PUBLIC

Code Assessment

of the USDD on Ethereum
Smart Contracts

October 24, 2025

Produced for

S

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

I:$: Decentralized USD - USDD on Ethereum - ChainSecurity - © Decentralized Security AG

10
11
12
14
15

https://chainsecurity.com

1 Executive Summary

Dear Decentralized USD team,

Thank you for trusting us to help Decentralized USD with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of USDD on
Ethereum according to Scope to support you in forming an opinion on their security risks.

Decentralized USD implements USDD on Ethereum and BNB Smart Chain (BSC). USDD is a fork of the
legacy MakerDAO protocol, enabling users to mint USDD, a dollar pegged stablecoin, against various
collaterals.

Our review focuses on the changes introduced to deploy USDD on Ethereum and BSC. ChainSecurity
has previously reviewed the system which is deployed on Tron (USDDv2 and PSM).

The critical subjects covered in this review are integrations with other tokens, security of the emergency
shutdown, and correctness of the deficit auction mechanism (Flopper). Security regarding all
aforementioned topics is high.

The general subjects covered in this review are events handling, and documentation. Security regarding
all aforementioned topics is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Decentralized USD - USDD on Ethereum - ChainSecurity - © Decentralized Security AG 3

https://www.chainsecurity.com/security-audit/usdd-v2-smart-contracts
https://www.chainsecurity.com/security-audit/decentralized-usd-psm-smart-contracts
https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

I:$: Decentralized USD - USDD on Ethereum - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the usddv2-contracts and psm
repositories based on the documentation files.

Our review focuses exclusively on the changes with respect to our previously-audited version of the
projects. In particular, the scope of this review is limited to:

* the changes introduced since commit adb799135095620b2909abe449af 174102bf 38e2 for the
USDDv2 Core repository.

« the changes introduced since commit c368445876334664d6e58b7e186¢c78162271f f 93 for the
PSM repository.

The table below indicates the code versions relevant to this report and when they were received.
USDDv2 Core

V | Date Commit Hash Note

1 | 19 Sep 6166a18fab3abcb1f8395707f613923d0278f534 Initial Version
2025

2 | 08 Oct 8c50808d3846f419dca098de1d53d9cf70f5729b After Intermediate Report
2025

PSM

V | Date Commit Hash Note

1 | 19 Sep b2fcd82ddbe0d37c305cea4e9c2a8314b6874768 | Initial Version
2025

2 | 08 Oct 78688c9c0aeleObc4efb90060903ce32ce428d2e | After Intermediate Report
2025

For the solidity smart contracts, the compiler versions 0.6.12 was chosen, except for
Savi ngUsdd. sol , which has version 0. 8. 17.

The following files are in the scope of the USDDv2 repository:
« src/join-5-auth.sol
« src/join-7-auth.sol

« src/join-auth.sol

The following files are in the scope of the PSM repository:
* src/manager/DssProxyActions.sol
« src/proxy/proxy.sol
« src/dsr/pot.sol
« src/dsr/SavingsUsdd.sol

* src/dss/flop.sol

I:$: Decentralized USD - USDD on Ethereum - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

* src/esm/end.sol

* src/esm/ESM.sol

2.1.1 Excluded from scope

Any other file not explicitly mentioned in the scope section is considered out of scope. In particular, the
tests and external dependencies are not part of this audit.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Decentralized USD offers USDD V2, a fork of the legacy MakerDAO protocol (now renamed Sky). It
enables users to mint USDD stablecoins using various collaterals.

This version of the project will be deployed on the Ethereum chain and was reviewed in comparison to its
previous version, meant to be deployed on the Tron chain. Therefore, we defer to our previous audits
(USDDv2 and PSM) for a comprehensive system overview and focus on the differences.

2.2.1 USDD Core Context

* In the USDD system, the core accounting is handled by the Vat module, which tracks collateral
locked, debt issued, and internal USDD balances.

« Collateral types (“ilks”) are enabled by governance and plugged into the system via Join adapters,
which bridge between external token representations and the Vat's internal accounting.

» The Pot module allows depositors to lock USDD and earn yield.

* The Flopper module manages system deficit: it auctions a configurable token (Gem) for USDD to
cover debt.

*The End / Emergency Shutdown (ESM) modules coordinate a graceful or forced shut-down,
freezing new activity, fixing internal prices, and enabling users to redeem their positions (vaults,
USDD).

2.2.2 Changes to the previous version

2.2.2.1 pot.sol (new)

This contract is a fork of MakerDAO's pot.sol. The only difference to the original contract is the addition
and emission of events.

2.2.2.2 SavingsUsdd.sol (new)

This contract forks SavingsDAIl.sol. References to DAI have been renamed USDD. It uses pot . sol to
offer a tokenised version of the savings USDD (analogous to sDAI in Sky's original design). Depositors
receive shares (sUSDD) that accrue yield.

I:$: Decentralized USD - USDD on Ethereum - ChainSecurity - © Decentralized Security AG 6

https://www.chainsecurity.com/security-audit/usdd-v2-smart-contracts
https://www.chainsecurity.com/security-audit/decentralized-usd-psm-smart-contracts
https://github.com/sky-ecosystem/dss/blob/master/src/pot.sol
https://github.com/sky-ecosystem/sdai/blob/master/src/SavingsDai.sol
https://chainsecurity.com

2.2.2.3 join-5-auth.sol

This contract is identical to MakerDAQO's join-5.sol. An authenticated join that is designed to handle
ERC20 tokens with fewer than 18 decimals. It is used by the PSM to handle USDC on Ethereum, which
has 6 decimals: USDC on Ethereum is found at:

» USDC: 0xAOb86991c6218b36c1d19D4a2e9EbOCE3606eB48.

2.2.2.4 join-7-auth.sol (new)

This contract is an authenticated fork of MakerDAQ's join-7.sol. An authenticated join meant to be used
with the Tether Token (USDT) on Ethereum. USDT is not ERC20 compliant, as its t ransfer () and
t ransf er From() functions return no value. It allows upgrades and potential fees on transfer. In case of
upgrade the new implementation has to be whitelisted by the join's administrator. USDT on Ethereum is
found at:

* USDT: OxdAC17F958D2ee523a2206206994597C13D831ec?.

2.2.2.5 src/join-auth.sol (new)

This contract is an authenticated join forked from MakerDAQ's join-auth.sol. It supports standard ERC20
tokens with 18 decimals. It is used by the PSM on BSC to handle BNB-USDC and BNB-USDT.

Their addresses are:

* BSC-USDT: 0x55d398326f99059ff775485246999027b3197955.
* BSC-USDC: 0x8ac76a51cc950d9822d68b83felad97b32cd580d.

2.2.2.6 DssProxyActions.sol
The contract was changed from the previous USDD version (Tron) in the following way:

» The contract works with ETH amounts, as opposed to TRX amounts. Therefore, the conversions to
18 decimals were removed (TRX has 6 decimals as opposed to ETH 18).

2.2.2.7 flop.sol
The USDD/MakerDAQ's contract has been changed in the following ways:

» The (governance) gem sold in the auction can be changed by the governance.

« If the gem is set to zero, deal (), deposit(),w thdraw() and ki ck() are disabled.

2.2.2.8 end.sol

The previous USDD contract has been changed in the following way:

» The pot was added to the shutdown cage() function.

22.29 ESM

The previous USDD contract has been changed in the following way:

» The (governance) gem used to vote on the protocol shutdown can be changed by the governance.

2.3 Trust Model

The admin oversees the entire USDD system and hence is fully trusted. The admin is able to trigger the
execution of any privileged functions in the system through the DSPauseProxy (i.e. with
cust onkExec() and execSpel | () defined in GovAct i onsPr oxy) and access the funds of users.

I:$: Decentralized USD - USDD on Ethereum - ChainSecurity - © Decentralized Security AG 7

https://github.com/sky-ecosystem/dss-psm/blob/master/src/join-5-auth.sol
https://etherscan.io/address/0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48
https://github.com/sky-ecosystem/dss-gem-joins/blob/master/src/join-7.sol
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7
https://github.com/sky-ecosystem/dss-psm/blob/master/src/join-auth.sol.
https://bscscan.com/address/0x55d398326f99059ff775485246999027b3197955
https://bscscan.com/address/0x8ac76a51cc950d9822d68b83fe1ad97b32cd580d
https://chainsecurity.com

The PSM allows the minting of USDD at a 1:1 ratio to USDC and USDT on Ethereum, and BSC-USDC
and BSC-USDT on BSC. USDD is therefore pegged to the token of these with the lowest value.

For the complete list of roles in USDD V2, please see our reports (USDDv2 and PSM).

I:$: Decentralized USD - USDD on Ethereum - ChainSecurity - © Decentralized Security AG 8

https://www.chainsecurity.com/security-audit/usdd-v2-smart-contracts
https://www.chainsecurity.com/security-audit/decentralized-usd-psm-smart-contracts
https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Decentralized USD - USDD on Ethereum - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Decentralized USD - USDD on Ethereum - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 0

I:$: Decentralized USD - USDD on Ethereum - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings 0
y g
(CL:0)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 1
ty g
« Missing Events
Informational Findings 1

* Inaccurate Natspecs (SR Igla

6.1 Missing Events
D (Low) (Version 1) (CIYSITED)

When managing the ward roles, the contract typically emits the Rel y and Deny events. However, the
following contracts do not emit such events:

CS-USDD-ETH-004

*inflop.sol therely() and deny() functions do not emit an event. Additionally, the constructor
of the contract does not emit a Rel y event.

*in pot . sol , the constructor does not emit a Rel y event.

Acknowledged: The Rel y and Deny events have been added.

6.2 Inaccurate Natspecs

(Informational) (Version 1)

A few comments in the codebase are inaccurate.

CS-USDD-ETH-003

1.f1 op. sol includes the following comment at line 38:
This thing creates gens on denand in return for usdd.

The version of Flopper intended to be deployed on Ethereum and BSC has been modified to transfer the
gem awarded from the auction from its own balance, instead of minting it as in the original Maker DAO
version. The comment is therefore inaccurate.

2.j oi n-aut h. sol contains the following comment in the first line:

I:$: Decentralized USD - USDD on Ethereum - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

join.sol -- Basic token adapters

The file name and its description are inaccurate.

Code corrected: Decentralized USD has corrected the inaccurate comments.

I:$: Decentralized USD - USDD on Ethereum - ChainSecurity - © Decentralized Security AG

13

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Burn Function of ESM Might Not Work
(Informational][Version 1](]

CS-USDD-ETH-001

The burn() function of ESM calls gem burn() to dispose of permanently locked tokens. If the gem
configured in the ESM does not expose a public burn() function, or if its burn() function is
permissioned, then ESM bur n() will always revert.

Anyway, ESM bur n()) is not necessary to ensure the correct functioning of the ESM contract.

Acknowledged: Decentralized USD has acknowledged the issue and decided to leave the code
unchanged.

7.2 Eventin Pot Drip Has Redundant Field r ho
(Informational] [Version 1](]

CS-USDD-ETH-002

Event Dri p(ui nt 256 chi, uint256 rho) is emitted at every call of dri p() . The event's field r ho
is always equal to the current block timestamp, which is anyway recorded in the emitted event, making
the r ho field redundant.

The event is also emitted if dri p() has already been called at the current timestamp, even if calls after
the first one at a given timestamp do not change the contract state.

Acknowledged: Decentralized USD has acknowledged the issue and decided to leave the code
unchanged.

I:$: Decentralized USD - USDD on Ethereum - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 ESM Min Parameter Must Always Be Set

When deploying USDD on Ethereum and BSC, it is essential that the m n parameter of the ESM contract
is set to a non-zero amount, even if gemis initially configured as address zero. Setting m n to zero will
make the fire() and denyProxy() functions of ESM immediately callable by anyone, leading to a
shutdown of the protocol.

8.2 Gem Change After ESM.join

The Sumvariable inside ESM sol counts the amount of governance tokens locked inside the contract
through j oi n() . When Sum > mi n the protocol shutdown can be fired. It is important to note that if any
amount of tokens is locked inside the contract, a change in the gem token could lead to an inconsistent
comparison against the ni n threshold in case:

« the threshold is not adjusted accordingly

* the new gem has a different number of decimals

8.3 Gem Change During Flop Auction
(D) (Version 1)

The contract f | op. sol allows the governance to change the gem token being sold in the auction. It is
important to note that changing the gem during an auction leads to incorrect behaviors. For instance, a
bidder could win an auction by bidding an amount of gem worth more than the previous bidder.

I:$: Decentralized USD - USDD on Ethereum - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 USDD Core Context
	2.2.2 Changes to the previous version
	2.2.2.1 pot.sol (new)
	2.2.2.2 SavingsUsdd.sol (new)
	2.2.2.3 join-5-auth.sol
	2.2.2.4 join-7-auth.sol (new)
	2.2.2.5 src/join-auth.sol (new)
	2.2.2.6 DssProxyActions.sol
	2.2.2.7 flop.sol
	2.2.2.8 end.sol
	2.2.2.9 ESM

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 Missing Events
	6.2 Inaccurate Natspecs

	7 Informational
	7.1 Burn Function of ESM Might Not Work
	7.2 Event in Pot Drip Has Redundant Field rho

	8 Notes
	8.1 ESM Min Parameter Must Always Be Set
	8.2 Gem Change After ESM.join
	8.3 Gem Change During Flop Auction

