayerZero Labs.

For the EVM sending OApps:

• Correctly setting the enforcedOptions to ensure users pay a predetermined amount of gas for
delivery on the destination transaction. It should be computed such that messages sent from a
source have sufficient gas to be executed on the destination chain. Setting a gas limit too small
could mean that no executor has an incentive to pay for the delivery of the message at the
destination, and the message should either be dropped by the admin, or some executor should
execute it at a loss to resume message handling.

8.3 Experimental lz_receive_types_v2 Feature
Note Version 1

Sky Governance OApp implements lz_receive_types_v2 instructions which leverage a experimental
feature of LayerZero V2 implemented in this open PR. It is assumed that this feature works as
documented and the executor follows accordingly.

Since Oct 2nd, 2025 this experimental feature has been merged to main branch, hence expected to be
followed.

8.4 Integrations May Be DoSed by Allowlist
Note Version 1

In case the allowlist is enabled on the EVM GovernanceControllerOApp, only listed addresses can
integrate and send actions. Consequently, these integrators may be DoSed if Sky governance decides to
not add them to allowlist if it is activated, or if they are removed from the allowlist later.

8.5 LayerZero V2 Considerations
Note Version 1

Governance and OApp integrators should be aware of the considerations below:

• Execution Order: According to the design of LayerZero V2, the delivery of messages on the
destination is not guaranteed to be in the same order as they were dispatched on the source.
Consequently, in case multiple governance actions are relayed to the same destination, they might
be reordered and lead to unexpected results or reverts.

• Censorship: Denial-of-Service and censorship are possible since it is not guaranteed the DVN will
verify the governance messages in time.

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 18

https://github.com/LayerZero-Labs/LayerZero-v2/pull/152
https://chainsecurity.com

• Sandwiching: The execution of receiving messages is permissionless. Hence, anyone can trigger
the execution once the message is verified. Consequently, the governance action can be
sandwiched by an attacker with other operations for MEVs or attacks with flashloans in particular.
This risk should be thoroughly analyzed before a governance action is dispatched.

• Refund: When sending messages a refund address can be provided. This refund target should be
able to receive the refund. For example, on the EVM OApp (at the time of writing this is the only
sending OApp) the refund address should be able to receive native token transfers (e.g. by
implementing receive() or fallback() if it is a contract or an EOA using EIP-7702) and
LayerZero token transfers (i.e. non-zero address). Otherwise, sending may revert if there is a refund.

• Alternative Native Token: LayerZero implements endpoints with alternative native tokens (e.g.
EndPointV2Alt for EVM chains) where the native token has no significant value. Note that chains
with such endpoints are unsupported.

8.6 Malicious Change of LZ Token
Note Version 1

Governances using the OApp should be aware that paying fees with LZ tokens (sending messages is
EVM-only at the time of writing) requires careful considerations for crafting spells as otherwise a
potentially hostile LayerZero governance could drain unexpected tokens.

Consider the following spell for sending cross-chain governance messages:

1. Quote the fee in LZ token.

2. Give an approval for endpoint.lzToken() to the OApp accordingly.

3. Execute the respective send function accordingly.

Note that the following attack vector might exist if LayerZero governance turns malicious:

1. Spell is scheduled.

2. LayerZero governance updates endpoint.lzToken().

3. The execution fee is increased.

4. The spell executes and effectively drains the treasury (e.g. Sky token)

5. Governance is attacked by LayerZero governance.

Ultimately, governance spells should ensure that:

• The LZ token is the expected one.

• The fees are limited.

To summarize, spells paying in fees in LZ token could potentially be attacked. However, governance can
craft resilient spells.

8.7 Message Passing Considerations
Note Version 1

The cross-chain messages sent through the OApp should be thoroughly analyzed before sending them.
That for example includes validating the exact contents of the message.

Generally, the following problems may occur:

• reverting operations

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

• incorrectly executed operations

• message safety

Potential reasons for that could be:

• Unexecutable messages due to not adhering to the expected formats outlined in System Overview
or providing incorrect data for the cross-chain calls (potentially due to state changes).

• State changes on the destination chain may change the expected execution.

• Execution pricing may change and thus lead to execution fees being insufficient.

• Operation pricing may change and thus lead to out-of-gas scenarios.

• Unexecutable or incorrect messages due dependencies of several governance actions due to no
enforced execution ordering (see LayerZero V2 Considerations).

On EVM specifically, target contract upgradeability should be considered carefully in addition.

On Solana specifically, additional problems could arise:

• Unexecutable messages due to the transaction / accounts exceeding the size limits.

• The target contract is upgraded by its upgrade authority.

Note that message sending does not validate message correctness and safety. This should be performed
by stakeholder off-chain.

Regarding correctness of sent messages, while some sanity checks are in place when sending, some
are not in place. For example, on EVM (at the time of writing EVM OApps are the only OApps sending
messages), sendTx() does not validate the dstEid match the dstTarget address length, and the
dstCallData match the expected data layout.

8.8 Message Verification Info Reliance
Note Version 1

The verification of a message on EndpointV2 (verify()) is loosely restricted: message from
non-existing peers at the moment can still be verified. Namely, for peers ever configured or a peer of
address 0, the _initializable check will pass.

// EndpointV2.sol:_initializable
function _initializable(
 Origin calldata _origin,
 address _receiver,
 uint64 _lazyInboundNonce
) internal view returns (bool) {
 return
 _lazyInboundNonce > 0 || // allowInitializePath already checked
 ILayerZeroReceiver(_receiver).allowInitializePath(_origin);
}

// OAppReceiver.sol:allowInitializePath
function allowInitializePath(
 Origin calldata origin
) public view virtual returns (bool) {
 return peers[origin.srcEid] == origin.sender;
}

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

Consequently, governed contracts and integrators of governance OApp should not rely on the verification
information in EndpointV2, since these messages may not pass peer validations.

8.9 OApp Call Validation
Note Version 1

Governed contract should validate OApp calls.

In EVM Governance OApp's lzReceive(), a low-level call will be made to the governed contract, which
should properly validate the call and context before execution:

• The msg.sender is restricted to the OApp, ensuring the call is triggered by a cross-chain message.

• The messageOrigin is validated to ensure the srcEid is configured (or potentially stricter checks
if necessary) and originCaller is expected (e.g. L1 governance).

• Since lzReceive() is permissionless, the msg.value attached should be validated as expected
with the callData.

Similarly, in the SVM Governance OApp, a CPI call will be made to the governed program_id, which
should properly validate the call and context:

• The accounts and parameters passed should be validated, especially the signers required.

• The remaining accounts are not validated in lz_receive and should be validated if used.

8.10 SVM Signer Impersonation in lz_receive
Note Version 1

In the SVM Governance OApp, lz_receive() eventually does a CPI call to the program encoded in
the governance message, where both payer and cpi_authority are signers and can be
impersonated to execute arbitrary calls. In theory, the SOL and token balances of payer and
cpi_authority could be drained and their privileges could be abused if any. Governance should
properly inspect the CPI call to ensure this is not abused; and executor (payer) should ensure the
execution is as expected with for instance pre- and post-execution checks.

8.11 Upgrade Authority of Solana Programs
Note Version 1

On Solana, programs can have an upgrade authority (typically the account that originally deployed the
program), which bears the privileges to upgrade the program code. If the Governance OApp program is
intended to be immutable, its upgrade authority should be removed.

In addition, the governance should be careful of the program_id when voting and relaying a
governance message. In case the program_id retains upgradeability and its upgrade authority is
compromised or malicious, it can upgrade the program and execute arbitrary logic impersonating the CPI
authority.

8.12 msg.value Is Not Guaranteed in lzReceive
Note Version 1

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

On the EVM chains, the LayerZero executor is expected to trigger the lzReceive() with the intended
msg.value. However, this is not guaranteed and the executor (or anyone since lzReceive() is
permissionless) may attach any msg.value. Consequently, if a governed call expects or relies on
specific msg.value, it may not be satisfied and result in unexpected execution or revert.

Sky - Sky Governance OApp - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Governance OApp Overview
	2.2.2 EVM
	2.2.3 Solana
	2.2.4 Changelog

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 Arbitrary Call in lzReceive
	6.2 init_governance Can Be DoSed
	6.3 Unchecked Program ID

	7 Informational
	7.1 dstTarget May Contain Garbage Leading Bytes
	7.2 Account Lookup Tables Are Not Validated
	7.3 Gas Optimization

	8 Notes
	8.1 CPI Depth Limitations
	8.2 Configuration Considerations
	8.3 Experimental lz_receive_types_v2 Feature
	8.4 Integrations May Be DoSed by Allowlist
	8.5 LayerZero V2 Considerations
	8.6 Malicious Change of LZ Token
	8.7 Message Passing Considerations
	8.8 Message Verification Info Reliance
	8.9 OApp Call Validation
	8.10 SVM Signer Impersonation in lz_receive
	8.11 Upgrade Authority of Solana Programs
	8.12 msg.value Is Not Guaranteed in lzReceive

