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As our world has become more complex, informed decision
making has become critical for managing the uncertainty
we experience. Machine Learning and Artificial Intelligence
methods have very much helped us along this journey.
However, even these are continually being disrupted by
newer technologies which promise even more accurate
predictions for better decision making.

In our quest for faster results and greater accuracy, much
focus has been concentrated on improving existing, or
creating new machine learning algorithms. Yet these

often fail through lack of context. Iterating over a model, no
matter how good it is, without context fails to connect the
unseen dots nor provide any helpful insight. This is where
we believe the power of graphs comes in. Graphs (in the
mathematical sense) are extremely good at encapsulating
and being able to embody and convey crucial data (context)
about how and why entities are related to one another.
Such information can often be THE crucial piece of a puzzle
needed to answer complex business questions, or indeed
to serve as the secret ingredient to unlock, optimise and
improve predictive ML models to help us do this.

Would you value having the power to uncover hidden links
and patterns in your data and be able to predict the future?
If so, read on!

This book aims to shed light on a real game-changer for
those looking to improve upon simplistic answers
sometimes arrived at by using traditional ML algorithms
and approaches. We show how - in a variety of different
ways - you are able to combine the power of both graphs
and ML to achieve more accurate answers.

This book is not meant to provide in-depth academic
coverage of this subject. Instead we will highlight the
intuition behind how these two powerful concepts can be
combined, providing some practical insights and examples
along the way to help with the explanations.

“I think the next
century will be
the century of
complexity.”

- Stephen Hawking




You've heard it said many times before - it's more about who you know, than what you know. Whilst
this may sit uncomfortably with many of us, it is nonetheless a key factor that influences many
aspects of life around us.

Consider a company trying to promote their new eco-friendly pet food to clients on a social media
platform, but not having much luck. Whilst the company may know for a fact that a certain group of
people have indicated an interest in pet food, it's often not enough to clinch the deal. If however they
manage to identify a highly connected individual (perhaps a celebrity or eco warrior), and get them to
endorse and promote it to their followers, their product may well land up going viral.

We should be vigilant - connections and relationships matter! And if we are able to surface, identify
and leverage the information provided through these connections in our businesses (be these human
or other) this could prove to be the secret ingredient which helps us to make better, more informed
decisions.

More concretely and specifically related to ML (as we see later on), graph representations can
enhance existing ML models to explain data, predictions, and algorithms by relying on the power of
connections.

Take for example DeepMind’'s AlphaFold discovery during a recent CASP challenge. They discovered
they could accurately predict the structure of a protein in at least 75% of cases by representing the
amino acids as a “spatial graph” and solving one of biology's biggest challenges in the process. In
addition to this, there are many peer-reviewed academic papers published proving that the graph
representation improves the accuracy of the algorithms’ predictions. The examples are in multiple
fields, such as recommendation systems (GraphSAGE), traffic speed forecasting (STGNNs), and
program reasoning (Gated Graph Neural Networks).

Gartner positioned Graph in its Top 10 Data and Analytics Technology
Trends for 2020. This report suggested:

50% of Al conversations today involve Graph methods

92% of the organisations it polled are planning to employ a graph technique within 5
years

Graph will form the basis for 80% of the innovation in the data and analytics space by
2025.

View the Gartner Report here



https://deepmind.com/research/case-studies/alphafold
https://predictioncenter.org/
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1707.01926
https://doi.org/10.1016/j.knosys.2021.106746
https://arxiv.org/abs/1711.00740
https://arxiv.org/abs/1511.05493
https://www.gartner.com/en/newsroom/press-releases/2020-06-22-gartner-identifies-top-10-data-and-analytics-technolo
https://www.gartner.com/en/newsroom/press-releases/2020-06-22-gartner-identifies-top-10-data-and-analytics-technolo

Multi Domain Applicability

Graphs and their algorithms are universal in their application across domains and industries, which
makes them very versatile. So whether you are in telecommunications, the social network space,
finance or healthcare, whilst the entities represented in your graph may be different (people vs cell
phone towers vs diseases), the mathematical calculations and algorithms applied over them remain
and work the same irrespective. This characteristic enables discoveries or enhancements in any
algorithm made in one domain to be easily repurposed for use in another.

At a high level, Network Science is an area of research built heavily on graph theory, but which
originally focused on studying real world phenomena in order to uncover common patterns and
interactions in complex networks. Often spanning physical and natural networks (such as biological
or social), researchers found that observations and predictive theories uncovered in these settings,
often applied and translated equally well to other contexts (e.g. scholarly, transportation or power
networks). This resulted in common families of algorithms, arising such as detecting communities or
related groupings of entities which apply across many different domains today.

At a lower level, a concrete example would be the Pagerank algorithm, made popular by Google, it

is really an extension of the centrality algorithms used in social networks. Likewise Amazon used an
extension of similarity algorithms to apply recommendation systems on their own domain for many
years. It's also worth noting that most new algorithms published academically tend to be evaluated
against multiple domains. For example, a recent and popular algorithm, node2vec, tested and verified
its approach against a social network (Facebook), a Protein-Protein Interaction network, as well as a
Citation network.

Natural & Easy To Reason About

Graphs are also really natural and easy to work with (we provide a quick overview in the next
section). Much of the academic and more difficult aspects of working with them has become
commoditized, making it easier for lay people to work with. For example: IClJ (International
Consortium of Investigative Journalists) imported and used Neo4j (a graph database) along with
Linkurious to model and explore the Panama Papers and FINCen files - this was instrumental in
highlighting and finding irregular issues in the financial and political worlds.

Easily Accessible & Usable Software & Platforms

There are also various open source and commercial platforms available that aim to make the
visualisation, exploration and ability to gain insight out of connected data more easy. This includes
products like Linkurious, Hume, Bloom etc.

soosuoNELTO A

Figure 1.1 Visualisation & Exploration Tools on Amazon Product Reviews (Bloom & Hume)


https://en.wikipedia.org/wiki/PageRank
https://arxiv.org/pdf/1607.00653.pdf
https://www.icij.org/
https://neo4j.com/
https://linkurio.us/
https://neo4j.com/blog/analyzing-panama-papers-neo4j/
https://neo4j.com/blog/analyzing-fincen-files-data-neo4j/
https://linkurio.us/
https://graphaware.com/products/hume/
https://neo4j.com/product/bloom/

Many of the major graph platforms and databases have also made their offerings available for
consumption in the cloud or as SaaS offerings. This is making it even easier than ever to get up and
running. Eg TigerCloud, Neo4j Aura, as well as native cloud offerings like AWS Neptune, Azure
CosmosDB etc.

Graph Primer 101

It's worth us briefly describing what a graph is, and establishing some basic language to ensure we
are all on the same page.

Graph Theory is a domain of Mathematics that originated in 1735 with Euler’'s Seven Bridges of
Konigsberg problem. If you want to explore more, The Fascinating World of Graph Theory book is a
great introduction with a comprehensive coverage on the theory and the applications.

A graph representation is a natural data structure - it aligns verbally with how we think and
communicate about relationships. Thereby, it aligns better with talking about data and their
relationships regarding their modelling of real-world concepts, allowing us to better understand or
focus on the derived insight, rather than remapping between relational models back to the real world,
which adds more cognitive load and possibly impedes deeper analysis of the data and its
relationships.

It is typically constructed using nouns (nodes/vertices) and verb predicates (relationships/edges). In
a property based graph (the most common and widely used type) both nodes and relationships can be
enhanced by adding properties to them, providing a richer description.

Relationships are further defined as either being directed or undirected, and can also be weighted (i.e.
it is able to indicate the strength of one relationship compared to another). This is often achieved by
using one of the numeric based properties which can then be used in later algorithms.

By way of an example: imagine we wanted to model a typical e-commerce scenario, where customers
order products. In such a graph the customer and product entities become the nodes (vertices) and
have an edge relationship of ordering going between them. The customer may have properties such
as age and location, and the product a price. We could add more depth to the ordering relationship by
including properties such as how many times the customer viewed the product before buying it, or
even other metrics like the amount of time it sat in their basket before purchase.

Below is a visual representation of this example. The nodes (Vertices) are the Customer, Product,

Inventory, Region and Country. Then, we have relationships (Edges) representing the directed links
between them, namely ORDERED, REVIEWED, STORED_IN, LOCATED_IN and IS_PART_OF.

REVIEWED

STORED_IN LOCATED_IN IS_PART_OF
ORDERED

Customer Product Inventory Region Country

Figure 1.2 A simple supply-chain network


https://www.tigergraph.com/cloud/
https://neo4j.com/cloud/aura/
https://aws.amazon.com/neptune/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://press.princeton.edu/books/paperback/9780691175638/the-fascinating-world-of-graph-theory

As noted earlier, edges themselves can be extended with properties including weighting values,
which can be used for further computations by certain algorithms. In the visualisation below, the
REVIEWED relationship has date, helpfulness, rating, review, and summary properties. The rating
value could serve as a weight.

/_I»Lav EWED |

e A W
date DATE IN LOCATED_IN IS_PART_OF
ORDERED
Customer helpfulness  STRING Inventory Region Country
rating INTEGER
review STRING
summary STRING

This model may look like a relational database model, the difference will become more clear when we
want to explore the relations between the customers only to find out how similar or how important
they are relying on the relations they have with the other nodes. With 400 million monthly active
users pinning 240 billion products, Pinterest needed a recommendation system to suggest products
to customers. They solved this problem with graphs, which we will explore further in these next parts
of the Ebook.

GNNs improve real-fime ETA predictions by 50%

DeepMind, London-based Al lab owned by Google's
parent company Alphabet, picks out patterns in the data
and uses them to predict future traffic. Google says

itfs new models have improved the accuracy of Google
Maps' real-time ETAs by up tfo 50 % in some cities.



https://www.pinterest.com
https://digital.hbs.edu/platform-digit/submission/how-pinterest-uses-machine-learning-to-provide-tailored-recommendations-to-million-of-users-worldwide/
https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

GRAPHS, UATA SCIENCE AND ML
- HOW ARE THEoE RELATEDY

Wikipedia, as well as Cassie Kozyrkov happily defines Data Science as a ‘concept to unify statistics,
data analysis, machine learning and their related methods’ in order to ‘understand and analyze actual
phenomena’ with data. Data Science is an umbrella term which encompasses a few different areas
including the use of general statistics and analytics (where graphs and their associated graph
algorithms happily contribute already as a subspecialty in and of their own right), as well as Al and
Machine Learning.

Ultimately however, regardless of the technique used to get there, the goal of data science is always
to be able to understand and extract useful information from data for insights and decision making
purposes. As we shall see in the remainder of this Ebook, Graphs and ML can be mutually beneficial
to each other. To help us explore the various ways in which graphs can feed into ML models and vice
versa, we shall use the diagram below to guide our thinking, referring to it at appropriate points in
each section.

% Explicit Graph Building
\\ From multiple sources | _ _ _ _ - - = 3
/ build a graph with simple | g, ,...coeeeeeeereees % Apply more tuning for
. techniques H a better model ]

Qo 1‘

unstructured NLP
data (O _)—=| - entity recognition
@ E - link recognition

Run Productionised
Model

Update graph as
appropriate - e.g. if
predicted link is
accepted

Run Predictive
Graph Analytics Directly
Choose algorithm to run directly and update
OR suggest updates for graphs

SGA

D @

Standard Graph Algorithms

(SGA) Supervised ML -
o s Manual Graph Feature Engineering
- Link prediction D l..p|  Decide/apply graph features to use as inputs (eg

- cluster coefficient
- Community detection

etc SGA

community detection, node degree)
(vectorise as appropriate)

Train & Test

@ ML Model A

Build / Update Graph Unsupervised ML -
————————— > Automated Graph Feature Engineering

Decide / select graph learning algorithm (eg
. o b ok GraphSage, Nodeave)

(vectorise as appropriate)

Non ML Process

ML Process

Figure 1.4 Different Interaction Modes For Graphs & ML


https://medium.com/hackernoon/what-on-earth-is-data-science-eb1237d8cb37

So can you get insights from your data just by modelling and visualising it as a graph? Yes you can!
And this is typically the entry point into the world of graphs for most organisations - it is a very
natural way to represent and store data which is highly connected and allows for interesting analysis
of your network domain - a graph is also often referred to as a network.

The deliberate gathering of data from multiple sources and linking them appropriately, often results
in what is referred to as a “knowledge graph”. Where data pertaining to your specific domain of
interest is intentionally interconnected in a meaningful way to allow for strategic decision making,
context and programmatic reasoning and predictions to be made. Organisations sometimes find that
they collect more data than they currently need, however they still choose to include this in their
graph in the hope that it will prove useful later down the line. This is a little bit like a “data lake” -
where having stored much, you know there is lots of good information to be mined, but you are just
not sure what it exactly looks like yet. Graphs have a flexible but predictable query structure which
make this very easy to do with a better audit trail capability.

Oftentimes the data in the graph is built up as a result of explicit user driven or programmatic
rules/user supplied information (ref A in Figure 1.4). For example, one of the common problems
organisations face is to assess the skills areas for their employees to increase productivity and
performance. To achieve this, data can be collected from users, and linked to other systems to
integrate and provide better visibility of the employee profiles.

Natural Language Programming (NLP)

Graphs can just as easily be built up via more automated means, for example by extracting data from
more unstructured sources via techniques like NLP (ref B in Figure 1.4). “NLP is a field in machine
learning with the ability of a computer to understand, analyze, manipulate, and potentially generate
human language” - For example an organisation may scan people’s CV's to try and make sense of
text, utilising techniques such as entity extraction or named entity recognition to detect “entities”

like former places of work, skills etc and building the knowledge into the graph this way. This is one
example where Al/ML techniques can be used to construct a new or feed into an existing knowledge
graph. This comes with its own set of challenges in terms of being able to actually identify the correct
nodes and relationships in the first place, but continues to be a growing area of research in improving
the automated creation of knowledge graphs in the face of vast swathes of unstructured data.

OpenCredo has helped many customers to consolidate and
model highly connected data projects, such as the National
Journal, a Washington D.C. based research and advisory

service. Working with the Network and Science Initiative team,
the project aimed to consolidate their disparate datasets,
forming a single source of truth. This would allow their analysts
to access better quality insights with graph visualisations on
their clients, projects, and connections using NeoZ4J, Linkurious
running on Google Cloud Platform. You can read more in our

case study.



https://towardsdatascience.com/natural-language-processing-nlp-for-machine-learning-d44498845d5b
https://towardsdatascience.com/natural-language-processing-nlp-for-machine-learning-d44498845d5b
https://towardsdatascience.com/natural-language-processing-nlp-for-machine-learning-d44498845d5b
https://www.expert.ai/blog/entity-extraction-work/
https://en.wikipedia.org/wiki/Named-entity_recognition
http://nationaljournal.com/
http://nationaljournal.com/
https://neo4j.com/
https://linkurio.us/
https://cloud.google.com/
https://opencredo.com/case-studies/national-journal/
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Link Prediction

In some cases you may have a graph, where perhaps some information is missing. You may be
missing certain nodes, but more importantly relationships between those nodes. Social networks
seldom have all the relationships actually in existence contained within them, and many biological
modelled networks are often incomplete. For example consider protein-protein interaction networks,
where proteins are tested whether they interact with each other or not. Scientists can typically

only predict which protein molecules can interact with others through real world field or laboratory
experiments. Today, scientists have identified less than 0.3% of interactions between human proteins.
However, modelling this information as a graph, and then being able to infer and suggest interactions
(links), some significant cost savings can be gained for those in the bioinformatics space.

A family of algorithms called link prediction can help here. As the name implies, it tries to predict
where there may be missing, or indeed possible future links between two currently unconnected
nodes in a network. The most common way of doing this is by examining and using current (often
local) connections and properties to try and work this out. In layman's terms, one tries to compute the
“closeness” between nodes. Specific algorithms include Adamic Adar, Common Neighbors and
Preferential Attachment to list a few. Given two nodes, this family of algorithms can produce results
which are often used as direct predictors of missing links (ref C in Figure 1.4).

Now whilst such insights are valuable in their own rights, they (along with other properties and
information about relationships) can yield much more accurate results when they form part of, or are
provided as input into continual learning processing via machine learning (ref D1-D5 in Figure 1.4).
This is where we will be concentrating more of our time, but as you can see, we have created a
somewhat circular workflow because we have the graphs feeding ML models (via algorithmic results
- ref D1 & D2 in Figure 1.4), and the ML models potentially updating the graph in return! (ref D4 in
Figure 1.4) We have a feedback loop - which is great, it means our models can continually learn!

ML Mapping of Cancer-beating Molecules

A tfeam at Imperial College London, led by Michael
Bronstein, discovered cancer beating molecules
"hyperfoods” simply using Graph ML by maodelling
the "network effects" of their interactions.



https://en.wikipedia.org/wiki/Protein%E2%80%93protein_interaction
https://en.wikipedia.org/wiki/Link_prediction#Adamic%E2%80%93Adar_measure
https://en.wikipedia.org/wiki/Link_prediction#Common_neighbors
https://en.wikipedia.org/wiki/Preferential_attachment
https://www.nature.com/articles/s41598-019-45349-y
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Graph Data Science - Extracting Value Via Standard
Analytics & Algorithms

There is a whole range of well established and understood graph algorithms which can be used “as
is” to extract information, gain insights and make predictions once you have your data represented in
a graph - No ML required (ref C on Figure 1.4). We are not going to try and list them all in this Ebook
as the focus is more on how to combine them with ML, and many books have been written on these.
For completeness however we briefly highlight a few primary categories and algorithms which can be
helpful, especially as they relate to usage as input to downstream ML model building.

The book Graph Algorithms by Amy Hoddler and Mark Needham does a great job of taking you
through some of these and their various applications demonstrated in both Spark and Neo4,.

Search & Path Finding Algorithms

Foundational algorithms such as Breadth First or Depth First provide us with a few different ways
of searching, walking or exploring a graph. In fact many other families of algorithms are built on top
of them. Pathfinding more specifically, seeks to answer questions such as what is the shortest path
between two nodes, or how many different paths exist between two nodes, and what does that path
of connections for them look like? The Dijkstra algorithm typically features heavily here, as does the
Random Walk for more exploratory requirements as we discover a bit later.

Use Cases:

Transport and physical logistical networks work well with such algorithms. Working out the fastest
route to get a parcel to you is an obvious example. Likewise understanding what downstream
houses or businesses are impacted if a particular substation in an electricity grid goes down serves
as another good example. Connectivity between nodes/edges does not have to be confined to the
physical/geographic layout of related edges. The relationship and distance between the edges can
model other metrics, such as time or cost. Supply chain models also benefit from pathfinding
algorithms as many possible considerations may need to be taken into account for how to effectively
distribute goods. Besides the cost of materials and freight routes, storage can change, and thus
finding the shortest path (including using weighted information, i.e. which metric is more important
for the use case) is essential for best resource consumption when we have regulations, and
unexpected supplier changes occur. For more information on this, you can read our case study on how
Sedex has provided a fast Ethical Supply Chain with the help of OpenCredo.

Centrality Algorithms

Centrality Algorithms are used to find the most critical or important nodes (and their associated
influence) in a network. They help answer questions and provide insights around group dynamics (i.e.
which node, person, org etc is most credible), or identify bridges between different groups. The most
straightforward (but also quite limited) algorithm is the Degree Centrality, where we can identify a
node as powerful by its total number of degrees (i.e. total number of incoming or outgoing
relationships it has). PageRank, popularised by Google to rank web pages, has massively gained in
popularity and is being used in many more commercial contexts.

Use Cases:

PageRank is excellent at detecting the central figures in a network, the rising stars, or the malicious
threads and enables us to better understand the network we have. It can help us find emerging
leaders in fast-growing companies or reveal criminal networks. In one case, it was used to rank
spaces in order to predict human movement in an urban environment/city.


https://learning.oreilly.com/library/view/graph-algorithms/9781492047674
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Pathfinding
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Random_walk
https://opencredo.com/case-studies/sedex/
https://en.wikipedia.org/wiki/Centrality
https://en.wikipedia.org/wiki/Centrality
https://en.wikipedia.org/wiki/PageRank
https://arxiv.org/abs/physics/0612011

Clustering Algorithms

Clustering or Community detection algorithms help us find the groups of nodes which seem to belong,
or are related to each other in some way. This is done by looking at which members have more
significant interactions with each other and classifying them. It is able to reveal tight clusters, isolated
groups, and structures not overtly obvious or labelled upfront. Algorithms in this space include
Louvain, Label Propagation and Strongly Connected Components.

Use Cases:

The most famous example is Zachary's karate club. During his studies, anthropological researcher
Wayne Zachary observed a conflict between the leaders of the karate club and a member, and he
predicted how many subgroups would emerge. Another example from more recent history is

the study on Enron’s fraud investigations. Email, a standard method for social network extraction,
was used to identify the communication patterns before and during Enron’s collapse. The studies
showed that we could detect fraud systemically as an abnormal behaviour with highly segmented and
cohesive groups with little cross-communication. During the fraud, there were clusters of people
conversing that wouldn’t normally.

Link Prediction Algorithms

As noted earlier, this family of algorithms helps predict where there may be missing or possible
future links between two currently unconnected nodes in a network. Specific algorithms looking to
compute the “closeness” between nodes include Adamic Adar, Common Neighbors and Preferential
Attachment.

Use Cases:

To find missing links in networks. Take for example a social network, where the “friendship”
suggestions in LinkedIn or Facebook typically reveal a hidden connection - i.e where the user already
knows the suggested person but has not connected on the social platform yet. It could likewise
identify where there is a high possibility the users will connect in the near future. Recommendation
models also make heavy use of link prediction algorithms.

Customer Churn Prediction in Telecommunication

Customer Churn Prediction is a very critical model
algorithm for every business. A tfelecommunications

company integrated Social Network Analysis [SNAJ in
their prediction model. This enhanced the performance
of the model from 84 1o 93.3% against AUC standard.



https://en.wikipedia.org/wiki/Louvain_method
https://en.wikipedia.org/wiki/Label_propagation_algorithm
https://en.wikipedia.org/wiki/Strongly_connected_component
https://en.wikipedia.org/wiki/Zachary%27s_karate_club
https://usir.salford.ac.uk/id/eprint/18157/1/Published_paper.pdf
https://edition.cnn.com/2013/07/02/us/enron-fast-facts/
https://en.wikipedia.org/wiki/Link_prediction#Adamic%E2%80%93Adar_measure
https://en.wikipedia.org/wiki/Link_prediction#Common_neighbors
https://en.wikipedia.org/wiki/Preferential_attachment
https://en.wikipedia.org/wiki/Preferential_attachment
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0191-6
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0191-6
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Using Graphs to Enhance ML

Whilst we know graphs contain rich predictive information which would be valuable for use in ML
models, making it available in a timely manner and format which ML models can consume, is
somewhat of a harder problem. Continuing with our diagram from earlier we now explore how graphs
can specifically be fed into and used to enhance ML models.

% Explicit Graph Building
2 From multiplesources | _ _ _ _ _ - — = 1
build a graph with simple S s 0mnsemeo ety x Apply more tuning for
techniques - a better model ]
N
sl
3 A
unstructured NLP
data O - entity recognition |- —) Run Productionised
@ E - link recognition Model
Update graph as
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RO predicted link is
Zad accepted
C -7
3
\
Run Predictive \
Graph Analytics Directly o \
Choose algorithm to run directly and update o \
OR suggest updates for graphs . Y
SGA
Standard Graph Algorithms . :
(56A) : Supervised ML -
. . ke Manual Graph Feature Engineering
- Link Pred'“'?" {S.oopp|  Decide/ apply graph features to use as inputs (eg
- cluster .coeffiuen.t community detection, node degree)
- Community detection > (vectorise as appropriate)
etc ’ SGA
Train & Test
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————————— > Automated Graph Feature Engineering
Decide / select graph learning algorithm (eg
Ingest Graph As Input
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Non ML Process
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Figure 1.4 [Duplicated) Different Interaction Modes For Graphs & ML

Using Basic Graph Algorithms & Metrics

Let's assume we have identified some standard algorithms which can provide some good predictive
elements about our specific domain. Examples may include running community detection in order to
label nodes with their respective grouping result (node classification). In another case, using page
rank to score how important people are in their network from an influential perspective, and assign a
score to them. What do we do with this information?
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As a first pass, especially where the results are simple scalar values as in the above examples, they
can simply be extracted and added as individual features to an existing ML feature vector (ref D1

in Figure 1.3). Note, to make life easier, these results are often written back into the graph (eg. as a
property on a node). This approach is more typical in supervised ML models. See the example feature
vector below used for input for a ML model to predict how many people would buy a particular
product if the specific person in the network promoted it on their website.

Traditional property based Graph Extracted Features
features (obtained from non
graph data)
Person ID Age Location Community | Influence (PageRank)
(also Node ID) ID Score
A1UQRSCLF |25 London 1 (Retail 0.56
Shopper)
Al6130LZZ 68 Bristol 2 0.12
(Pensioner)
AZOF9E17R 26 Warwick 1 (Retail 0.15
Shopper)

We have essentially engaged in what is known as feature engineering, and have achieved our goal of
transforming and including some insightful graph metrics as specific features enabling an existing ML
model to use this newly added info.

Graph Embeddings

Relying on supervised, user directed knowledge as described above offers limited improvement for
feature engineering however. The features are hand-engineered, and are inflexible as they cannot
learn during the learning process. Recent studies however have highlighted new approaches to graph
representation learning - namely finding more dynamic exploratory ways of traversing, uncovering
and automatically encoding the structure of the network into one or more vector spaces - otherwise
known as “graph embedding”.

This is typically done by embedding details of specific components themselves (usually the nodes
along with info about some of its related edges) in a vector, or sometimes indeed the whole graph
itself as a single vector. These more dynamically learned vectors can then be used by ML Models
(ref D2 in Figure 1.3).

One such way to do this is via Node2Vec, an algorithmic framework for taking a node and its
surrounding neighbourhood and vectorising it. This approach uses multiple random walks to move
over the graph space, thereby allowing the process to “learn” about its surrounding neighbours. This
info is then preserved by capturing it in a vector, where nodes inferred to be similar or part of a
community in the original network, are represented as being “close together” in the final vector
(embedding) space but in a much condensed format. This transformed/embedded information can
then be used by standard ML models as part of decision making.


http://snap.stanford.edu/proj/embeddings-www/
http://snap.stanford.edu/proj/embeddings-www/
https://snap.stanford.edu/node2vec/
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4

What’s wrong with just using the standard graph analytic\
algorithms directly?

Nothing necessarily, however executing standard graph analytic algorithms,
especially on large graphs, can involve high computational and space
requirements where costs can skyrocket quickly if you are not careful.
Graph embeddings provides an effective and efficient method to take large
complex graph representation data and simplify it (mathematically speaking
we convert it into a low dimensional representation of the graph) whilst still

Kpreserving its important traits or properties. /

Figure 1.5 shows us the results of running and visualising a traditional community detection
algorithm on Zachary's Karate Club data (left image), with the resulting visualisation of running
Node2Vec on the left. We can see that whilst providing some initial help, the auto discovery of the
clusters via Node2Vec is not quite as good as we would like.

100
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Fig 1.5 Visualisation of Node2Vec results [right image) as run on Zachary's Karate Club data

Node2Vec can be limited, as it only takes a local perspective into account (i.e. walkable local
neighbour relationships but no properties). Additionally the assumption that similar nodes are close
together as determined by a simple random walk may not necessarily be the most appropriate
predictor in some types of graphs.


https://arxiv.org/pdf/1709.07604.pdf
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This is where Graph Neural Networks (GNN) step the learning up another notch. It takes account

of both node neighbours, as well as their node properties. Crucially, a GNN's ability to make use of
aggregated information from nodes and neighbours, improves precision by virtue of the fact it has
more relevant information available for calculation. As per Figure 1.6, we can see the most simplest
GNN algorithm GCN can create a better embedding and clustering of the dataset.
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Fig 1.8 Visualisation of GCN based embedding results [right image) as run on Zachary's Karate Club data

GraphSAGE is a recently developed GNN learning algorithm which is inductive. This means that it
does not rely on a static unchanging graph as input (transductive) each time during training. Instead,
it can deal with a changing graph when new nodes are added. The latter is far more common in
commercial settings than operating on a static graph which never changes and thus far more
preferable. UberEats describe how they saw a 12 percent boost in AUC when using a modified version
of GraphSAGE compared to their existing productionised baseline model for making food
recommendations to users.

Graph Embeddings can be an advanced topic, if you would like more detail this paper as well as the
Stanford University's Machine Learning with Graphs course provides a pretty good starting point.



https://arxiv.org/pdf/1812.08434.pdf
https://arxiv.org/abs/1609.02907
http://snap.stanford.edu/graphsage/
https://eng.uber.com/uber-eats-graph-learning/
https://arxiv.org/abs/2012.08019
http://web.stanford.edu/class/cs224w/

Similar to traditional data processing, Graph data, from ingestion to examining the resultset, goes
through a series of processes and the model’s quality is improved with better quality of data.
Although the process looks familiar, the problems arise in different forms and shapes, as the
representation of a graph requires various perspectives.

Feature Independence

Traditional machine learning models, specifically those based on
statistics and requiring supervised human intervention to learn, rely on
input features being independent. However, in the graph world, nodes
are not independent; they are explicitly linked.

For graphs, we simply need to accept the fact that we need to do things
differently because often the best way to predict a type of node, or link
between nodes IS to explicitly use information from surrounding
neighbours to help us. For example, being able to infer that nodes
closer together tend to be of the same type, or that two nodes tend to
be linked if many of their fellow nodes are linked. As many of the
standard ML independence assumptions break down when working
with graphs, we basically convert our process from a “supervised” one
to a “semi-supervised” or unsupervised one, allowing us to take
advantage of this. For example the use of NodeZ?Vec relies on a
conditional independence assumption.



https://snap.stanford.edu/node2vec/

Balancing Issues

With traditional machine learning algorithms, we implement standard
checks to ensure the data is of good quality. Specifically, if we are
looking at a supervised classification problem, i.e. we want to find out
the group of a given record, we will want to determine whether the
dataset is balanced. This is important to ensure we don't use

overly biased data for training and testing our model leading to skewed
results. Taking the more simple case of binary classification (figuring
out which of two groups an entity belongs to), we would want to ensure
each group has the correct percentage of representation in the dataset,
which we will use to train and test on. When we find imbalances, we
often apply imputation technigues (the process of replacing missing
data with substituted values) such as oversampling and undersampling
to correct this.

The quality of the model depends on the quality of the input data. With
graphs, classification algorithms suffer from the classic problem of the
imbalanced dataset. The input dataset does not have a similar sample
ratio when comparing the positive predictions and negative predictions.
Standard solutions are either oversampling, where we add more
sample data to the minority group or undersample, where we remove
some data from the majority group. With Graphs, balancing data with
oversampling can be done via GraphSMOTE, a recent algorithm to
balance the dataset.

It synthesises new genuine nodes, similar to SMOTE (Synthetic

Minority Over-sampling Technique) used in traditional ML algorithms.
Also, the GRAPE framework generates the observations and features
as two types of nodes in a bipartite graph and the observed feature
values as edges. The feature imputation is an edge-level prediction
task, and the label prediction is a node-level prediction task.



https://en.wikipedia.org/wiki/Imputation_(statistics)
https://cs.stanford.edu/~jure/pubs/sampling-kdd06.pdf
https://arxiv.org/pdf/2103.08826.pdf
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://cs.stanford.edu/people/jure/pubs/grape-neurips20.pdf

Splitting Datasets

Traditional supervised machine learning algorithms split the dataset
into a minimum of 2 sets: the training dataset and the test dataset. The
algorithm with initial hyperparameters runs on the training set and fits
the model with this data. Then, using the formula it has created, it
evaluates the test data to understand how good the method is to
predict the ground-truth testing dataset, with the help of the metrics as
accuracy, which we will talk about in detail later in the Model Scoring
section.

For Graph, splitting the data can be challenging, as it does not have

a standard structure. But the good news is that there are some

proven ways we can achieve this. The first one is to give new labels

to the nodes and assess whether we can predict the nodes correctly.
This method does not rely on any information declared via the
connections but uses the properties of the node, which is a simple node
classification. For an auction dataset, an example would be; we can split
it into sellers, buyers, and seller-buyers.

The second method is, if/when we have more insight about the
connectivity, we can split it into multiple subgraphs. If we have a
timestamp of the links (the graph would then be called a time-variant
graph), we can divide the graph with new and old connections. If we
don’t have time variance, we can split by removing different training
and test validation links depending on the domain.

Validation Graph Test Graph Training Graph
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Graph MLOps

To truly be able to harness the power of graphs and ML, you need to have a predictable, reliable
(automated) way of updating, looping and feeding back into the graph ML lifecycle. MLOps, the
process of automating and productionising your ML model and lifecycle, deserves a book all on its
own, let alone when you throw graphs into the mix. Whilst we aren'’t able to go into detail here, we do
hope to cover this topic in more detail at a later date, so stay tuned for more in this spacel

CONCLUSION

We hope this book has given you a sense for how you are able to improve your machine learning
endeavours by incorporating information about the connections inherent in your problem domain in
your models. We've seen how even relatively simple approproaches, such as including the results of
graph algorithms in existing ML models, can improve both accuracy and predictive capability. But
going beyond this, there are opportunities to leverage some of the more state-of-the art approaches
and technologies available such as Graph Neural Networks (GNNs) which offer even more
improvements. There are of course some unique challenges involved in trying to harness the power
of graphs for ML, and one should be aware of these. But overall, even with such challenges, we
believe the effort is worth it for the improvements on offer!

We hope to see you soon in the hybrid world of graphs and ML. And if you have a connected data
problem and are looking for help, we are more than happy to chat and discuss your options with
you - so please do reach out!

s R

Petar Velic¢kovic, Senior Researcher at DeepMind:

2020 has definitively and irreversibly
turned graph representation learning intfo
a first-class citizen in ML."

A 4



https://en.wikipedia.org/wiki/MLOps
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