

PUBLIC

Code Assessment

of the Wormhole LayerZero

Migration Library

October 24, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Open Findings 10

6 Notes 11

Sky - Wormhole LayerZero - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Sky with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Wormhole LayerZero
according to Scope to support you in forming an opinion on their security risks.

Sky offers a library for migrating the Ethereum-Solana governance and token bridges from Wormhole
stack to LayerZero V2 stack. This review covers the governance spells facilitating the migration. The
underlying contracts involved in the migration have been reviewed in separate reports, as detailed in the
Assessment Overview.

The most critical subjects covered in our audit are functional correctness of the migration spells and
migration procedure integrity. Security regarding all the aforementioned subjects is high.

The general subjects covered are code complexity, documentation, specification, and operational
procedures. Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that the successful and secure execution of the migration depends on following the
documented procedures in the README. Specifically, newly deployed contracts must be manually
inspected (see Deployment Verification), parameters must be verified, results of spell 0 must be verified
on both chains prior to executing spell 1, and for the token bridge migration it must be ensured that no
funds are in flight before proceeding.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Sky - Wormhole LayerZero - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Sky - Wormhole LayerZero - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The following Solidity libraries are in scope:

deploy/
 MigrationDeploy.sol
 MigrationInit.sol

The assessment was performed on the source code files inside the Wormhole LayerZero repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 17 Oct 2025 17397879385d42521b0fe9783046b3cf25a9fec6 Initial Version

For the solidity libraries, the compiler version 0.8.22 was chosen and the evm_version was set to
shanghai.

2.1.1 Excluded from scope
Any other files are out of scope such as tests, dependencies and third-party protocols. In particular:

• LayerZero V2 itself is out of scope and assumed to function correctly as per its documentation. The
configurations of OApp / OFT and their settings (e.g. choice of libraries) on LayerZero V2 are out of
scope. The DVN, executor, send and receive libraries are assumed to be properly configured.

• Wormhole itself is out of scope and assumed to function correctly as per its documentation. The
majority of Wormhole guardians are assumed to be honest.

For the LayerZero and Wormhole NTT contracts deployed and the governance payload used, please
refer to separate ChainSecurity reviews:

• Sky LZ OFT

• Sky LZ Governance OApp

• Sky LZ Governance Relay

• Sky Wormhole NTT Migration Update

• Sky Solana Crosschain Governance Payload Scripts

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Sky - Wormhole LayerZero - ChainSecurity - © Decentralized Security AG 5

https://github.com/sky-ecosystem/wh-lz-migration/tree/17397879385d42521b0fe9783046b3cf25a9fec6
https://www.chainsecurity.com/security-audit/sky-oapp-oft
https://www.chainsecurity.com/security-audit/sky-governance-oapp
https://www.chainsecurity.com/security-audit/sky-lz-governance-relay
https://www.chainsecurity.com/security-audit/sky-wormhole-ntt-migration-update
https://www.chainsecurity.com/security-audit/solana-crosschain-governance-payload-scripts
https://chainsecurity.com

Sky offers a library for migrating the Ethereum-Solana governance and token bridges from Wormhole
stack to LayerZero V2 stack.

2.2.1 Migration Overview
Wormhole stack has been used by Sky to bridge USDS and to relay governance actions to Solana. NTT
programs are deployed on both sides to handle the tokens transfer and a governance program is
deployed on Solana that performs all the privileged actions on behalf of Sky governance. The USDS
token on Solana is created with the SPL token program and uses the metaplex Metadata program.

Currently the following privileged roles exist on Solana:

• A NTT PDA holds the mint authority of the USDS program for token minting.

• A Governance PDA holds the metadata update authority, the USDS freeze authority, and the NTT
program upgrade authority.

LayerZero V2 stack contracts are implemented (covered in ChainSecurity OFT Review and Governance
OApp Review respectively.) to replace the Wormhole stack contracts:

• OFT contracts are implemented to facilitate token transfers with rate limits.

• Governance OApp contracts are implemented to relay and execute Sky governance spells on
Solana.

2.2.2 Migration Steps
The migration is in general separated into two spells.

2.2.2.1 Preparations Before Spells
Before the spells execution, the following steps need to be accomplished by the deployers:

• The EVM contracts need to be deployed, including the OFT, Governance OApp and Governance
Relay contracts. Their owners and delegates need to be switched and the configurations (for
instance send receive libs, peers, enforced options) need to be set.

• The Solana programs need to be deployed, including the OFT and Governance OApp. Similarly they
need to be configured with for instance send receive libs, peers, and enforced options. Further, the
program upgrade authority (if exist) should be set to the authority PDA of the Governance OApp.
The rate limit of OFT is also expected to be set.

• The new implementation of the EVM NTT contract should be deployed and the SVM NTT bytecode
should be stored in a buffer contract. Note the changes in the new implementation are covered in
another ChainSecurity review.

2.2.2.2 Spell 0
Spell 0 will eventually block the initiation of new outbound transfers on both the EVM and SVM NTT
Managers:

• It immediately upgrades the EVM NTT Manager after some sanity checks.

• It sends out a governance message (publishMessage()) via Wormhole Core to upgrade the SVM
NTT Manager.

It is expected the upgrade message to Solana will eventually be delivered after the transaction is finalized
on Ethereum.

2.2.2.3 Spell 1
After verifying there is no outbound transfers in flight for NTT Manager on both sides, the migration can
proceed to spell 1:

Sky - Wormhole LayerZero - ChainSecurity - © Decentralized Security AG 6

https://www.chainsecurity.com/security-audit/sky-oapp-oft
https://www.chainsecurity.com/security-audit/sky-governance-oapp
https://www.chainsecurity.com/security-audit/sky-governance-oapp
https://www.chainsecurity.com/security-audit/sky-wormhole-ntt-migration-update
https://chainsecurity.com

• Sanity checks of owner, endpoint, Solana peer, and endpoint delegate are performed on OApp and
OFT.

• Other OFT related sanity checks are performed on OFT, in particular, the token, defaultFeeBps,
feeBps, pausing status, rate limits, and accounting type are checked.

• The locked USDS tokens are migrated from the NTT Manager to the OFT.

• The rate limit of the OFT will be set.

• Three governance messages will be sent to Solana to transfer the mint authority, the freeze
authority, and the metadata update authority.

• The SUSDS bridge will also be turned on in a similar way by setting up its rate limit. Note this
requires another deployment of EVM OFT adapter and initialization of another SVM OFT instance
with init_oft instruction.

Prior to spell 1 the deployed EVM and SVM contracts and their configurations need to be verified
offchain.

Further note, once the SVM OFT is configured, outbound transfers can be initiated, which can be
delivered immediately after spell 1. However, outbound transfers initiated from EVM OFT can only be
finalized on Solana after the governance message to transfer mint authority is executed on Solana.

2.3 Trust Model
Contract / Program Deployer: not trusted; could deploy malicious bytecode or manipulate the initial
states.

Sky Governance: fully trusted; assumed to inspect all the deployed bytecode, states, their
configurations, and payload / parameters passed to the spell. Otherwise a misconfigured contract may
lead to loss of locked USDS or Solana governance take over.

Wormhole: fully trusted; the Wormhole governance can DoS the cross-chain message by raising the fee
in a front-running transaction.

Wormhole guardians: majority is assumed to be honest; otherwise a malicious message can be
delivered and take over the Solana governance.

LayerZero: is out of scope for this review and is trusted to behave correctly and deliver messages to the
correct destination. The LayerZero executor is expected to deliver messages with the specified message
value and gas limit, but it is generally untrusted. In the worst case the attached native tokens may be lost,
and if execution depends on native tokens or the gas limit the result may be unexpected. Depending on
the exact configuration, LayerZero might be fully trusted to not censor messages or similar. However, the
configuration is out-of-scope for this review.

The cross-chain Solana governance payload generation library was reviewed by ChainSecurity. It is
expected the governance generates and simulates the payload with the correct mainnet addresses prior
to the spell.

Sky - Wormhole LayerZero - ChainSecurity - © Decentralized Security AG 7

https://www.chainsecurity.com/security-audit/solana-crosschain-governance-payload-scripts
https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Sky - Wormhole LayerZero - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Sky - Wormhole LayerZero - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Open Findings
In this section, we describe our findings. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Sky - Wormhole LayerZero - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

6.1 Deployment Verification
Note Version 1

Since deployment of the involved contracts is not performed by the governance directly, special care has
to be taken that all contracts have been deployed correctly.

We therefore assume that the initcode, bytecode, traces and storage (e.g. mappings) are checked for
unintended entries, calls or similar.

While the spell performs some limited sanity checks, these checks are nevertheless essential. The sanity
checks done in the spells are intentionally covering critical parameters only, designed to catch honest
deployer mistakes (e.g., mistakenly setting non-zero rate limit values on Ethereum).

The following checks and validations are expected to be performed off-chain:

1. Mappings and non critical parameters (such as amount in flight, last updated, window, oftVersion,
oAppVersion, pauser, sharedDecimals, msgInspector) which are excluded from verification in the
spell.

2. LayerZero configurations (such as send / receive library, configs) and Wormhole related
configurations.

3. The deployed SVM programs and its configurations.

4. The governance payloads for SVM instructions and the accounts involved.

6.2 Execution Confirmation
Note Version 1

The migration process involves the execution of several cross-chain governance messages. Since the
operations on EVM and SVM are asynchronous, it should be ensured that the migration only proceeds to
the next step when these asynchronous operations are accomplished, namely by confirming off-chain
that both the EVM and SVM actions are finalized.

6.3 canCallTarget of Governance OApp Is Not
Set
Note Version 1

In initMigrationStep1, the deployed EVM Governance OApp is sanity checked, however its
canCallTarget is not configured. Namely, sending messages cross-chain sendTx() is still prohibited.

Governance still needs to configure the canCallTarget before relaying a governance message to a
target on the destination chain. In the context of Sky governance, the governance relay contract should
be whitelisted to send messages.

Sky - Wormhole LayerZero - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Migration Overview
	2.2.2 Migration Steps
	2.2.2.1 Preparations Before Spells
	2.2.2.2 Spell 0
	2.2.2.3 Spell 1

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Notes
	6.1 Deployment Verification
	6.2 Execution Confirmation
	6.3 canCallTarget of Governance OApp Is Not Set

