

1

2

Table of Contents

Executive Summary​ 4

Project Context​ 4

Audit Scope​ 7

Security Rating​ 8

Intended Parachain Functions​ 9

Code Quality​ 12

Audit Resources​ 12

Dependencies​ 12

Severity Definitions​ 13

Status Definitions​ 14

Audit Findings​ 14

Centralisation​ 36

Conclusion​ 37

Our Methodology​ 38

Disclaimers​ 40

About Hashlock​ 41

Hashlock Pty Ltd

3

CAUTION

THIS DOCUMENT IS A SECURITY AUDIT REPORT AND MAY CONTAIN

CONFIDENTIAL INFORMATION. THIS INCLUDES IDENTIFIED

VULNERABILITIES AND MALICIOUS CODE WHICH COULD BE USED TO

COMPROMISE THE PROJECT. THIS DOCUMENT SHOULD ONLY BE FOR

INTERNAL USE UNTIL ISSUES ARE RESOLVED. ONCE VULNERABILITIES ARE

REMEDIATED, THIS REPORT CAN BE MADE PUBLIC. THE CONTENT OF THIS

REPORT IS OWNED BY HASHLOCK PTY LTD FOR USE OF THE CLIENT.

Hashlock Pty Ltd

4

Executive Summary

The Energy Web team partnered with Hashlock to conduct a security audit of their

parachains. Hashlock manually and proactively reviewed the code in order to ensure the

project’s team and community that the deployed contracts are secure.

Project Context

Energy Web is a global, open-source nonprofit focused on accelerating the clean energy

transition through decentralized digital infrastructure. Launched in 2017, the

organization stewarded the Energy Web Chain (EWC), an enterprise-focused

Proof-of-Authority blockchain. Energy Web is now transitioning to it's flagship network:

Energy Web X (EWX), a Substrate-based Polkadot parachain.

EWX introduces a permissionless Proof-of-Stake consensus model, enabling broad

validator and delegator participation while unlocking staking rewards for participants

and supporting a robust on-chain economy. To expand liquidity and interoperability, the

Energy Web Token (EWT) is transitioning into a fully compliant ERC-20 token on

Ethereum mainnet, supported by a dual bridge architecture: a bidirectional bridge

between Ethereum and EWX as well as continued support for lifting from EWC to EWX.

trading, advancing interoperability, regulatory compliance, and grid decentralization.

Project Name: The Energy Web Foundation

Project Type: DeFi, Token, Bridge

Website: https://www.energyweb.org/

Logo:

Hashlock Pty Ltd

https://www.energyweb.org/

5

Visualised Context:

Project Name Launch Date

 Energy Web 11/09/2025

 Compiler Version Language

 N/A RUST

 Network Token Ticker

 POLKADOT N/A

Hashlock Pty Ltd

6

Project Visuals:

Hashlock Pty Ltd

7

Audit Scope

We at Hashlock audited the Rust code within the Energy Web project, the scope of

work included a comprehensive review of the parachain code listed below. We tested

the chain to check for their security and efficiency. These tests were undertaken

primarily through manual line-by-line analysis and were supported by software-assisted

testing.

Description Energy Web Parachain

Platform Polkadot / Rust

Audit Date August, 2025

Scope https://github.com/energywebfoundation/energy-web
-parachain-node

Audited GitHub Commit
Hash (Pull 158) d4de4a2c600d6620b10252960991ce06c3dd33a9

Audited GitHub Commit
Hash (Pull 196) e9fd6518150db02dcfb830fab2bf91a0c2c286cf

Audited GitHub Commit
Hash (Pull 197) f2bf681c76607b3171a961e4eaf7e652224e4c2d

Fix Review GitHub
Commit Hash b803cc36494afb47fdfe8e6165180de91a98f0e3

Hashlock Pty Ltd

8

Security Rating

After Hashlock’s Audit, we found the parachain code to be “Hashlocked”. The chain
follows complex logic, however, with correct and detailed ordering.

The ‘Hashlocked’ rating is reserved for projects that ensure ongoing security via bug bounty programs or
on chain monitoring technology.

All issues uncovered during automated and manual analysis were meticulously reviewed

and applicable vulnerabilities are presented in the Audit Findings section. The list of

audited assets is presented in the Audit Scope section and the project's contract

functionality is presented in the Intended Parachain Functions section.

All vulnerabilities initially identified have now been resolved and acknowledged.

Hashlock found:

7 Medium severity vulnerabilities

8 Low severity vulnerabilities

1 QA

Caution: Hashlock’s audits do not guarantee a project's success or ethics, and are not

liable or responsible for security. Always conduct independent research about any

project before interacting.

Hashlock Pty Ltd

9

Intended Parachain Functions

Claimed Behaviour Actual Behaviour

parachain-staking pallet

Allows nominators to:

-​ Nominate collator candidates with tokens to earn staking

rewards

-​ Bond extra tokens or schedule unbonding from collators

-​ Schedule/execute/cancel revocation of nominations after

the timelock

-​ Exit all positions at once with scheduled leave

Allows collator candidates to:

-​ Join/leave the candidate pool with bonded tokens

-​ Adjust self-stake (bond extra or schedule unbond)

-​ Go offline/online without unbonding

-​ Execute or cancel scheduled requests after the time lock

Allows governance/root to:

-​ Set collators per era and era length

-​ Configure minimum stake requirements and delays

-​ Force new era transitions

Automatically handles:

-​ Era transitions and collator selection by total stake

-​ Delayed reward distribution and growth period

accumulation

-​ Block authorship tracking for rewards

-​ Kicking lowest nominations when limits are reached

Parachain

achieves this

functionality.

​

Hashlock Pty Ltd

10

Ethereum-bridge pallet

Allows users or dapps to:

-​ Submit bridge requests with bounded parameters

-​ Query request and transaction status, and view lifecycle

events

-​ Cancel or resubmit failed or pending requests where

policy allows

Allows validators or OCW to:

-​ Discover Ethereum logs across configured block ranges

and partition events for voting

-​ Vote on detected events and corroborate requests

-​ Build, sign, and submit Ethereum transactions

-​ Execute or cancel scheduled actions

Allows governance or root to:

-​ Configure bridge contract address, chain ID, network,

gas, fee settings, and timeouts

-​ Manage validator thresholds and operational limits

-​ Force processing steps and pause the bridge

Automatically handles:

-​ Queueing of new requests and assignment of a sender

-​ Event partitioning, voting tally, and finalization once

thresholds are met

-​ Nonce tracking, transaction broadcasting, and receipt

polling

-​ Emission of detailed events for auditability and state

tracking

Parachain

achieves this

functionality.

Hashlock Pty Ltd

11

Energy Web Parachain configuration & chain specification

-​ Configuration of parachain - para ID, genesis allocations,

initial authorities & session keys, enabled pallets.

-​ Configuration of node services - networking, consensus,

RPC, telemetry, metrics, database, execution, task

spawning.

-​ Configuration of AvnProxy - permitted pallets, calls,

signature verification rules, proxy key types.

-​ Configuration of Ethereum helper - RPC endpoints, chain

ID, network, signing, broadcast policy, timeouts, retries.

-​ Operations via CLI commands - build and export

chain-spec, key management, purge and import blocks,

run collator.

Parachain

achieves this

functionality.

Hashlock Pty Ltd

12

Code Quality

This audit scope involves the parachain code of the Energy Web project, as outlined in

the Audit Scope section. All contracts, libraries, and interfaces mostly follow standard

best practices and to help avoid unnecessary complexity that increases the likelihood of

exploitation; however, some refactoring was recommended to optimize security

measures.

The code is very well commented on and closely follows best practice nat-spec styling.

However, not all comments are correctly aligned with code functionality.

Audit Resources

We were given the Energy Web project parachain code in the form of Github access.

As mentioned above, code parts are well commented. The logic is complex, and

therefore it is time consuming to quickly comprehend the programming flow as well as

the complex code logic. The comments are helpful in providing an understanding of the

protocol's overall architecture.

Dependencies

As per our observation, the dependencies used in this parachain infrastructure are

based on well-known industry standard open source projects.

Hashlock Pty Ltd

13

Severity Definitions

The severity levels assigned to findings represent a comprehensive evaluation of both

their potential impact and the likelihood of occurrence within the system. These

categorizations are established based on Hashlock's professional standards and

expertise, incorporating both industry best practices and our discretion as security

auditors. This ensures a tailored assessment that reflects the specific context and risk

profile of each finding.

Significance Description

High

High-severity vulnerabilities can result in loss of funds,
asset loss, access denial, and other critical issues that
will result in the direct loss of funds and control by the
owners and community.

Medium
Medium-level difficulties should be solved before
deployment, but won't result in loss of funds.

Low
Low-level vulnerabilities are areas that lack best
practices that may cause small complications in the
future.

Gas Gas Optimisations, issues, and inefficiencies.

QA
Quality Assurance (QA) findings are informational and
don't impact functionality. Supports clients improve the
clarity, maintainability, or overall structure of the code.

Hashlock Pty Ltd

14

Status Definitions

Each identified security finding is assigned a status that reflects its current stage of

remediation or acknowledgment. The status provides clarity on the handling of the

issue and ensures transparency in the auditing process. The statuses are as follows:

Significance Description

Resolved

The identified vulnerability has been fully mitigated
either through the implementation of the recommended
solution proposed by Hashlock or through an alternative
client-provided solution that demonstrably addresses the
issue.

Acknowledged

The client has formally recognized the vulnerability but
has chosen not to address it due to the high cost or
complexity of remediation. This status is acceptable for
medium and low-severity findings after internal review
and agreement. However, all high-severity findings must
be resolved without exception.

Unresolved
The finding remains neither remediated nor formally
acknowledged by the client, leaving the vulnerability
unaddressed.

Hashlock Pty Ltd

15

Audit Findings

Medium

[M-01] parachain‑staking#select_top_candidates - Root misconfiguration can

brick era transitions

Description

The runtime allows TotalSelected to be configured above the compiled MaxCandidates

bound. At era transition, the pallet writes the selected set into SelectedCandidates, a

bounded vector sized by MaxCandidates. If TotalSelected > MaxCandidates, converting

the chosen set to the bounded type fails and the code uses expect, causing a runtime

panic.

Vulnerability Details

The set_total_selected only checks new <= Era.length and not new <= MaxCandidates.

Later, <SelectedCandidates<T>>::put(BoundedVec::try_from(collators).expect() will

panic if the chosen set exceeds the bound.

pub fn select_top_candidates(now: EraIndex) -> (u32, u32, BalanceOf<T>) {

 let (mut collator_count, mut nomination_count, mut total) =

 (0u32, 0u32, BalanceOf::<T>::zero());

 // choose the top TotalSelected qualified candidates, ordered by stake

 let collators = Self::compute_top_candidates();

 if collators.is_empty() {

 // SELECTION FAILED TO SELECT >=1 COLLATOR => select collators from
previous era

 let last_era = now.saturating_sub(1u32);

 let mut total_per_candidate: BTreeMap<T::AccountId, BalanceOf<T>> =
BTreeMap::new();

 // set this era AtStake to last era AtStake

 for (account, snapshot) in <AtStake<T>>::iter_prefix(last_era) {

 collator_count = collator_count.saturating_add(1u32);

Hashlock Pty Ltd

16

 nomination_count =

 nomination_count.saturating_add(snapshot.nominations.len() as
u32);

 total = total.saturating_add(snapshot.total);

 total_per_candidate.insert(account.clone(), snapshot.total);

 <AtStake<T>>::insert(now, account, snapshot);

 }

Impact

A misconfiguration (malicious or accidental) halts era transitions with a runtime panic,

risking liveness and payouts.

Recommendation

Enforce new <= MaxCandidates in set_total_selected or change the selection writer to

return a controlled error on overflow, not panic through expect.

Status

Resolved

Hashlock Pty Ltd

17

[M-02] parachain‑staking#nominator_schedule_revoke_all -

nominator_schedule_revoke_all reports success even if none of the revokes were

scheduled

Description

The function always emits NominatorExitScheduled after looping, even if none of the

per‑collator requests were actually added, for example, all try_push operations failed.

Vulnerability Details

The flow iterates the nominator’s nominations and tries to enqueue a revoke for each

collator, however per‑collator queue push errors are ignored. An unconditional “exit

scheduled” event is emitted afterwards, even if some pushes failed.

<NominatorState<T>>::insert(nominator.clone(), state);

 Self::deposit_event(Event::NominatorExitScheduled {

 era: now,

 nominator,

 scheduled_exit: when,

 });

Impact

Users and tooling can act on a misleading event, assuming a full exit was scheduled,

while some nominations remain and continue locking funds.

Recommendation

Track whether all revokes were actually enqueued; if any enqueue fails, revert the

whole call (or emit a distinct partial‑success event and return a non‑success error).

Status

Resolved

Hashlock Pty Ltd

18

[M-03] parachain_staking#decrease_bottom_nomination -

Bottom‑nomination total never decreases on Decrease

Description

Decreasing a bottom nomination updates the list and ordering, but doesn’t adjust the

“bottom total” accumulator, causing inflated totals.

Vulnerability Details

When a bottom nomination is decreased, the per‑candidate bottom_nominations.total

is not reduced by the decreased amount.

Top nominations do fix total, when bottom nominations do not:

●​ Top decrease - top_nominations.total =

top_nominations.total.saturating_sub(less);

●​ Bottom decrease - updates each bond amount, resorts, resets metadata, but

never subtracts less from bottom_nominations.total.

Later, when a collator exits (execute_leave_candidates), the pallet computes the

collator’s total_backing as:

state.bond + top_nominations.total + bottom_nominations.total

and then subtracts that entire amount from the global Total. Because the bottom total

never went down during decreases, it can be artificially inflated. On exit, Total is

reduced by too much (potentially to zero via saturation).

An attacker (a nominator or a set of nominators) can repeatedly:

1.​ increase a bottom nomination (which adds to bottom_nominations.total), then

2.​ schedule & execute multiple decreases (which don’t subtract from that total).

3.​ Repeat enough times and the bottom “total” grows far beyond the real bonded

amount. When the collator finally exits, Total is slashed by the inflated sum due

to the code path above. This does not steal funds (locks are removed correctly

from accounts), but it corrupts accounting, misreports events, and feeds a wrong

“total staked” snapshot used elsewhere.

Hashlock Pty Ltd

19

Impact

Totals used by selection and reward logic diverge from reality, causing minor reward

misallocation and confusing UI.

Recommendation

Decrease the bottom total by the same amount before writing the updated nominations

back.

Status

Resolved

Hashlock Pty Ltd

20

[M-04] avn_parachain#process_ethereum_events_partition - Missing slashing

for invalid ethereum event votes

Description

Validators submitting invalid votes for Ethereum events face no economic penalties,

making attacks cheap and reducing the security of the event consensus mechanism.

Vulnerability Details

In process_ethereum_events_partition, validators who submit invalid votes are only

logged with a comment "// TODO raise offences". The CorroborationOffence

mechanism exists for transaction corroboration but has not been extended to event

voting.

Without slashing, malicious validators can repeatedly submit invalid events or vote for

wrong partitions without consequences.

// Cleanup

 for (partition, votes) in EthereumEvents::<T>::drain() {

 // TODO raise offences

 log::info!("Collators with invalid votes on ethereum events (range: {:?},

partition: {}): {:?}", partition.range(), partition.partition(), votes);

 }

Impact

Cheap attacks on event consensus by submitting invalid votes. Potential for vote

manipulation if enough validators collude without fear of slashing. Reduced security

guarantees for event processing.

Recommendation

Implement an EventVotingOffence similar to CorroborationOffence. Define clear

slashing conditions for invalid event votes. Additionally, add gradual penalties that

increase with repeated offenses.

Hashlock Pty Ltd

21

Status

Resolved

[M-05] avn-service#start - Unauthenticated local RPC allows arbitrary signing

and sending

Description

The local HTTP service exposes endpoints that allow arbitrary signing with the node's

Ethereum private key and sending of arbitrary Ethereum transactions without any

authentication, potentially leading to complete compromise of the node's Ethereum

wallet.

Vulnerability Details

The HTTP server in lib.rs exposes critical endpoints without authentication:

1.​ GET /eth/sign/:data_to_sign signs arbitrary data with the node's Ethereum

private key,

2.​ POST /eth/send builds, signs, and broadcasts arbitrary Ethereum transactions.

While the server binds to 127.0.0.1, this provides insufficient protection.

Browser-based attacks using DNS rebinding or malicious JavaScript can bypass

same-origin policies. The GET endpoint for signing is particularly vulnerable to CSRF

attacks.

Any local malware or compromised process can directly access these endpoints. The

/eth/send endpoint accepts SCALE-encoded EthTransaction objects that specify any

destination address and calldata, allowing attackers to transfer funds, approve tokens,

or interact with any contract using the node's identity.

app.at("/eth/sign/:data_to_sign").get(

 |req: tide::Request<Arc<Config<Block, ClientT>>>| async move {

 log::info!("⛓️ avn-service: sign Request");

 let secp = Secp256k1::new();

 let keystore_path = &req.state().keystore_path;

Hashlock Pty Ltd

22

 let data_to_sign = req.param("data_to_sign")?;

 let hashed_message =

 hash_with_ethereum_prefix(&data_to_sign.to_string()).map_err(|e| {

 server_error(format!("Error converting data_to_sign into hex string
{:?}", e))

 })?;

 log::info!(

 "⛓️ avn-service: data to sign: {:?},\n hashed data to sign: {:?}",

 data_to_sign,

 hex::encode(hashed_message)

);

 let my_eth_address = get_eth_address_bytes_from_keystore(keystore_path)?;

 let my_priv_key = get_priv_key(keystore_path, &my_eth_address)?;

 let secret = SecretKey::from_slice(&my_priv_key)?;

 let message = secp256k1::Message::from_digest_slice(&hashed_message)?;

 let signature: Signature = secp.sign_ecdsa_recoverable(&message,
&secret).into();

 Ok(hex::encode(signature.encode()))

 },

);

Impact

Complete compromise of the node's Ethereum wallet, allowing attackers to steal all ETH

and tokens, sign arbitrary messages that could be used for off-chain authorization

systems, approve malicious contracts to spend tokens, and interact with DeFi protocols

using the node's identity.

Recommendation

Implement authentication using HMAC signatures or bearer tokens stored securely.

Replace GET endpoints with POST to prevent CSRF via URL embedding. Add Origin and

Host header validation to prevent DNS rebinding.

Hashlock Pty Ltd

23

Status

Resolved

[M-06] web3_utils#build_raw_transaction - Missing Chain ID in transaction

parameters

Description

Ethereum transactions are signed without explicitly setting the chain ID, allowing replay

attacks across different EVM networks and causing transactions to fail or execute on

unintended chains.

Vulnerability Details

In web3_utils.rs::build_raw_transaction, the TransactionParameters struct is created

with Default::default() for remaining fields, leaving chain_id as None. Without explicit

chain ID, the transaction signing depends on library defaults and RPC configuration,

which may not include EIP-155 replay protection.

If the web3 library's behavior changes or the RPC endpoint is misconfigured,

transactions could be signed for the wrong network. This is particularly dangerous

during network forks or when operating across multiple EVM chains. The get_chain_id

function exists but is marked as dead code and never used.

pub async fn build_raw_transaction(

 web3_data: &mut Web3Data,

 send_request: &EthTransaction,

 sender_eth_address: &Vec<u8>,

) -> anyhow::Result<TransactionParameters> {

 let recipient = send_request.to.as_bytes();

 let nonce = web3_data.get_nonce(sender_eth_address, false).await?;

 let web3 = web3_data.get_web3_instance()?;

 let gas_estimate =

 estimate_gas(web3, sender_eth_address, recipient, &send_request.data).await?;

Hashlock Pty Ltd

24

 Ok(TransactionParameters {

 nonce: Some(nonce.into()),

 to: Some(H160::from_slice(recipient)),

 value: U256::zero(),

 gas: gas_estimate,

 gas_price: None,

 data: web3::types::Bytes(send_request.data.clone()),

 ..Default::default()

 })

}

Impact

Signed transactions could be replayed on other EVM networks where the same address

has funds, potentially causing unintended transfers or contract interactions.

Recommendation

Fetch the chain ID once during service initialization using the existing get_chain_id

function. Store it as a service state and explicitly set it in every TransactionParameters

before signing.

Status

Resolved

Hashlock Pty Ltd

25

[M-07] parachain‑staking#nomination_schedule_{revoke/decrease} -

Scheduled nomination requests can be silently dropped when the per‑collator

queue is full

Description

When a collator’s request queue is at capacity, new nomination requests

(revoke/decrease) are discarded without failing the extrinsic. Callers see success even

though nothing was queued.

Vulnerability Details

Both scheduling flows attempt to append to the per‑collator

NominationScheduledRequests. On capacity error, they do nothing and still return Ok, so

the caller cannot tell if the action failed. This is visible in the revoke and decrease paths

where the “push” failure branch is ignored and the dispatchable still completes

successfully.

pub(crate) fn nomination_schedule_revoke(

 collator: T::AccountId,

 nominator: T::AccountId,

) -> DispatchResultWithPostInfo {

 let mut state =

<NominatorState<T>>::get(&nominator).ok_or(<Error<T>>::NominatorDNE)?;

 let mut scheduled_requests = <NominationScheduledRequests<T>>::get(&collator);

 ensure!(

 !scheduled_requests.iter().any(|req| req.nominator == nominator),

 <Error<T>>::PendingNominationRequestAlreadyExists,

);

Hashlock Pty Ltd

26

Impact

An attacker (or just normal load) can fill a collator’s queue so subsequent nominators

believe they’ve scheduled changes when they haven’t, and funds remain locked longer

than expected.

Recommendation

Return an explicit error when the queue is full. Additionally, emit a failure event and add

per‑nominator limits or increase capacity so the queue can’t be trivially saturated.

Status

Resolved

Hashlock Pty Ltd

27

Low

[L-01] parachain‑staking#nomination_scheduled_requests - Per‑collator

request queues are limited by per‑nominator constant

Description

The per‑collator queue NominationScheduledRequests is bounded by

T::MaxNominationsPerNominator. That constant is about how many nominations one

nominator may hold, not how many nominators can line up requests against a single

collator. This is a semantic mismatch that makes the queue far smaller than it should be

for busy collators:

/// Stores outstanding nomination requests per collator.

 #[pallet::storage]

 #[pallet::getter(fn nomination_scheduled_requests)]

 pub(crate) type NominationScheduledRequests<T: Config> = StorageMap<

 _,

 Blake2_128Concat,

 T::AccountId,

 BoundedVec<ScheduledRequest<T::AccountId, BalanceOf<T>>,
T::MaxNominationsPerNominator>,

 ValueQuery,

 >;

Storage uses a BoundedVec<..., T::MaxNominationsPerNominator> keyed by collator, not

by nominator. That means a single collator’s queue can be capped by a value intended

for a different dimension entirely.

Recommendation

Introduce a dedicated MaxScheduledRequestsPerCollator constant and migrate storage

to use it.

Status

Acknowledged

Hashlock Pty Ltd

28

[L-02] parachain_staking#rm_top_nomination - Inverted change flag from

“remove top nomination”

Description

The helper that removes a nomination from the top list reports whether “total

changed,” but the returned boolean is inverted.

The function returns true when nothing changed and false when it did, which is

backwards. This risks callers skipping necessary updates.

// update candidate info

 self.reset_top_data::<T>(candidate.clone(), &top_nominations);

 self.nomination_count = self.nomination_count.saturating_sub(1u32);

 <TopNominations<T>>::insert(candidate, top_nominations);

 // return whether total counted changed

 Ok(old_total_counted == self.total_counted)

Recommendation

Swap the boolean logic to return true when the total actually changed; add a unit test

that mutates state and asserts the flag.

Status

Unresolved

Hashlock Pty Ltd

29

[L-03] parachain‑staking#Genesis - Genesis build double‑counts new

candidates in candidate_count

Description

The genesis build flow increments the candidate counter twice for a successful join,

overstating the count.

After inserting a new candidate, the local counter is incremented twice as the loop

continues, which overestimates the number of candidates.

candidate_count = candidate_count.saturating_add(1u32);

 if let Err(error) = <Pallet<T>>::join_candidates(

 T::RuntimeOrigin::from(Some(candidate.clone()).into()),

 balance,

 candidate_count,

) {

 log::warn!("Join candidates failed in genesis with error {:?}",
error);

 } else {

 candidate_count = candidate_count.saturating_add(1u32);

 }

Recommendation

We recommend incrementing candidate_count once per successful join.

Status

Unresolved

Hashlock Pty Ltd

30

[L-04] parachain_staking#signed_schedule_revoke_nomination - Wrong

error enum on signature failure

Description

The wrong error enum is used in the signature check path for

signed_schedule_revoke_nomination.

The signed version of signed_schedule_revoke_nomination returns

UnauthorizedSignedRemoveBondTransaction on signature failure, which refers to a

different action. This confuses operators and tooling.

ensure!(

 verify_signature::<T::Signature, T::AccountId>(&proof,
&signed_payload.as_slice())

 .is_ok(),

 Error::<T>::UnauthorizedSignedRemoveBondTransaction

);

 Self::nomination_schedule_revoke(collator, nominator.clone())?;

Recommendation

Use a revoke‑specific error type or a generic “Unauthorized” error shared by all signed

flows.

Status

Unresolved​

Hashlock Pty Ltd

31

[L-05] parachain-staking#add_nomination - Underlying nominations storage

hard-limits at 300, but capacity checks use configurable limits

Description

The nomination storage uses a hard-coded limit of 300, while capacity checks use

runtime-configurable limits. When runtime configuration exceeds 300, the system

reports available capacity but silently fails on insertion, corrupting the total vs list

accounting invariant.

The base storage type enforces a hard limit:

pub type MaxNominations = ConstU32<300>;

However, capacity checks use runtime-configurable parameters:

x if x.len() as u32 >= T::MaxTopNominationsPerCandidate::get() => CapacityStatus::Full,

When inserting nominations, the code updates totals BEFORE attempting insertion,

then silently ignores failures:

top_nominations.total = top_nominations.total.saturating_add(more);

top_nominations.sort_greatest_to_least();

If MaxTopNominationsPerCandidate > 300, the system reports capacity available,

updates the total, but fails to insert the nomination, creating a divergence between the

sum and actual nominations.

Recommendation

Ensure BoundedVec type parameters align with runtime configuration limits. Add runtime

validation that MaxTopNominationsPerCandidate and MaxBottomNominationsPerCandidate

never exceed 300.

Status

Unresolved

Hashlock Pty Ltd

32

[L-06]

parachain-staking#hotfix_remove_nomination_requests_exited_candidates

- Wrong error emitted in hotfix function

Description

The hotfix function uses InsufficientBalance error when validating the length of the

candidates array, which is semantically incorrect and misleading.

The function checks that candidates.len is less than 100 but returns

Error::InsufficientBalance on failure. This error type is meant for balance-related

failures, not array length validation. This creates confusion during debugging and makes

error handling inconsistent across the codebase.

Recommendation

Introduce a dedicated error variant, such as TooManyItems or InvalidInputLength for

array size validation. Update all similar validation checks to use semantically

appropriate error types.

Status

Unresolved

Hashlock Pty Ltd

33

[L-07] avn_parachain#remove_active_request_impl - Unrestricted admin

active request removal

Description

The remove_active_request_impl function accessible through

AdminSettings::RemoveActiveRequest allows the admin to remove any active request

without any state validation. The function doesn't check whether an Ethereum

transaction was already sent (eth_tx_hash != H256::zero()), whether corroborations

are in progress, or the transaction's expiry status.

Most critically, it ALWAYS notifies the calling pallet with false for Send requests and Err

for LowerProof requests, forcing a failure state regardless of the actual Ethereum

transaction outcome. If a request is removed after add_eth_tx_hash is called but before

corroborations complete, and the Ethereum transaction succeeds, funds will be

permanently locked on Ethereum while Substrate rolls back its state due to the forced

failure notification.

The function also ignores the return value of notification callbacks using let _ =,

providing no indication if the rollback itself failed.

Recommendation

Implement comprehensive state validation before allowing request removal. Check if

eth_tx_hash is set, verify no pending corroborations exist, and ensure the request has

exceeded reasonable timeout periods (like 2x expiry time).

Status

Acknowledged

Hashlock Pty Ltd

34

[L-08] runtime/lib.rs - Zero existential deposit enables state bloat attacks

Description

The existential deposit is configured to zero in non-benchmark builds, allowing creation

of unlimited dust accounts without any economic cost, enabling severe state bloat

attacks.

Vulnerability Details

The configuration sets EXISTENTIAL_DEPOSIT: Balance = 0 for normal runtime builds.

This means accounts can be created with zero balance, allowing attackers to generate a

large amount of empty accounts at no cost beyond transaction fees.

Each account entry consumes storage space and increases the state size that all nodes

must maintain. The only protection is transaction fees, which may be insufficient to

prevent state growth attacks.

/// The existential deposit. Set to 1/10 of the Connected Relay Chain.

#[cfg(not(feature = "runtime-benchmarks"))]

pub const EXISTENTIAL_DEPOSIT: Balance = 0;

Impact

Attackers can bloat the blockchain state by creating a large number of dust accounts,

degrading network performance for all users. Node operators face increased storage

requirements and slower synchronization times

Recommendation

Set a meaningful existential deposit value or calculate based on actual storage costs.

Implement account reaping for accounts below the existential deposit. Consider

different values for different account types if needed.

Status

Acknowledged

Hashlock Pty Ltd

35

QA

[Q-01] parachain_staking#execute_leave_candidates - Optimistic lock cleanup

on invariant failure

Description

In the recovery path, the code unconditionally removes the nominator lock to ensure

cleanup, which could mask deeper issues if storage drift occurs.

During execute_leave_candidates, if an unexpected inconsistency is encountered

(nominator state missing the recorded nomination), the function forcibly clears the

nominator lock.

The comment acknowledges this as a “TODO: review” assumption. While not

exploitable in normal flows, it is not a good security practice.

Recommendation

Replace this code part with defensive checks and targeted remediation. Additionally,

emit an alarm event and avoid unilateral lock removal when invariants fail.

Status

Acknowledged

Hashlock Pty Ltd

36

Centralisation

The Energy Web Foundation project is moving toward full decentralization by having

many independent validators make all key decisions instead of a single team. A

temporary admin role is only in place during upgrades, after which governance will be

fully community-driven.

Hashlock Pty Ltd

37

Conclusion

After Hashlock’s analysis, the Energy Web project seems to have a sound and

well-tested code base, now that our vulnerability findings have been resolved and

acknowledged. Overall, most of the code is correctly ordered and follows industry best

practices. The code is well commented on as well. To the best of our ability, Hashlock is

not able to identify any further vulnerabilities.

Hashlock Pty Ltd

38

Our Methodology

Hashlock strives to maintain a transparent working process and to make our audits a

collaborative effort. The objective of our security audits is to improve the quality of

systems and upcoming projects we review and to aim for sufficient remediation to help

protect users and project leaders. Below is the methodology we use in our security

audit process.

Manual Code Review:

In manually analysing all of the code, we seek to find any potential issues with code

logic, error handling, protocol and header parsing, cryptographic errors, and random

number generators. We also watch for areas where more defensive programming could

reduce the risk of future mistakes and speed up future audits. Although our primary

focus is on the in-scope code, we examine dependency code and behaviour when it is

relevant to a particular line of investigation.

Vulnerability Analysis:

Our methodologies include manual code analysis, user interface interaction, and white

box penetration testing. We consider the project's website, specifications, and

whitepaper (if available) to attain a high-level understanding of what functionality the

parachain under review contains. We then communicate with the developers and

founders to gain insight into their vision for the project. We install and deploy the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Hashlock Pty Ltd

39

Documenting Results:

We undergo a robust, transparent process for analysing potential security vulnerabilities

and seeing them through to successful remediation. When a potential issue is

discovered, we immediately create an issue entry for it in this document, even though

we have not yet verified the feasibility and impact of the issue. This process is vast

because we document our suspicions early even if they are later shown to not represent

exploitable vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative,

and we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyse the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take and finally, we

suggest the requirements for remediation engineering for future releases. The

mitigation and remediation recommendations should be scrutinised by the developers

and deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the contract details are

made public.

Hashlock Pty Ltd

40

Disclaimers

Hashlock’s Disclaimer

Hashlock’s team has analysed the parachain code in accordance with the best industry

practices at the date of this report, in relation to: cybersecurity vulnerabilities and

issues in the parachain source code, the details of which are disclosed in this report,

(Source Code); the Source Code compilation, deployment, and functionality (performing

the intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be considered as a

sufficient assessment regarding the utility and safety of the code, bug-free status, or

any other statements of the contract. While we have done our best in conducting the

analysis and producing this report, it is important to note that you should not rely on

this report only. We also suggest conducting a bug bounty program to confirm the high

level of security of this parachain.

Hashlock is not responsible for the safety of any funds and is not in any way liable for

the security of the project.

Technical Disclaimer

Parachains are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the parachain can have their own

vulnerabilities that can lead to attacks. Thus, the audit can’t guarantee the explicit

security of the audited parachain code.

Hashlock Pty Ltd

41

About Hashlock

Hashlock is an Australian-based company aiming to help facilitate the successful

widespread adoption of distributed ledger technology. Our key services all have a focus

on security, as well as projects that focus on streamlined adoption in the business

sector.

Hashlock is excited to continue to grow its partnerships with developers and other

web3-oriented companies to collaborate on secure innovation, helping businesses and

decentralised entities alike.

Website: hashlock.com.au

Contact: info@hashlock.com.au

Hashlock Pty Ltd

http://hashlock.com.au
mailto:info@hashlock.com.au

42

Hashlock Pty Ltd

	Executive Summary
	Project Context
	Audit Scope
	Security Rating
	Intended Parachain Functions
	Code Quality
	Audit Resources
	Dependencies
	Severity Definitions
	Status Definitions
	Audit Findings
	Medium
	[M-01] parachain‑staking#select_top_candidates - Root misconfiguration can brick era transitions
	Description
	Vulnerability Details
	Impact
	Recommendation
	Status

	[M-02] parachain‑staking#nominator_schedule_revoke_all - nominator_schedule_revoke_all reports success even if none of the revokes were scheduled
	Description
	Vulnerability Details
	Impact
	Recommendation
	Status

	[M-03] parachain_staking#decrease_bottom_nomination - Bottom‑nomination total never decreases on Decrease
	Description
	Vulnerability Details
	Impact
	Recommendation
	Status

	[M-04] avn_parachain#process_ethereum_events_partition - Missing slashing for invalid ethereum event votes
	Description
	Vulnerability Details
	Impact
	Recommendation
	Status

	[M-05] avn-service#start - Unauthenticated local RPC allows arbitrary signing and sending
	Description
	Vulnerability Details
	Impact
	Recommendation
	Status

	[M-06] web3_utils#build_raw_transaction - Missing Chain ID in transaction parameters
	Description
	Vulnerability Details
	Impact
	Recommendation
	Status

	[M-07] parachain‑staking#nomination_schedule_{revoke/decrease} - Scheduled nomination requests can be silently dropped when the per‑collator queue is full
	Description
	Vulnerability Details
	Impact
	Recommendation
	Status

	Low
	[L-01] parachain‑staking#nomination_scheduled_requests - Per‑collator request queues are limited by per‑nominator constant
	Description
	Storage uses a BoundedVec<..., T::MaxNominationsPerNominator> keyed by collator, not by nominator. That means a single collator’s queue can be capped by a value intended for a different dimension entirely.
	Recommendation
	Status

	[L-02] parachain_staking#rm_top_nomination - Inverted change flag from “remove top nomination”
	Description
	Recommendation
	Status

	[L-03] parachain‑staking#Genesis - Genesis build double‑counts new candidates in candidate_count
	Description
	Recommendation
	Status

	[L-04] parachain_staking#signed_schedule_revoke_nomination - Wrong error enum on signature failure
	Description
	Recommendation
	Status

	[L-05] parachain-staking#add_nomination - Underlying nominations storage hard-limits at 300, but capacity checks use configurable limits
	Description
	Recommendation
	Status

	[L-06] parachain-staking#hotfix_remove_nomination_requests_exited_candidates - Wrong error emitted in hotfix function
	Description
	Recommendation
	Status

	[L-07] avn_parachain#remove_active_request_impl - Unrestricted admin active request removal
	Description
	Recommendation
	Status

	[L-08] runtime/lib.rs - Zero existential deposit enables state bloat attacks
	Description
	Vulnerability Details
	Impact
	Recommendation
	Status

	QA
	[Q-01] parachain_staking#execute_leave_candidates - Optimistic lock cleanup on invariant failure
	Description
	Recommendation
	Status

	
	
	
	Centralisation
	Conclusion
	Our Methodology
	Disclaimers
	About Hashlock
	

