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Gut microbial bile and amino acid
metabolism associate with peanut oral
immunotherapy failure
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% Check for updates Peanut Oral Immunotherapy (POIT) holds promise for remission of peanut
allergy, though treatment is protracted and successful in only a subset of
patients. Because the gut microbiome has been linked to food allergy, we
sought to identify fecal predictors of POIT efficacy and mechanistic insights
into treatment response. Here, we conducted a secondary analysis of the
IMPACT randomized, double-blind, placebo-controlled POIT trial
(NCTO01867671), using longitudinal fecal samples from 90 children, and per-
formed 16S rRNA sequencing, shotgun metagenomics, and untargeted meta-
bolomics. Integrated multi-omics analyses revealed a relationship between gut
microbiome metabolic capacity and treatment outcomes. Five fecal bile acids
present prior to treatment initiation predicted POIT efficacy (AUC 0.71).
Treatment failure was associated with a specific bile acid profile, enhanced
amino acid utilization, and higher copy number of the ptpA gene encoding a
bacterial hydrolase that cleaves tripeptides containing proline residues - a
feature of immunogenic peanut Ara h 2 proteins. In vitro, peanut-
supplemented fecal cultures of children for whom POIT failed to induce
remission evidenced reduced Ara h 2 concentrations. Thus, distal gut micro-
biome metabolism appears to contribute to POIT failure.

Peanut protein allergy (PA), triggered by allergenic Ara h proteins’, is  has emerged as a widely used treatment for PA®. Involving gradual oral
the leading cause of food-induced anaphylaxis’. Until the 2020 U.S. introduction of increasing concentrations of peanut powder, POIT
Food and Drug Administration (FDA) approval of peanut oral immu- induces desensitization, defined as an increase in reaction threshold
notherapy (Palforzia™) for patients over 4 years old, strict avoidance of ~ while on treatment, in ~50-70% of treated patients. While POIT has
peanuts and peanut-containing products has been the primary man- demonstrated efficacy in desensitizing patients to peanuts, the
agement strategy, with the exception of a few limited facilities con-  induction of remission, defined as the prolonged absence of clinical
ducting OIT as clinical research. Peanut oral immunotherapy (POIT) reactivity after treatment cessation, is observed in a smaller subset of
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~20-30% of POIT-treated patients*’. POIT cost, prolonged duration of
treatment (several years), and burden of daily dosing highlight the
need for improved predictive markers of outcome and adjunctive
therapies to increase rates of remission.

The IMPACT, Oral Immunotherapy for the Induction of Tolerance
and Desensitization in Peanut-Allergic Children trial (NCT01867671)
was the first randomized, double-blinded, placebo-controlled, multi-
center clinical trial to evaluate the efficacy and safety of POIT in
peanut-allergic children ages 12-48 months old. While 84% of the
children receiving POIT achieved desensitization, only 29% achieved
remission following POIT discontinuation and 26 weeks of peanut
avoidance. The IMPACT trial yielded three clinical outcomes among
peanut-allergic children treated with POIT: (i) those who achieved both
desensitization and remission (D+R+), (ii) those who achieved desen-
sitization but not remission (D+R-), (iii) those who did neither
achieved desensitization nor remission (D-R-). Notably, younger age
and lower peanut-specific serum IgE concentrations at the outset of
the trial were more likely to result in a D+R+ outcome®. However, the
factors driving divergent POIT outcomes remain poorly understood.

Emerging evidence underscores the critical role of the gut
microbiome in shaping immune responses and influencing the devel-
opment of allergic diseases, including food allergy’®. Perturbations to
infant gut microbiome composition and functional capacity have been
linked to increased susceptibility to allergic sensitization and impaired
immune tolerance to food allergens in later childhood®°. Infant gut
microbiomes of those who subsequently develop allergic disease
exhibit distinct metabolic profiles that can induce allergic inflamma-
tion in vitro". Additionally, relationships between fecal metabolic
profiles and food allergy have been described in older children?™,
indicating that fecal metabolic dysfunction is a consistent character-
istic of disease development and incidence. Gut microbiomes mod-
ulate host immunity through the production of metabolites™',
including those that affect immunotherapy efficacy”®. Specific
microbial metabolite classes, such as bile acids, play an essential role in
regulating immune homeostasis and promoting regulatory pathways
necessary for allergen tolerance'®'**°. Moreover, both age” and aller-
gic sensitization status" are closely related to early-life gut microbiome
composition and metabolic activity?>. Thus, we hypothesized that gut
microbiome features prior to initiation of POIT are associated with
treatment outcomes and that the longitudinal assessment of fecal
microbiomes from children in this trial would reveal mechanisms
underlying variance in POIT efficacy. In this work, we show that
increased gut microbial protein hydrolysis capacity and peanut pro-
tein degradation in parallel with a decreased abundance of fecal amino
acid metabolites and a distinct bile acid profile are associated with
POIT-failure.

Results
Study population and clinical trial outcome
Details of the IMPACT POIT clinical trial design have been previously
published®. Briefly, at baseline, 146 peanut-allergic children were
enrolled and randomized (2:1) to either POIT or placebo treatment.
After a dose escalation phase of 30 weeks, children in the POIT arm
received 2000 mg peanut powder (lightly roasted, partly defatted [12%
fat]) while the placebo group received oat flour for 104 weeks (total
blinded treatment period 134 weeks). Participants who passed the 5g
peanut powder, double-blind, placebo-controlled, food challenge
(DBPCFC) at the end of treatment (week 134) were categorized as
desensitized (D+). Independent of the DBPCFC outcome at week 134,
all participants avoided peanut consumption for 26 weeks (avoidance
period), and those who passed the 5 g peanut powder DBPCFC at the
end of this avoidance period (week 160) were categorized as being in
remission (R+).

Based on DBPCFC results at the end of treatment and end of
avoidance, the IMPACT clinical trial yielded three outcome groups:

Desensitized and Remission (D+R+), Desensitized and No Remission
(D+R-), or Not Desensitized and No Remission (D-R-; Fig. 1a). Ninety-
three out of 146 participants adhered to the study protocol (per
protocol group) until the end of the avoidance. Of these, 90 provided
longitudinal fecal samples at five time points: baseline (prior to POIT
initiation), end of buildup (EoB), mid-maintenance (MM), end of
treatment (EoT), and the end of avoidance (EoA) (Supplementary
Fig. 1a and Supplementary Data 1) resulting in a total of 327 samples
included in this study. Participant baseline characteristics including
age, sex, study locations, antibiotic usage history, and atopic
comorbidities are reported in Supplementary Data 2°.

Fecal microbiota composition associates with peanut oral
immunotherapy outcomes

Participants who completed the IMPACT trial (n=90 participants)
did not differ in age between POIT and placebo-treated groups
(Supplementary Fig. 1b). Consistent with observations made in the
parent clinical trial®, within the POIT-treated group, D+R+ partici-
pants were significantly younger compared to those within the two
other outcome groups (D+R- and D-R-; Supplementary Fig. 1c). Two
hundred sixty-three fecal samples (Placebo, n=73; POIT, n=190)
from 90 participants yielded high-quality 16S rRNA amplicon
sequence data (see the “Methods” section, Supplementary Fig. 1a and
Supplementary Data 1). Comparing fecal bacterial phylogenetic
diversity (a-diversity) (Fig. 1b and Supplementary Fig. 1d) and com-
position (B-diversity) (Fig. 1e and Supplementary Data 3), over time
revealed no significant difference between the placebo and POIT
participants at any time point indicating that POIT does not appre-
ciably alter fecal microbiota composition. Similarly, fecal microbiota
composition was not different between placebo and individual POIT-
outcome groups in pairwise comparisons (Supplementary Data 3).
Therefore, for the remainder of the study, we focused on the POIT
arm of the trial to identify predictors and mechanisms of treatment
outcomes.

To determine potential confounding factors within the POIT arm,
clinical and demographic variables were examined as independent
terms at each time point using two-sided PERMANOVA based on an
unweighted UniFrac distance matrix. Age at screening, sample col-
lection date, sex, and study site location significantly related to var-
iance in fecal microbiota composition at various time points
throughout the trial (Supplementary Data 4). Thus, subsequent sta-
tistical analyses were adjusted for these covariates. Both POIT out-
come (3 groups; P=0.008, R*=0.07, n=47) and peanut allergy
remission (R+ status; P=0.003, R*=0.04, n=47) also associated with
variance in fecal microbiota composition in baseline samples (Sup-
plementary Data 4), indicating that pre-treatment microbiota related
to POIT efficacy.

Children who develop POIT-induced remission exhibit a distinct
fecal microbiota composition throughout the course of the trial
Although longitudinal a-diversity was not different between the three
POIT-outcome groups within the POIT arm (Linear mixed-effect model
[LME]; Fig. 1c), the D+R+ group exhibited significantly lower phyloge-
netic diversity at baseline compared to D+R- and D-R- groups
(P=0.001 and P=0.052, respectively; Wilcoxon rank-sum test.
Figure 1d and Supplementary Fig. 1d). This finding remained significant
despite adjustment for age (Fig. 1c, P=0.043 ANOVA). Additionally,
POIT outcome groups exhibited differences in fecal microbiota
B-diversity (Fig. 1f). Specifically, participants who achieved remission
(D+R+) exhibited differences in fecal microbiota composition along
the first principal component (axis 1) compared to those who did not
(D+R+ vs. D+R-, P=0.01; D+R+ vs. D-R-, P=0.004, LME; Fig. 1g)
throughout the course of the trial. This provided evidence that both
fecal microbiota composition and diversity are associated with POIT
outcomes.
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Baseline bacterial phylogenetic diversity positively correlates
with peanut-specific IgE irrespective of age

In the IMPACT clinical trial, lower concentrations of peanut-specific
serum Immunoglobulin E (IgE) prior to POIT initiation were predictive
of remission®. Thus, we sought to determine whether fecal microbiota
features related to IgE levels. In age-adjusted analyses, positive corre-
lations between o-diversity and serum levels of total IgE (Fig. 1h),
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Estimate

peanut-specific IgE (Fig. 1i) and Ara h 2-specific IgE (Fig. 1j; P<0.05
Pearson correlation) were observed in baseline samples, suggesting
that increased fecal bacterial diversity relates to higher IgE levels
associated and reduced likelihood of remission following POIT in
peanut-allergic children.

Since both younger age and lower baseline peanut-specific IgE
levels predicted clinical remission in the IMPACT trial, we next
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Fig. 1| Fecal microbiota composition and diversity associated with peanut oral
immunotherapy outcomes and peanut allergy severity. a Schematic overview of
IMPACT trial fecal microbiome study’. Numbers represent the number of fecal
samples in each dataset and time point. b No significant difference in a-diversity
(Faith’s phylogenetic diversity) was observed over the course of the IMPACT trial
between Peanut Oral Immunotherapy (POIT) and placebo arms (8=-0.84, SE=
1.40, df =166, t=-0.60, P=0.55, two-sided linear mixed-effects model). Data are
presented as mean values + SEM. ¢ No significant difference in a-diversity (Faith’s
phylogenetic diversity) was observed over the course of the IMPACT trial between
the POIT outcome groups (D+R-, D-R-, and D+R+), after adjustment for age using a
two-sided linear mixed-effects model with random intercepts for subject (D+R~ vs.
D+R+: $=2.58, t=1.59, P=0.115 and D-R- vs. D+R+: $=2.69, t=1.26, P=0.210).

d However, at baseline, prior to POIT initiation, the D+R+ group exhibited
significantly lower phylogenetic diversity compared to either the D+R- and

D-R- groups. Wilcoxon signed-rank test (two-sided, n=47; D+R+=16, D+R- =23,
D-R-=8). Data are presented as mean values + SEM. Boxplots show the median
(center line), 25th and 75th percentiles (box bounds), and whiskers extend to values
within 1.5x the interquartile range. e Although, the longitudinal fecal microbiota
composition (unweighted Unifrac distance matrix) was similar between POIT and
placebo arms (two-sided linear mixed-effect model, n =90 subjects and 263 sam-
ples. P=0.80 for Axis 1, and P=0.78 for Axis 2). f Significantly different fecal
microbiota composition was observed within the POIT outcome groups (two-sided

linear mixed-effect model, n =57 subjects and 190 samples, Axis 1: D+R+ vs.
D+R-, p=0.01and D+R+ vs. D-R-, p = 0.004). g D+R+ group exhibited significantly
different fecal microbiota composition compared to both D+R- (p = 0.01) and D-R
- (p=0.004) groups throughout the trial (two-sided linear mixed-effect model).
Data are presented as mean values + SEM. Boxplots show the median (center line),
25th and 75th percentiles (box bounds), and whiskers extend to values within
1.5x the interquartile range. h Baseline gut bacterial phylogenetic diversity posi-
tively correlates with baseline total IgE, i peanut-specific IgE, and j Ara h 2-specific
IgE levels, respectively. Participants who enrolled in the IMPACT trial but did not
complete the trial were included as 16S rRNA sequencing and clinical serum IgE
levels were available (two-sided Pearson correlation, P< 0.05, adjusted for age).

k Baseline differentially abundant bacterial taxa between children who achieved
remission (n =16) versus no remission (n = 31). Two-sided linear mixed-effect model
(P.FDR < 0.05, adjusted for age). I Baseline Peanut-IgE associated bacterial taxa
(n=47). Two-sided linear mixed-effect model (P.FDR < 0.05). Estimate represents
the predicted value of the effect size or relationship derived from the statistical
model, reflecting the magnitude and direction of the association. EoB: End of
Buildup, MM: Mid Maintenance, EoT: End of Treatment, and EoA: End of Avoidance.
D+R+: Desensitized and Remission, D+R-: Desensitized no Remission, D-R—: Not
desensitized and no Remission. LME: Linear mixed-effect model. Source data are
provided as a Source Data file.

identified baseline Sequence Variances (SVs) associated with both
peanut-specific IgE level and remission status in age-adjusted analyses.
Romboutsia ilealis/timonensis was associated with POIT-induced
remission, while Ruminococcaceae along with Parabacteroides dis-
tasonis, and Oscillospirales members associated with failure to develop
remission (P.FDR<0.05. LME, adjusted for age, Fig. 1k). R. ilealis/
timonensis was also negatively associated with peanut-specific IgE
levels at baseline (P.FDR<0.05. Two-sided LME, adjusted for age);
Fig. 11 and Supplementary Data 5) and with peanut- and compo-
nent (Ara h)-specific IgE levels (Ara h 1, 2, 3 and 6 IgE; Supplementary
Fig. 1e). Thus, though POIT does not significantly impact fecal micro-
biota composition, the diversity and composition of the microbiota
prior to treatment initiation and throughout the IMPACT trial relate to
treatment outcomes. Moreover, lower bacterial phylogenetic diversity
and the relative abundance of specific fecal microbial members prior
to treatment, associated with multiple measures of peanut allergic
sensitization, irrespective of participant age, in peanut-allergic
children.

Baseline bile acid profile associates with POIT efficacy

Fecal microbiota perturbation and metabolic dysfunction, including
increased concentrations of metabolites that promote cardinal fea-
tures of allergic inflammation, are characteristic of allergic
disease™” . To determine whether the distinct fecal microbiota
compositions associated with POIT outcomes exhibited divergent
metabolic profiles, untargeted metabolomic analyses were performed
on a subset (see the “Methods” section) of participants who provided
fecal samples with sufficient remaining material for analysis at all three
key visits: baseline, end of treatment, and end of avoidance (n=58
participants [POIT =43, Placebo =15], 174 fecal samples; Fig. 1a, Sup-
plementary Fig. 1a and Supplementary Data 1). Like fecal microbiota
composition, baseline fecal metabolite profiles were associated with
POIT outcome groups (n=43, R*=0.07, P=0.01), and, more specifi-
cally, with remission status within POIT-treated children (n=43,
R?=0.04, P=0.01; two-sided PERMANOVA, Euclidean distance matrix,
Supplementary Data 6).

To identify metabolites that relate to POIT outcomes, a data
reduction approach, weighted gene correlation network analyses
(WGCNA), was applied to identify modules of co-associated metabo-
lites that were then related to POIT-outcomes. Fifty metabolite mod-
ules (untargeted metabolite modules [UMMs]; Supplementary Data 7)
were identified, nine of which were significantly associated with POIT

outcomes (P.FDR < 0.05, ANOVA, adjusted for age, Fig. 2a and Sup-
plementary Data 8). These POIT outcome-associated metabolic mod-
ules mostly comprised of lipids, specifically bile acids (BA), and amino
acid modules (AA; Fig. 2a and Supplementary Data 7). Two-sided
PERMANOVA analyses showed that BA profiles significantly differed
between POIT-outcome groups only at baseline (Fig. 2b; n=43,
R’=0.10, P=0.015, Two-sided, PERMANOVA, Euclidean distance
matrix), but not at the end of treatment or avoidance (Supplementary
Fig. 2b), indicating that pre-treatment fecal metabolic status appears
most related to treatment outcome. Three BA modules (UMMI1O,
UMMI15, and UMM4) are associated with treatment outcomes
(Fig. 2c-e). UMMIO, comprised of lithocholate and deoxycholate
amongst other BAs, was increased in children who did not develop
POIT-induced remission (Fig.2c, f). UMMI5 containing sulfated-BAs
(Fig. 2d, g), and UMM4, comprised of 7-ketolithocholate and
7-ketodeoxycholate amongst other BAs were decreased in these par-
ticipants (Fig. 2e, h). Together, these data suggest that the specific BA
profile present at the initiation of POIT associated with POIT efficacy.

Since BAs are drivers of gut microbiota maturation in early life’®,
we next investigated whether relationships existed between the
UMMI0 and UMMI15 BA modules and fecal microbiota features that are
associated with POIT-outcomes. UMMI5, primarily comprised of
bacterial-derived secondary BAs (Supplementary Data 7), exhibited a
significant negative relationship with fecal microbiota «-diversity
(lower baseline a-diversity is associated with remission; Fig. 1d) and a
positive correlation with axis 1 of the baseline microbiota composition.
In contrast, the UMMI0 module exhibited the opposite relationship,
being positively correlated with fecal a-diversity and negatively cor-
related with axis 1 of the baseline microbiota composition (Supple-
mentary Fig. 2c). These data suggest that at baseline, secondary BAs
associated with the lower fecal bacterial diversity and a distinct fecal
bacterial composition that characterize children who develop POIT-
induced remission.

Although 16S rRNA-based biomarker sequencing allows relation-
ships between fecal microbiota and clinical outcomes to be uncovered,
because it is based on a single gene, it fails to provide information on
microbiome gene content and functional contribution to treatment
outcome?”. To identify the fecal microbial pathways associated with
POIT outcomes including those responsible for the metabolic differ-
entials observed across treatment outcome groups, shotgun metage-
nomic sequencing data was generated on baseline (n=75), end of
treatment, (n = 54), and end of avoidance (n = 55) fecal samples including
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Fig. 2 | Baseline bile acid profile associated with POIT efficacy. a Association
between untargeted metabolomics module (UMM) eigenvectors and POIT out-
comes (two-sided ANOVA, adjusted for age). b Ordination of baseline secondary BA
metabolites (n=43, R> = 0.10; P < 0.015, adjusted for age), PERMANOVA analyses
(two-sided) based on Euclidean distance matrix. ¢ Difference in Module Eigenvec-
tors (ME), which were determined based on WGCNA analyses (see the “Methods”
section) and represents a measure of the joint abundance profile of a specific
module, of UMMI10. d UMMIS5, and e UMM4 between POIT-outcome groups. Two-
sided Wilcoxon signed-rank test (n =129; D+R+ =33, D+R-=78, D-R-=18). Data
are presented as mean values + SEM. Boxplots show the median (center line), 25th
and 75th percentiles (box bounds), and whiskers extend to values within 1.5x the
interquartile range. f Baseline Z-scores of each BA-related metabolite of UMMIO.
g UMMIS5 and h UMM4 in each POIT-outcomes (n = 43; D+R+=11, D+R- =26,
D-R-=6). Blue colors represent low z-scores thus low abundance and red colors
represent high z-score and higher abundance. i POIT responders exhibit an
increased copy number of the EC.1.1.1.392 enzyme compared to non-responders at
baseline (P=0.024, Two-sided Wilcoxon signed-rank test; Remission, Yes =16,

No =44). Data are presented as mean values + SEM. Boxplots show the median
(center line), 25th and 75th percentiles (box bounds), and whiskers extend to values

- -

within 1.5x the interquartile range. j Copy number of EC.1.1.1.392 enzyme negatively
correlates with lithocholate abundance at baseline samples. Two-sided Pearson
correlation (n=32, r=-0.35, p = 0.041. Adjusted for age). The shaded area around
the line represents the 95% confidence interval for the fitted regression line.

k Bifidobacterium breve and Ruminococcus gnavus encode significantly higher copy
numbers of secondary BA production enzymes in POIT responders (n =16) com-
pared to non-responders (n =44). Data were filtered to retain enzymes with log2-
fold changes exceeding +0.5. Asterisk “*” represents P< 0.05, and double Asterisk
“** represents P.FDR < 0.05. Log2 FC (cpm) represents the Log2 fold change of
copies per million between remission and no-remission groups (two-sided linear
mixed effect models). Red color represents an increased Log2 FC (cpm) in the
remission group. Exact P values are presented in Supplementary Data 12. | The
mean relative abundances of R. gnavus (P=0.042) and B. breve (P=0.027) are sig-
nificantly enriched in POIT responders (n=16) compared to non-responders
(n=44). Data are presented as mean values + SEM. Boxplots show the median
(center line), 25th and 75th percentiles (box bounds), and whiskers extend to values
within 1.5x the interquartile range. Statistical comparisons were performed using
the two-sided Wilcoxon rank-sum test. Source data are provided as a Source

Data file.
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all samples that had undergone parallel untargeted metabolomic ana-
lysis (Fig. 1a, Supplementary Fig. 1a, and Supplementary Data 1). Like 16S
rRNA-based fecal microbiota and metabolome composition, within the
POIT arm, fecal microbiome functional capacity at baseline was asso-
ciated with POIT outcome groups (n =60, R? = 0.04, P=0.025), and with
remission status (n =60, R*=0.022, P= 0.0027; PERMANOVA, Canberra
distance matrix, Supplementary Data 9).

Next, we examined fecal metagenomes at the E.C. level, particu-
larly focusing on those enzymes known to play a role in gut microbial
BA metabolism, including the well-described 7a-dehydroxylation
enzymes encoded by the bacterial bai operon®** (Supplementary
Data 10). Amongst these, only one gut microbial encoded BA enzyme,
EC. 1.1.1.392 (3-alpha-hydroxycholanate dehydrogenase) which utilizes
lithocholate as a substrate to produce iso-BAs*, significantly differed
(P.FDR < 0.05, log2 fold change > |0.5|, LME. Supplementary Data 11) at
baseline, being increased in POIT-responders (Fig. 2i). Consistent with
enhanced microbial utilization of lithocholate, the abundance of the
bacterial gene encoding this enzyme negatively correlated with the
relative concentration of lithocholate (Fig. 2j) in baseline fecal samples.

Using metagenomic data, we next identified microbial species
encoding BA enzymes, including EC.1.1.1.392. Notably, Bifidobacterium
breve and Ruminococcus gnavus exhibited higher gene copy numbers
for enzymes involved in BA metabolism. These included choloylgly-
cine hydrolase (EC. 3.5.1.24, P.FDR < 0.05) and enzymes linked to iso-
BA production (EC. 1.1.1.392, EC. 1.1.1.393) as well as 7-3-hydroxysteroid
dehydrogenase (EC. 1.1.1.201, P<0.05 but P.FDR>0.05, LME) in
patients who achieved POIT-induced remission (Fig. 2k and Supple-
mentary Data 12). Taxonomic analysis using Kraken2 further revealed
that both B. breve and R. gnavus were significantly enriched in POIT-
responsive children (Fig. 2I). These findings suggest that the distinct
fecal BA composition between POIT responders and non-responders is
driven by enhanced microbial BA metabolism capacity in POIT-
responsive patients.

Abundance of select pre-treatment bile acids predicts peanut
oral immunotherapy outcomes

We next performed an integrative data analysis on metagenomic and
paired metabolomic datasets using Multi-Omics Factor Analyses
(MOFA2). This analysis identified seven distinct factors (Supplementary
Fig. 3a), five of which significantly differentiated POIT response groups
(ANOVA, P<0.05; Supplementary Fig. 3b). Several of these factors, e.g.
Factor 3, included microbial pathways for AA biosynthesis that were
enriched in those who achieved POIT-induced remission. In contrast,
Factor 2, which included gluconeogenesis and anaerobic energy
metabolism among the top five microbial pathways contributing to
factor weight, was the most significant differential factor between all
POIT outcome groups (D+R+ vs. D+R-: P=0.0028, D+R+ vs. D-R-:
P=0.00045 and D+R- vs. D-R-: P=0.043 Wilcoxon signed-rank test,
Fig. 3a, b; Supplementary Fig. 3¢) and significantly enriched in the fecal
microbiome of children who did not develop POIT-induced remission
(Supplementary Fig. 3b). In addition, primary and secondary BA
metabolites including 7-ketodeoxycholate and 7-ketolithocholate were
amongst the top 5 metabolites in Factor 2, all of which were depleted in
those who did not achieve peanut allergy remission (Fig. 3c).

To determine whether the top five metabolites contributing to the
weight of Factor 2, including 7-ketodeoxycholate and 7-ketolithocholate
could serve as predictive markers for POIT-induced remission, a machine
learning approach using a logistic regression model was applied. The
baseline fecal abundance of these five metabolites produced a moderate
predictive ability (area under the curve (AUC) from 100 times repeated
five-fold cross-validation, measured as mean AUC + standard deviation
(s.d.: AUCogistic regression: 0.712 = 0.081; Fig. 3d). To confirm our findings,
a second machine learning model employing a random forest model was
applied and demonstrated similar performance (Supplementary Fig. 3e
and Supplementary Data 13).

Among those predictive BAs, 7-ketodeoxycholate and
7-ketolithocholate are produced from deoxycholate and lithocholate™
respectively, both of which were depleted in POIT-responders. The
NADP+-dependent gut microbial EC. 1.1.1.201: 7-beta-hydroxysteroid
dehydrogenase enzyme (7b-HSDH) plays a critical role in this
pathway*’. The copy number of the gene encoding EC. 1.1.1.201 was
also significantly enriched in fecal microbiomes of those who achieved
remission (P < 0.05, Fig. 2k), and positively correlated with the abun-
dance of 7-ketodeoxycholate and 7-ketolithocholate secondary BAs
(Fig. 3f, g, P<0.05; Pearson correlations). Overall, our data indicates
that fecal concentrations of select BAs including 7-ketodeoxycholate
and 7-ketolithocholate prior to initiation of POIT, represent a useful
predictor of treatment response and identify the specific gut bacteria
and enzymes responsible for their production.

Enhanced microbiome protein metabolism is associated with
POIT failure

Four out of nine of POIT-associated metabolite modules (UMM4,
UMMS, UMM7, and UMMS50) were primarily comprised of AAs (Fig. 2a
and Supplementary Data 7). The abundance of these modules was
significantly decreased in children for whom POIT failed to induce
either desensitization and/or remission (Figs. 2e and 4a). Notably, AA
profiles were significantly different among POIT outcome groups at
baseline (n=43, R>= 0.08; P = 0.006, Fig. 4b) and at the end of
avoidance (n=43, R*= 0.07; P = 0.039, Fig. 4c), but not at the end of
treatment (Two-sided PERMANOVA analyses, Supplementary Fig. 3f),
suggesting that lower dietary AA intake and/or enhanced microbial AA
metabolism during treatment differentiate those who do or do not
develop POIT-associated remission.

The four POIT response-associated metabolite modules (UMM4,
UMMS, UMM7, and UMMS50) contained a total of 87 AAs and their
derivatives, 68 of these belonged to UMM4 (Supplementary Data 7),
which was significantly reduced in the D-R- group (Fig. 2e). The
majority of these AA metabolites’ abundances were decreased in
relative concentration in the feces of children who failed to achieve
remission (Fig. 4d). Notably, increased concentrations of microbial-
derived branched-chain AA fermentation end products such as skatol
and indole*® were evident in both groups who failed to achieve
remission (D+R- and D-R-) indicating that treatment failure may be
due, in part, to increased microbial AA utilization.

AAs represent a major energy source for anaerobic gut bacteria®
and select microbes are capable of harvesting AAs by deconjugating
primary BAs®. Decreased fecal AA concentrations (Fig. 4d) and
increased anaerobic energy and gluconeogenesis metabolism (Fig. 3b)
in POIT-treated children who failed to achieve remission prompted us to
investigate whether their fecal microbiomes encoded a distinct or
enhanced capacity for AA or protein utilization. Using longitudinal
microbial pathway abundance data, we found that pathways for
L-histidine degradation, anaerobic energy metabolism, i-citrulline bio-
synthesis (Arginine degradation), and gluconeogenesis (which uses non-
carbohydrate sources, including AA for energy production®) were
enriched in the fecal microbiomes of children who did not achieve
remission. In contrast, children who achieved remission possessed fecal
microbiota enriched for pathways involved in AA biosynthesis (LME,
P<0.05, but P.FDR >0.05; Supplementary Fig. 3g and Supplementary
Data 14). Additionally, in our integrative MOFA2 analysis, Factor 3 sig-
nificantly distinguished the D+R+ group from D+R- and D-R- groups
(Supplementary Fig. 3b); r-tyrosine and i-tryptophan biosynthesis
pathways were amongst the top five contributors to this factor’s weight
(Supplementary Fig. 3c). These data indicate that microbiomes with
enhanced capacity for gluconeogenesis and AA metabolism associate
with fecal AA metabolite depletion, which is characteristic of POIT-
treated children who fail to achieve peanut allergy remission.

Differential abundance analysis of microbial enzymes at each time
point revealed that only one differed between POIT responders and
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Fig. 3 | Relative abundance of select pre-treatment bile acids predicts peanut
oral immunotherapy outcomes. a Factor 2 from MOFA2 analyses is the most
significant differential factor between POIT response groups and weighted sig-
nificantly higher in no remission groups compared to D+R+ group (D+R+ vs. D+R-,
P=0.0028; D+R+ vs. D-R-, P=0.00045, two-sided Wilcoxon signed-rank test) (D
+R+, n=28, D+R-, n=69, and D-R-, n=18). Data are presented as mean values +
SEM. Boxplots show the median (center line), 25th and 75th percentiles (box
bounds), and whiskers extend to values within 1.5x the interquartile range. b Top 5
microbial pathways contributing to the Factor 2 weight contain gluconeogenesis
and anaerobic energy metabolism pathways. ¢ Top 5 metabolites contributing to
the Factor 2 weight are BA metabolites including 7-ketolithocholate and
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7-ketodeoxycholate (D+R+, n =28, D+R-, n = 69, and D-R-, n =18).d The predictive
ability of the logistic regression model is expressed as the Area Under Curve (AUC)
which is computed from 100 times repeated five-fold cross-validation. Blue line
shows the average across the 100 times repeated five-fold cross-validations with
the shaded area representing the 95% CI (mean AUC + standard deviation). The
dashed diagonal line represents random chance. e The copy number of EC. 1.1.1.201
positively correlates with 7-ketodeoxycholate (n =121, r=0.22, p = 0.013. Adjusted
for age), and f 7-ketolithocholate (n =121, r=0.25, p=0.005, Adjusted for age).
Two-sided Pearson correlation. The shaded area around the line represents the 95%
confidence interval for the fitted regression line. Source data are provided as a
Source Data file.

non-responders at the end of avoidance (LME, log2 fold change > 1|,
P.FDR <0.05). No other microbial enzymes reached significance at
other time points (Supplementary Data 15). The children who failed to
develop POIT-induced remission had an increased copy number of the
Xaa-Xaa-Proline tripeptidyl-peptidase gene (ptpA; Fig. 4e, P.FDR<
0.05), a hydrolase that cleaves N-terminal tripeptides with a proline
residue at the third position®’. The copy number of the pptA gene
correlated with several modules including UMM7 AA (two-sided
Pearson correlation, R>= —0.26; P.FDR = 0.058) and UMMI10 Second-
ary BA (two-sided Pearson correlation, R*= 0.28; P.FDR = 0.058)
modules (Supplementary Data 16).

Ara h 2, the most potent allergenic component of peanut
protein®, contains six proline residues®. In non-responsive chil-
dren’s fecal microbiomes, we found that the ptpA gene is encoded
primarily by Bacteroides species including B. dorei, B. uniformis, B.
caccei and B. xylanisolvens (Supplementary Fig. 3h). Therefore, we
tested whether a correlation between bacterial ptpA copy number
and Ara h 2-specific IgE levels existed in IMPACT participants who
received POIT and identified a significant positive correlation at

baseline (Fig. 4f) end of the treatment (Fig. 4g), and at the end of
avoidance (Fig. 4h). These data suggest that the fecal microbiomes
of children who did fail to achieve POIT-induced remission have an
increased capacity to metabolize proline-containing proteins, lead-
ing us to speculate that this may extend to the proteolysis-resistant
Ara h 2 proteins necessary to promote remission of peanut allergy.

The learning early about peanut allergy (LEAP) clinical trial clearly
demonstrated the critical importance of peanut exposure to develop
immunological tolerance to peanut antigens®*. Therefore, we hypo-
thesized that the fecal microbiomes of children for whom POIT failed
to induce remission have increased capacity for peanut protein
degradation, effectively reducing antigen exposure. To test this, sta-
bilized in vitro fecal microbiome cultures from participants in each of
the outcome groups (D+R+, n=12, D+R-, n=12, D-R-, n=12) were
developed as previously described*® and co-incubated with peanut
extract under anaerobic conditions prior to Ara h 2 quantification by
ELISA. Fecal microbiomes of all participants, regardless of remission
outcome, exhibited the capacity to degrade Ara h 2, one of the most
proteolytically resistant peanut protein antigens*'. Moreover, peanuts
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incubated with feces of patients who failed to achieve remission
exhibited significantly decreased concentrations of this antigen com-
pared to those who achieved remission. These data suggest that fecal
conditions of those who fail to achieve remission following POIT,
promote increased degradation of Ara h 2 proteins and thus endo-
genously reduce exposure to this key peanut antigen required for

desensitization (Fig. 4i).
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Discussion

Microbiome analyses of fecal samples longitudinally collected from 90
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that microbiome composition, function, and metabolic activities relate
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diversity and overall composition were similar between POIT and
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Fig. 4 | Enhanced microbiome protein metabolism associated with peanut oral
immunotherapy failure. a Difference in module eigenvectors of UMMS5, UMM7
and UMMS50 AA modules between POIT-outcome groups (n=129; D+R+ =33,
D+R- =78, D-R-=18). Data are presented as mean values + SEM. Boxplots show the
median (center line), 25th and 75th percentiles (box bounds), and whiskers extend
to values within 1.5x the interquartile range. Statistical comparisons were per-
formed using the two-sided Wilcoxon rank-sum test. b Fecal AA metabolite com-
position is distinct between POIT outcome groups at b, baseline (n =43, R = 0.08;
P = 0.006), and ¢ end of avoidance (n=43, R* = 0.07; P = 0.041). PERMANOVA
analyses (two-sided) based on Euclidean distance matrix. d Z-scores of all AA
metabolite abundance in nine modules associated with POIT outcomes. e POIT
responders have an elevated ptpA gene copy number in their fecal microbiome at
the end of avoidance compared to POIT non-responders (P.FDR < 0.05, two-sided
linear mixed-effects models adjusted for multiple comparisons). Exact P values are
provided in Supplementary Data 15. f ptpA gene copy number positively correlates

with Ara h2-specific IgE levels at baseline (n=57, p=0.004, R*=0.37), g end of
treatment (n=39, p=0.0004, R*=0.53) and h end of avoidance (n=35, p=0.05,
R?*=0.32). Two-sided Pearson correlation. i Fecal microbiome from children who
did not achieve POIT-induced remission showed a greater capacity to metabolize
peanut Ara h 2 protein than those who achieved remission (P=0.032). Ara h 2
concentrations shown are averages of two independent experiments per sample.
Each data point represents one biologically independent participant (remission
n=6, no remission =12), and comparisons were made using a two-sided Wilcoxon
rank-sum test. Boxplots show the median (center line), 25th and 75th percentiles
(box bounds), and whiskers extend to values within 1.5x the interquartile range.
Statistical comparisons were performed using the two-sided Wilcoxon rank-sum
test. The control group refers to the BHI medium supplemented with peanut
extract and incubated for 48 h with other samples without the microbiome
inoculation. BA: bile acid. AA: amino acid. Source data are provided as a Source
Data file.

placebo arms throughout the trial, within the POIT arm, fecal micro-
biota composition and functional capacity were distinct over a 3-year
treatment period in those who do or do not achieve peanut allergy
remission. BAs, including secondary BAs enriched in baseline samples
associate with POIT-induced remission and appear to serve as a rea-
sonable predictor of treatment outcome. Given the protracted nature
of POIT and the high risk of severe adverse events in the treated peanut
allergic population*”, utilization of fecal biomarkers to test for treat-
ment responsiveness prior to initiation of therapy holds significant
utility. Our findings are also consistent with a recent report showing
that plasma BAs are associated with peanut oral immunotherapy effi-
cacy in a smaller cohort of 20 children*. Gut microbial-derived sec-
ondary BAs act as hormones that regulate cholesterol metabolism,
lipid and soluble vitamin uptake and influence energy balance via
nuclear and G-protein-coupled receptors*™* that shape innate
immune response****. Previous studies have demonstrated that the BA
pool regulates colonic FOXP3+ regulatory T (Treg) cells that express
the transcription factor RORY*. Indeed, in a sub-analysis of the
IMPACT trial participants (n=29), Calise and colleagues examined
T-cell profiles of peanut-challenged patients and found a trend
towards increased expression of genes associated with regulatory
T-cell function in desensitized patients compared to those who failed
to achieve desensitization and remission’.

Gut microbes are capable of metabolizing dietary proteins*®, uti-
lizing host and dietary amino acids (AAs) for protein synthesis*’, and
harvesting AAs from primary BAs to fuel central metabolism®. From
our study, the gut microbiome of children for whom POIT failed to
induce remission is characterized by enhanced microbial AA-
utilization pathways, depletion of AAs and their metabolites, and
enrichment of specific deconjugated secondary BA metabolites. Pri-
mary BAs, such as glycocholate and taurocholate, are typically con-
jugated to the AAs glycine and taurine®, though a more recent study
has indicated that a much broader range of AAs may be conjugated*.
Primary BAs are converted to immunoregulatory secondary BAs by
colonic bacteria®. Notably, recent studies have shown that primary
BAs, particularly chenodeoxycholic acid, can promote food sensitiza-
tion by activating retinoic acid response elements in dendritic cells,
driving food allergen-specific IgE and IgG1 production®’. Increased gut
microbiome capacity to harvest AAs from conjugated BAs may elevate
levels of deconjugated BAs, thus promoting allergic immune function
and contributing to POIT failure.

Prior studies have established a strong association between
impaired or delayed microbiota diversification over the first year of life
and the onset of pediatric atopy”**>. These data indicate that a
diverse gut microbiome during infancy is essential for appropriate
immune development and the prevention of allergic disease. However,
our findings revealed that amongst older peanut-allergic children,
those who achieved POIT-induced remission exhibited significantly
lower baseline microbiota diversity compared to those for whom POIT

failed to induce remission. This observation appears to contrast with
existing literature. However, we previously demonstrated that while
infants at higher risk of allergic disease initially demonstrate lower
fecal diversity compared to their lower-risk counterparts over the first
year of life, between 18 and 24 months of age a cross-over event in fecal
diversification occurs, with the former exhibiting sustained diversifi-
cation while the latter reach an asymptote®. These data indicate that
while lower fecal diversity in infancy is a consistent feature of those on
the trajectory to allergy, in later childhood, higher fecal diversity is
characteristic of those at increased risk of disease. Our study offers
mechanisms as to why this may occur. Features associated with non-
remission such as AA auxotrophy (i.e. inability to synthesize AAs
required for growth), have previously been associated with higher
microbiome diversity’”” due to microbial reliance on exogenous AA
sources. In addition, we show that fecal BA profiles correlate with
microbial diversity in peanut-allergic children, consistent with pre-
vious studies demonstrating that the BA pool and diversity regulate
gut microbial composition and function®. Hence, while decreased
fecal microbiota diversity in very early life represents a reproducible
characteristic across all atopic pathologies, within older peanut-
allergic children, BA and AA pools appear to promote greater fecal
diversity and, more importantly, enhanced microbial capacity for AA
and peanut protein metabolism associated with failure to achieve
disease remission.

Previous studies have reported that members of the Clostridia,
including R. gnavus, are associated with the development of food
allergies’** ", The abundance of this species is positively correlated
with age and is known to be capable of producing immunomodulatory
secondary BAs®. In the IMPACT trial, participants who developed
POIT-induced remission possessed a greater abundance of R. gnavus.
These strains encoded enzymes that produce several of the specific
BAs associated with disease remission suggesting that strain-specific
BA metabolism capacity and not simply species relative abundance is
paramount to food allergy clinical outcomes. Indeed, the metabolic
capacity of R. gnavus strains is known to be large; previous studies
indicate that strains from children with food allergies encode reduced
fiber-degrading capacity and genes linked to pro-inflammatory poly-
saccharide production’, distinguishing them from strains found in
their non-allergic counterparts. These findings underscore the need
for assessing strain-resolved functional differences that underlie food
allergy phenotypes.

Food allergies and intolerances are typically triggered by specific
protein motifs in foods such as Ara h proteins in peanuts, casein and
beta-lactoglobulin in cow’s milk, and tropomyosin proteins in
shellfish®. Ingested allergens undergo enzymatic breakdown in the
oral cavity, stomach, and small intestine®® prior to interacting with
antigen-presenting cells®’. However, certain key antigenic peanut
proteins, e.g. Ara h 2, are highly resistant to proteolysis®, making it
likely that they survive transit through the upper gastrointestinal tract
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to the distal colon which houses the highest density of microbes and
immune cells, including T and B effector cells®®. The extent of peanut
protein digestion determines the concentrations and profile of anti-
genic peanut peptides available for presentation by antigen-presenting
cells, a key requirement for immune tolerance development. The distal
gut is colonized by a complex community of metabolically active
microbes capable of metabolizing dietary proteins****’°, including
food allergens. Our data indicates that increased fecal microbial pep-
tidase activity, peanut protein degradation, and depletion of select
immunomodulatory BA and AA during the peanut introduction period
are associated with treatment failure. Previous studies demonstrated
that microbe-free fecal extracts of infants who subsequently develop
atopy or asthma promote canonical features of allergic inflammation
in vitro, indicating that fecal metabolites are sufficient to drive allergic
inflammation. Our more recent work showed that an atopy-predictive
fecal microbial-derived lipid, 12,13 di-HOME exacerbates the inflam-
matory response to food allergens, including peanut, by promoting
macrophage expression of /L-18, TNFa, NFkB, and IL-6, expansion of
memory B cells and increasing the ratio of IgE to IgG in peanut sti-
mulated co-cultures®. Hence, the emerging data points to a more
complex model in which the metabolic context in which antigenic
stimulation occurs, governs functional immune response to allergen
exposure and indicates that microbial processes impacting both anti-
gen availability and immunomodulatory metabolites play a key role in
dictating allergic outcomes.

Elucidating the impact of gut microorganisms on allergic food
proteins may pave the way towards the development of more effective
immunotherapeutic approaches by both targeting gut microbiome
metabolic functions and protecting immunotherapeutic peanut pro-
teins from microbial metabolism by, for example, encapsulating them
in food-grade colloidal systems. A similar encapsulation system for
gluten immunotherapy is currently being tested in several clinical
trials”’2, which so far have demonstrated safety and efficacy. Our study
highlights the potential role of the gut microbiome in shaping POIT
efficacy outcomes and suggests that specific fecal BAs could serve as
both a prognostic biomarker to identify those for whom POIT may be
most successful and as a therapeutic target to improve rates of POIT-
induced remission.

Methods

Ethics statement

The IMPACT clinical trial was approved by the Office of Human
Research Ethics (OHRE), University of North Carolina, Chapel Hill on
April 9, 2013. The parent study titled, “IMPACT: Oral Immunotherapy
(OIT) for Induction of Tolerance and Desensitization in Peanut-Allergic
was a randomized, double-blind, placebo-controlled, multi-center
study comparing peanut oral immunotherapy (OIT) to placebo.
Informed consent was obtained from a parent or guardian of all par-
ticipants. This study is an exploratory, non-pre-specified secondary
analysis of the IMPACT clinical trial (NCT01867671), approved by the
original study investigators.

Clinical trial description and study population
Full details of the IMPACT clinical trial (NCT01867671) have been
previously described®.

Sample collection and numbers

Stool samples were collected by participants at home and stored at
clinical collection sites (Chapel Hill, NC; Little Rock, AR; Palo Alto, CA;
Baltimore, MD; New York, NY) at —80°C. Of the 146 participants
enrolled in the IMPACT clinical trial (intention-to-treat group), 93
completed the treatment through the avoidance phase (per-protocol
group). A total of 388 fecal samples were collected from 144 partici-
pants. Among the 93 participants who completed the treatment (per-
protocol group), 327 fecal samples were obtained from 90 participants

—245 from the POIT group and 82 from the placebo group (57 and 23
participants, respectively, Supplementary Data 1). Three per-protocol
participants did not provide fecal samples at any time point. One per-
protocol participant who did not develop POIT-induced desensitiza-
tion but developed remission (D-R+) was excluded (5 fecal samples
from 5 time points) from all data analyses as a single sample was
insufficient for statistical analyses. Frozen fecal samples were trans-
ferred on dry ice to the Lynch lab at the University of California, San
Francisco, where all laboratory analyses were performed, except for
untargeted metabolomics analyses, which were conducted at Meta-
bolon Inc. in Morrisville, NC.

To maintain blinding, investigators did not have access to parti-
cipant data until after 16S rRNA sequencing was completed and locked.
As a result, all 388 fecal samples underwent 16S rRNA sequencing.
High-quality 16S rRNA sequencing data were successfully generated
for only 263 fecal samples from 79 participants, as some samples failed
due to insufficient DNA, failed PCR, or did not pass the quality filtering
and rarefaction (35,000 reads/samples). For analyses assessing the
relationship between fecal microbiota composition and POIT out-
comes, only samples from the per-protocol participants were inclu-
ded. However, baseline analyses, such as those presented in Fig. 1h-j,
incorporated samples from all participants. In these cases, POIT out-
comes were not a consideration, as the goal was to evaluate correla-
tions between baseline bacterial phylogenetic diversity and serum IgE
levels in peanut-allergic children.

For shotgun metagenomics, we focused on three key time points
(baseline, end of treatment, and end of avoidance) while excluding
mid-maintenance and end-of-build-up samples. This decision was
based on cost considerations and the significant associations observed
between fecal microbiota and different clinical outcomes at these
three time points (Supplementary Data 4). DNA extracted for 16S rRNA
sequencing with at least 100 ng of remaining material from these three
time points was used for shotgun metagenome sequencing. Placebo
participants who provided samples at baseline but did not provide
fecal samples at the other two key time points (8 participants, Sup-
plementary Fig. 1a) were excluded because we observed no significant
differences in baseline fecal bacterial composition and diversity
between the POIT and Placebo groups. High-quality shotgun metage-
nomics data were obtained from 80 participants (184 samples).

Finally, metabolomics data were generated for 58 participants
who had corresponding shotgun metagenomics data and sufficient
remaining material from all three key time points. Two participants
were excluded because their samples were fully utilized during DNA
extraction. Additionally, 20 participants who provided only baseline
samples without subsequent time points were excluded to enable
longitudinal metagenomics and metabolome integrative analyses with
matching patient IDs. Thus, we retained data for 58 participants, 22
fewer than the number analyzed for shotgun metagenomics (Supple-
mentary Fig. 1a and Supplementary Data 1).

DNA extraction, 16S rRNA library preparation and sequencing
DNA was extracted from randomized fecal samples and positive con-
trols (cat# D6300. ZymoBIOMICS Microbial Community Standard)
using a modified cetyltrimethylammonium bromide (CTAB) buffer
extraction protocol as previously described”. The variable region 4
(V4) of the 16S rRNA gene was amplified using 1 ng pl™ of DNA template
using 515F and 806R primer pairs as previously described”*. Amplicon
concentrations were normalized using SequalPrep™ Normalization
Plate Kit (Thermofisher Scientific), quantified using the Qubit 2.0
Fluorometer and the dsDNA HS Assay Kit (Life Technologies) and
pooled at 5 ng per sample which was purified using AMPure SPRI beads
(Beckman Coulter). 2 nM of the library was spiked with 30% of PhiX
control v3 (Illumina). The denatured libraries and PhiX were diluted to
20 pM, and 1.5 pM were loaded onto the lllumina NextSeq 500/550 v2.5
High Output cartridge.
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Sequence data was processed as previously described”. Forward
and reverse reads were demultiplexed by using Quantitative Insights
Into Microbial Ecology (QIIME 1.9.1)’°. Sample sequences with more
than two bases having a Q-score <30 were truncated. As recom-
mended by the Divisive Amplicon Denoising Algorithm 2 (DADA2)
v1.16 protocol in R with the following modifications: Reads were
maintained if they exhibited a maximum expected error of two and a
read length of at least 150 base pair (bp) using the filterAndTrim
function in the dada2 package”. Reads were dereplicated and errors
were learned on 1x 108 reads, from samples chosen at random. Finally,
chimeras were identified using the “consensus” method. Paired reads
were merged with a minimum overlap of 25bp, and reads were
aggregated into a count table. Any V4 sequences abnormally short or
long (+5bp from the most frequently observed bp length; here:
253 bp) were also removed. We assigned taxonomic classifications to
Sequence Variants (SVs) using assignTaxonomy in the dada2 package
and an 80% bootstrap cutoff, utilizing the SILVA v132 database’®, and
species identification with assignSpecies at 100% identity. All species
achieving an exact match were recorded, and the first in the list was
used for descriptive purposes. Once these steps were completed for
each run, all runs were combined into a complete SV table. A phylo-
genetic tree was constructed using phangorn” and DECIPHER
packages®. The SV table was then filtered only to variants belonging to
the kingdom Bacteria. Variants were also removed if they were present
in less than 0.001% of the total number of observed sequence reads.
Next, we employed methods to remove potential contaminants based
on SVs present in negative controls. Specifically, SVs were removed if
they were present in >15% of the negative controls and less than 15% of
the samples”™ (primarily Pseudomonas SVs). For the remaining
sequence variants in negative controls, the mean of the read count for
each was calculated, rounded upward to the nearest whole number,
and subtracted for each of these SVs in the dataset. Any remaining
negative control SVs were subtracted from samples using the max-
imum read count across negative controls. Data was representatively
rarefied at 35,000 reads per sample, a level selected to optimize
sample count and community coverage.

Metagenomic processing and data analysis
One-hundred eighty-four samples (n=75 Baseline, n=54 EoT, n=55
EoA, Fig. 1a and Supplementary Data 1), were chosen among the DNA
samples extracted for 16S rRNA sequencing including samples that
went through untargeted metabolomic analyses. Fecal samples selec-
ted had sufficient remaining material for paired metagenomic and
metabolomic profiling. DNA concentration was measured using the
QuantiFluor dsDNA System on a Quantus Fluorometer (Promega,
Madison, WI, USA). A Kapa Biosystems HyperPlus kit (Kapa Biosys-
tems, Wilmington, MA, USA) was used for library construction. Briefly,
50 ng of genomic DNA was enzymatically sheared according to the
manufacturer’s instructions. DNA fragment ends were repaired, 3’
adenylated, and ligated to adapters. The resulting adapter-ligated
libraries were PCR-amplified. The PCR product was cleaned up from
the reaction mix with magnetic beads. Then, lllumina libraries were
quantified using the Qubit 2.0 Fluorometer with the dsDNA High
Sensitivity Assay Kit (Life Technologies, Grand Island, NY) and pooled
at equal molar concentrations. The final pooled libraries were sub-
mitted to the Center for Advanced Technology (CAT) at the University
of California San Francisco. The pooled libraries were sequenced using
the Illumina NovaSeq 6000 in a 2 x150 bp paired-end run protocol
targeting a minimum of 60,000,000 raw reads per sample in total.
Raw sequences from all lanes were merged into a concatenated
file for each sample. Raw FASTQ files underwent FASTQC® and quality
and contaminant filtering using bbTools v38.73. Specifically, bbduk
(v38.73) (https://sourceforge.net/projects/bbmap/) trimmed Illumina
adapters, removed any PhiX contamination, filtered low-quality
sequences, and employed trimming after a Q score <15 from both

the 3’ and 5’ directions. Finally, bbmap removed reads mapping to the
human genome using GRCh38* as the reference database. The median
number of raw reads per sample was 97,502,238 (IQR 30,132,152). All
analyses were performed on quality-filtered reads. HUMAnN 3.0
pipeline was used to identify genes®, level4ECs, and functional Meta-
Cyc pathways from the short-reads, and to normalize outputs into
copies per million (CPM). MetaCyc reactions and level4ECs enzymes
that were present in <20% of samples were removed and, yield 517
MetaCyc reactions and 2605 level4ECs enzymes for downstream
analyses.

Taxonomic classification of metagenomic reads was conducted
using Kraken2, a k-mer-based tool designed to efficiently and accu-
rately assign reads to taxonomic labels. The Kraken2 database (v.2021),
encompassing genomes from bacteria, archaea, viruses, fungi, and
other eukaryotes, was used for classification. The analysis was con-
ducted on paired-end reads, using a confidence threshold of 0.95 to
ensure robust taxonomic assignments. The raw taxonomic counts for
each sample were imported into a phyloseq object for downstream
analysis.

Untargeted metabolomics analyses

Among the samples that went through shotgun-metagenome analyses,
174 (n=58 Baseline, n =58 EoT, n =58 EoA, Fig. 1a, and Supplementary
Data 1) matching samples were available for untargeted metabolomics
analyses. Two hundred milligrams of stool per sample was submitted
to Metabolon Inc. (Durham, NC) for ultrahigh performance liquid
chromatography/tandem mass spectrometry (UPLC-MS/MS) and gas
chromatography-mass spectrometry (GC-MS) using their standard
protocol (http://www.metabolon.com/).

Sample accessioning

Following receipt, samples were inventoried and immediately stored
at —80 °C. Each sample received was accessioned into the Metabolon
LIMS system and was assigned by the LIMS a unique identifier that was
associated with the original source identifier only. This identifier was
used to track all sample handling, tasks, results, etc. The samples (and
all derived aliquots) were tracked by the LIMS system. All portions of
any sample were automatically assigned their own unique identifiers
by the LIMS when a new task was created; the relationship of these
samples was also tracked. All samples were maintained at —80 °C until
processed.

Sample preparation

Samples were prepared using the automated MicroLab STAR® system
from Hamilton Company. Several recovery standards were added prior
to the first step in the extraction process for QC purposes. To remove
protein, dissociate small molecules bound to protein or trapped in the
precipitated protein matrix, and to recover chemically diverse meta-
bolites, proteins were precipitated with methanol under vigorous
shaking for 2min (Glen Mills GenoGrinder 2000) followed by cen-
trifugation. The resulting extract was divided into five fractions: two
for analysis by two separate reverse phase (RP)/UPLC-MS/MS methods
with positive ion mode electrospray ionization (ESI), one for analysis
by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by
HILIC/UPLC-MS/MS with negative ion mode ESI, and one sample was
reserved for backup. Samples were placed briefly on a TurboVap®
(Zymark) to remove the organic solvent. The sample extracts were
stored overnight under nitrogen before preparation for analysis.

QA/QC

Several types of controls were analyzed in concert with the experi-
mental samples: a pooled matrix sample generated by taking a small
volume of each experimental sample (or alternatively, use of a pool of
well-characterized human plasma) served as a technical replicate
throughout the data set; extracted water samples served as process
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blanks; and a cocktail of QC standards that were carefully chosen not
to interfere with the measurement of endogenous compounds were
spiked into every analyzed sample, allowed instrument performance
monitoring and aided chromatographic alignment. Instrument varia-
bility was determined by calculating the median relative standard
deviation (RSD) for the standards that were added to each sample prior
to injection into the mass spectrometers. Overall process variability
was determined by calculating the median RSD for all endogenous
metabolites (i.e., non-instrument standards) present in 100% of the
pooled matrix samples. Experimental samples were randomized
across the platform run with QC samples spaced evenly among the
injections.

Ultrahigh performance liquid chromatography-tandem mass
spectroscopy (UPLC-MS/MS)

All methods utilized a Waters ACQUITY ultra-performance liquid chro-
matography (UPLC) and a Thermo Scientific Q-Exactive high resolution/
accurate mass spectrometer interfaced with a heated electrospray
ionization (HESI-) source and Orbitrap mass analyzer operated at
35,000 mass resolution. The sample extract was dried and then recon-
stituted in solvents compatible with each of the four methods. Each
reconstitution solvent contained a series of standards at fixed con-
centrations to ensure injection and chromatographic consistency. One
aliquot was analyzed using acidic positive ion conditions, chromato-
graphically optimized for more hydrophilic compounds. In this method,
the extract was gradient eluted from a C18 column (Waters UPLC BEH
C18-2.1x100 mm, 1.7 um) using water and methanol, containing 0.05%
perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another ali-
quot was also analyzed using acidic positive ion conditions, however, it
was chromatographically optimized for more hydrophobic compounds.
In this method, the extract was gradient eluted from the same afore-
mentioned C18 column using methanol, acetonitrile, water, 0.05% PFPA,
and 0.01% FA and was operated at an overall higher organic content.
Another aliquot was analyzed using basic negative ion optimized con-
ditions using a separate dedicated C18 column. The basic extracts were
gradient eluted from the column using methanol and water, however
with 6.5mM Ammonium Bicarbonate at pH 8. The fourth aliquot was
analyzed via negative ionization following elution from a HILIC column
(Waters UPLC BEH Amide 2.1 x150 mm, 1.7 ym) using a gradient con-
sisting of water and acetonitrile with 10 MM Ammonium Formate, pH
10.8. The MS analysis alternated between MS and data-dependent MS"
scans using dynamic exclusion. The scan range varied slightly between
methods but covered 70-1000m/z. Raw data files are archived and
extracted as described below.

Bioinformatics

The informatics system consisted of four major components, the
Laboratory Information Management System (LIMS), the data extrac-
tion and peak-identification software, data processing tools for QC and
compound identification, and a collection of information interpreta-
tion and visualization tools for use by data analysts. The hardware and
software foundations for these informatics components were the LAN
backbone, and a database server running Oracle 10.2.0.1 Enterprise
Edition.

LIMS

The purpose of the Metabolon LIMS system was to enable fully audi-
table laboratory automation through a secure, easy-to-use, and highly
specialized system. The scope of the Metabolon LIMS system encom-
passes sample accessioning, sample preparation, instrumental analysis
and reporting, and advanced data analysis. All of the subsequent
software systems are grounded in the LIMS data structures. It has been
modified to leverage and interface with the in-house information
extraction and data visualization systems, as well as third-party
instrumentation and data analysis software.

Data extraction and compound identification

Raw data was extracted, peak-identified and QC processed using
Metabolon’s hardware and software. These systems are built on a web-
service platform utilizing Microsoft’s.NET technologies, which run on
high-performance application servers and fiber-channel storage arrays
in clusters to provide active failover and load-balancing. Compounds
were identified by comparison to library entries of purified standards
or recurrent unknown entities. Metabolon maintains a library based on
authenticated standards that contain the retention time/index (RI),
mass-to-charge ratio (m/z), and chromatographic data (including MS/
MS spectral data) on all molecules present in the library. Furthermore,
biochemical identifications are based on three criteria: retention index
within a narrow RI window of the proposed identification, accurate
mass match to the library+10 ppm, and the MS/MS forward and
reverse scores between the experimental data and authentic stan-
dards. The MS/MS scores are based on a comparison of the ions pre-
sent in the experimental spectrum to the ions present in the library
spectrum. While there may be similarities between these molecules
based on one of these factors, the use of all three data points can be
utilized to distinguish and differentiate biochemicals. More than 3300
commercially available purified standard compounds have been
acquired and registered into LIMS for analysis on all platforms for
determination of their analytical characteristics. Additional mass
spectral entries have been created for structurally unnamed bio-
chemicals, which have been identified by virtue of their recurrent
nature (both chromatographic and mass spectral). These compounds
have the potential to be identified by future acquisition of a matching
purified standard or by classical structural analysis.

Curation

A variety of curation procedures were carried out to ensure that a high-
quality data set was made available for statistical analysis and data
interpretation. The QC and curation processes were designed to
ensure accurate and consistent identification of true chemical entities
and to remove those representing system artifacts, misassignments,
and background noise. Metabolon data analysts use proprietary
visualization and interpretation software to confirm the consistency of
peak identification among the various samples. Library matches for
each compound were checked for each sample and corrected if
necessary.

Metabolite quantification and data normalization

Peaks were quantified using area-under-the-curve. For studies span-
ning multiple days, a data normalization step was performed to correct
variation resulting from instrument inter-day tuning differences.
Essentially, each compound was corrected in run-day blocks by
registering the medians to equal one (1.00) and normalizing each data
point. For studies that did not require more than one day of analysis,
no normalization is necessary, other than for purposes of data visua-
lization. In certain instances, biochemical data may have been nor-
malized to an additional factor (e.g., cell counts, total protein as
determined by Bradford assay, osmolality, etc.) to account for differ-
ences in metabolite levels due to differences in the amount of material
present in each sample. For network and statistical analyses, normal-
ized, imputed, and log-transformed areas under the curve dataset
were used.

In vitro fecal microbiome metabolism of peanut

Stool samples from IMPACT participants were prepared for culture as
described previously®*. Briefly, stool samples from 18 patients (D+R+,
n=6,D+R-, n=6,D-R-, n=6) at two time points (baseline and end of
treatment) with sufficient paired baseline and end-of-treatment
material for the experiment were thawed on ice. All fecal processing
was completed under aerobic conditions. Stools were resuspended in
Brain Heart Infusion (BHI) media at a ratio of 10 ml/g stool prior to
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vigorous vertexing for 5 min and filtering with a 50 um cell strainer and
storage at —80 °C following 25% (volume/volume) glycerol addition. A
total of 10 uL of prepared feces was used to inoculate 1mL of BHI
medium supplemented with 8 uL peanut extract (1/10 weight/volume
in 50% glycerin, Hollister-Stier) and incubated for 48 h at 37 °C under
anaerobic conditions. Following 48 h of incubation, microbiome cul-
tures were centrifuged at 3200xg for 10 min and filtered through
0.22 um filters. Ara h 2 peptide concentrations were determined using
an Enzyme-Linked Immunosorbent Assay (ELISA) according to manu-
facturer instructions (Indoor Biotechnologies, Charlottesville, VA).
Each fecal microbiome culture originated from a unique biologically
independent participant (n=18; Remission=6, No Remission=12),
and two independent in vitro experiments were performed per sam-
ple. Statistical comparisons were performed on the mean Ara h 2
values per participant, thus reflecting inter-individual biological
variability.

Statistical analyses

Statistical analyses were performed in the R statistical programming
language version 4.3.2. a-diversity indices with Faith’s phylogenetic
diversity, Pielou’s evenness, and Chaol species richness were calculated
in QIIME and using the vegan v2.6-4 and picante v1.8.2 packages in R. For
correlation analyses between baseline phylogenetic diversity and serum
IgE levels, participants enrolled in the IMPACT trial but who did not
complete the trial were included as 16S rRNA sequencing and clinical
serum IgE levels were available. Wilcoxon rank-sum and signed-rank
tests were performed in R using the wilcox.test function; by default, tests
were two-sided unless otherwise specified in figure legends. For beta-
diversity (microbiome composition), distance matrices based on
unweighted UniFrac, weighted UniFrac, Bray—-Curtis, and Canberra for
16S rDNA data and Euclidean for metabolomics dataset were generated
using the distance function from phyloseq v1.30.0% and ordinated into
two-dimensional space using the pcoa function from the ape v5.3
package®. Permutational analysis of variance tests (Two-sided PERMA-
NOVA; R and Pvalues) were generated for independent terms with 1000
permutations using adonis2 from the vegan package v2.6-4*. correla-
tions and P values were calculated and corrected for potential con-
founding factors such as age at screening, using the cor.test function
from the stats package v.4.3.2 in R. When samples were used from
multiple time points, for example, in linear mixed-effect model (LME)
models on longitudinal samples, only age was adjusted and stated in
figure legends. LME models were conducted as two-sided tests unless
explicitly stated otherwise.

Generalized linear mixed-effect model

Generalized linear mixed-effect models were employed on long-
itudinal microbiome data to determine differences in microbial taxa,
microbial pathways, metabolites between POIT outcome groups
(D+R+, D+R-, D-R-) and remission outcome (yes or no), using
a custom script (https://github.com/lynchlab-ucsf/lab-code/blob/
master/SigTaxa/ManyModelScript.R) that employs multiple statis-
tical models (Linear Model, Compound Poisson Linear Model, Pois-
son, Negative Binomial, and Tweedie) and compared using the AIC
before reporting the final estimate and p-value. False-discovery cor-
rections were made using the Benjamini-Hochberg method.

Weighted gene correlation network analyses

Co-occurrence networks of microbial pathways and metabolites were
constructed using weighted correlation network analysis (WGCNA) with
the R package WGCNA v1.72-5% to find modules of highly inter-
connected, mutually exclusive metabolites. Pearson correlations were
used to determine inter-metabolite and inter-microbial pathway rela-
tionships, where modules are composed of positively correlated meta-
bolites. We constructed a signed network using specific parameters
(power =7, reassignThreshold = 0, mergeCutHeight = 0.25), by applying

hierarchical clustering and topology overlap measures (TOM). The
minimum module size was set to five metabolites. Module eigenvectors
(MEs) were defined as the first principal component of a given module
and considered as a representative measure of the joint abundance
profile of that module. Each module eigenvectors was used to test the
association between its respective module and POIT-outcomes using
ANOVA in all samples which are adjusted for participants’ age. P.FDR <
0.05 is considered significant. Differences in MEs between POIT-
outcome groups were tested and plotted using the Wilcoxon signed-
rank test. Module membership was used to determine the inter-
connectedness of each metabolite to its assigned module to identify
“hub” metabolites: this was defined as the correlation between each
metabolite and the module eigenvectors (MEs) (strong positive values
indicate high interconnectedness) as previously described". Metabolite
heatmaps visualized in Figs. 2f-h, and 4d were generated using the
pheatmap R package. Briefly, BA and AA metabolites from the POIT
response-associated metabolomics modules (Fig. 2a) were filtered. Mean
metabolite values were calculated across treatment groups (D+R+, D+R
-, D-R-). To normalize metabolite abundance, Z-score scaling was
applied across each group.

Multi-omics factor analyses (MOFA2)

MOFA (v1.12.1) uses multi-omics data from the same set of samples as
input and generates a model that infers a set of “Factors” that best
explain patterns of covariation across samples®. Details of the meth-
odology can be found in the original publication®. As input for the
MOFA model, we used untargeted metabolomics (1538 metabolites)
and shotgun metagenomics datasets (518 features). All inputs were
normalized by centralized log normalization. When fitting the model,
we selected the top factors ordered by the mean fractional variance
explained across omic modalities (that is, factor 1 contributed the
most, and factor 7 contributed the least to mean fractional variation;
Supplementary Fig. 3a). When testing factor values for statistically
significant differences between POIT outcome groups we used a two-
tailed Mann-Whitney U-test. Supplementary Fig. 3b). Top five features
of metagenome and metabolome datasets from significant factors
were displayed (Supplementary Fig. 3c).

Machine learning model with logistic regression and

random forest

For the predictive metabolite analysis, normalized abundance of the
top five metabolites from Factor 2 of the MOFA2 analyses was pro-
cessed with the mikropml R package (v1.6.1) (https://CRAN.R-project.
org/package=mikropml)”’. We used Random Forest (rf) and Logistic
Regression functions (glmnet) with Remission (Yes versus No) as an
outcome using 50% of the samples as the training set and 50% as the
test set. Model performances were evaluated with repeated k-fold
cross-validation (tenfold, 10 repetitions) and parameters were tuned
by choosing mtry and values between 1 and the square root of the total
number of variables. Model training was accomplished with the caret R
package v6.0-94 (https://topepo.github.io/caret/), mtry and lambda
values that determined the highest model accuracy were chosen as
input to random forest and logistic regression analysis, respectively.
Variable importance was assessed with permutations (100 iterations).
Full results are reported in Supplementary Data 13.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data supporting the findings described in this manuscript are
available in the article and in the Supplementary Information, Sup-
plementary data files and Source data file. The 16S rRNA sequencing
and shotgun metagenomic sequencing data generated in this study
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have been deposited in the NCBI SRA database under accession codes
PRJNA1261081 and PRJNA1261967, respectively. The untargeted
metabolomics data is available at the NIH Common Fund’s National
Metabolomics Data Repository (NMDR) website, the Metabolomics
Workbench®, where it has been assigned Study ID (ST003917) and
Project ID (PR0O02450)”. The data can be accessed directly via its
Project https://doi.org/10.21228/M8784V. Source data are provided in
this paper.

Code availability

R scripts including Many Model (Generalized linear mixed-effect
model) and PERMANOVA scripts used for data analyses and described
in the “Methods” section were previously reported”*”* and available at
https://github.com/lynchlab-ucsf. All R codes used to generate figures
in this study will be made available from the corresponding author
upon request.
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