

PUBLIC

Code Assessment

of the Sky LZ Governance Relay

Smart Contracts

October 17, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Open Findings 10

6 Informational 11

7 Notes 12

Sky - Sky LZ Governance Relay - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Sky with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Sky LZ Governance Relay
according to Scope to support you in forming an opinion on their security risks.

Sky implements governance relay contracts leveraging the sky-oapp-governance bridge to relay
governance calls from L1 to L2s.

The most critical subjects covered in our audit are access control and functional correctness. Security
regarding all the aforementioned subjects is high.

The general subjects covered include documentation and usage considerations. No documentation was
provided describing the design or intended use. The report contains two notes and one informational
finding related to defense in depth.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Sky - Sky LZ Governance Relay - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Sky - Sky LZ Governance Relay - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The following smart contracts were in scope:

contracts/
 L1GovernanceRelay.sol
 L2GovernanceRelay.sol
deploy/
 GovernanceRelayInit.sol
 GovernanceRelayDeploy.sol

The assessment was performed on the source code files inside the Sky LZ Governance Relay repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 24 Sep 2025 d3e3df4db417f196fdd56123e7dbb462d04f32ef Initial Version

For the solidity smart contracts, the compiler version 0.8.22 was chosen and evm_version was set to
shanghai.

2.1.1 Excluded from scope
Any other files are not in scope of this review.

The Governance Relay is expected to work with Sky LayerZero Governance OApp, which was covered in
another review by ChainSecurity.

LayerZero V2 is out of scope and assumed to function correctly according to its documentation.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Sky offers Governance Relay contracts that works with Sky LayerZero Governance OApps to relay
governance messages cross-chain.

2.2.1 Cross-chain Governance Overview
The Governance Relay contracts provide a generic cross-chain governance framework to relay a
governance action from L1 to L2. An overview of the cross-chain governance workflow is outlined below:

1. L1 Governor: Instructs the L1 Governance Relay to send a message to a foreign domain.

Sky - Sky LZ Governance Relay - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2. L1 Governance Relay: Encodes message and instructs the L1 Governance OApp to send a
message on its behalf. Fee tokens are attached or approved.

3. L1 Governance OApp: Performs authorization check and instructs the LayerZero V2 Endpoint to
send the message.

4. LayerZero V2: Handles the message. Eventually, the message is verified on the LayerZero V2
endpoint, marking its validity. Note that this step includes on- and off-chain components.

5. Destination Chain OApp: The execution of the cross-chain message is triggered, which instructs
the L2 Governance Relay to relay the message to governed contract.

6. L2 Governance Relay: Performs validation of caller and source. Then triggers a delegatecall to
execute the actual governance action.

2.2.2 L1GovernanceRelay
The L1GovernanceRelay follows the standard deny and rely authorization mechanism. To initiate a
cross-chain governance message, the following payable entrypoints can be used by the wards:

• relayEVM(): Relays a message to another EVM-compatible chain. The message fields are
provided in detail which includes the foreign contract address to be delegatecalled with calldata. The
message is encoded into a TxParams and sent with l1Oapp.

• relayRaw(): Relays a message to any chain with off-chain encoded TxParams. This is expected
to be used to send to a non-EVM-compatible chain.

Governance may choose to pay fees in native token or lzToken in case it is configured. Further, a refund
address can be provided. To receive a potential native token refund, a payable receive() fallback is
implemented.

Further, the following setters are provided for the wards:

• file(): Sets the lzToken and the l1Oapp addresses in case of a change or upgrade.

• reclaim(): Sends specified amount of native token to a specified receiver.

• reclaimLzToken(): Sends specified amount of lzToken to a specified receiver.

2.2.3 L2GovernanceRelay
The L2GovernanceRelay works on-behalf-of the L1 Governance to govern other L2 contracts. It is
expected to be fully setup on construction to allow self-configuration. It exposes the following entrypoints:

• relay(): Validates that it is being called by the l2Oapp and the message is sent from the L1
Governance Relay at the immutable l1Eid. Then it performs a delegatecall given according to the
message to execute governance actions.

Sky - Sky LZ Governance Relay - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• file(): Can only be called by itself to set the l2Oapp or l1GovernanceRelay. Namely the
execution needs to start from relay() where the messageAuth is checked.

2.2.4 Deployment
The L1 Governance Relay is expected to be deployed with the only ward switched to a specified owner
(e.g. the Pause Proxy). And the L2 Governance Relay is expected to be deployed with correct
configuration.

The L1 Governance Relay will be initialized with the l1Oapp while leaving the lzToken as
address(0). Namely sending a message with lzToken fees is prevented. It is further added to the
chainlog with the key "LZ_GOV_RELAY". While L2 Governance Relay does not need any initialization.

2.3 Trust Model
Wards of L1GovernanceRelay: fully trusted; assumed to be the L1 governance contract (e.g. Pause
Proxy) who has full control over the contract. It is expected all the cross-chain messages are carefully
inspected and analyzed.

Governance OApps: fully trusted; assumed to be correctly configured, otherwise, cross-chain message
can be blocked due to missing peer or authorization.

LayerZero: LayerZero is out of scope for this review and is trusted to behave correctly and deliver
messages to the correct destination, the LayerZero executor is trusted to always deliver messages with
the correct provided message value and gas limit. Depending on the exact configuration, LayerZero
might be fully trusted to not censor messages or similar. However, the configuration is out-of-scope for
this review.

The governed contracts would be in danger in case LayerZero behaves incorrectly, for example
due to a compromise, an L2 finality issue, or any other failure. Because the l2Oapp.lzReceive()
function cannot be paused in emergency, compromised DVNs and executors may verify and execute
unintended or malicious governance calls.

In the context of Sky Governance, it is assumed:

1. On L1, the PauseProxy is the ward of L1 Governance Relay.

2. On L1, the PauseProxy is the owner and delegate of the L1 GovernanceOAppSender to setup the
canCallTarget mapping and LayerZero related configurations.

3. On L2, the L2 Governance Relay is the owner and delegate of the L2 GovernanceOAppReceiver to
setup LayerZero related configurations.

Sky - Sky LZ Governance Relay - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Sky - Sky LZ Governance Relay - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Sky - Sky LZ Governance Relay - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Open Findings
In this section, we describe our findings. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Sky - Sky LZ Governance Relay - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

6.1 srcSender May Contain Garbage Leading
Bytes
Informational Version 1 Acknowledged

CS-SLGR-001

The L2GovernanceRelay's messageAuth modifier verifies that the message originates from the
L1GovernanceRelay and when casting the bytes32 srcSender to an address, it ignores the leading 12
bytes. Consequently, if the message is malformed (i.e. by a compromised DVN), it will still be accepted.
Note that a legitimate L1 GovernanceOAppSender cannot send such a malformed message.

Sky - Sky LZ Governance Relay - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 LzToken Is Not Set After Initialization
Note Version 1

When the L1GovernanceRelay is initialized, the lzToken address is not set, hence calling
reclaimLzToken() or sending messages with lzToken as fees will revert.

7.2 Msg.Value Is Not Accepted by
L2GovernanceRelay
Note Version 1

The L2GovernanceRelay does not implement a receive() function to receive native token, and
relay() is not payable. Consequently if a cross-chain message requires certain msg.value to be
attached or delivered, it is not accepted by the L2GovernanceRelay.

Sky - Sky LZ Governance Relay - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Cross-chain Governance Overview
	2.2.2 L1GovernanceRelay
	2.2.3 L2GovernanceRelay
	2.2.4 Deployment

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Informational
	6.1 srcSender May Contain Garbage Leading Bytes

	7 Notes
	7.1 LzToken Is Not Set After Initialization
	7.2 Msg.Value Is Not Accepted by L2GovernanceRelay

