

SUSTAINABLE CAFETERIA GUIDELINE

Acknowledgments

This guideline was prepared by Greenovators within the framework of the Eco Plate for Eco Planet project, which was awarded in the Menu for Change Challenge. Greenovators led the project's design and implementation with the assistance of EIT Food, YPARD (Young Professionals for Agricultural Development), and the Seeding the Future Foundation. The valuable support and shared vision of these partners in fostering sustainable food systems have been fundamental to the development of this document.

Co-funded by the
European Union

Table of Contents

Foreword	<hr/>	i
Abbreviations & Acronyms	<hr/>	iv
Introduction	<hr/>	v
Aims & Objectives	<hr/>	vii
1. SUSTAINABILITY	<hr/>	01
2. SUSTAINABLE FOOD CATERING	<hr/>	08
3. SUSTAINABLE FOOD PREPARATION	<hr/>	22
4. WASTE MANAGEMENT	<hr/>	39
5. ENGAGEMENT	<hr/>	56
6. MONITORING & EVALUATION	<hr/>	61
Future Vision	<hr/>	64
References	<hr/>	66

Foreword

The transformation of food systems is no longer a distant aspiration—it is an urgent necessity. Universities, as centers of learning, innovation, and community building, are uniquely positioned to lead this change. The choices made in university cafeterias not only influence the health and well-being of students and staff but also set examples that resonate far beyond campus borders. A sustainable food environment nurtures healthy dietary habits, reduces environmental pressures, and empowers future generations to make informed choices for themselves and for the planet.

Foreword

This guideline has been developed by a team of dietitians and graduate students in Public Health Nutrition, drawing on both scientific evidence and practical experience.

'Our shared vision is to foster a food system that is fair, resilient, and health promoting, ensuring that no one is left behind. By translating global knowledge into locally relevant actions, we aim to support universities in aligning their food services with principles of sustainability, equity, and public health nutrition.'

-Raife Kotzaoglan
-Armineh Rajabi
-Bilge Çolak

Foreword

Each recommendation is designed to be practical, evidence-based, and adaptable to different institutional contexts. We recognize that universities vary widely in their resources, infrastructure, and cultural environments. Therefore, this guideline does not propose a single rigid model; rather, it offers a flexible framework that can be adjusted according to local needs while maintaining fidelity to shared principles of sustainability and health.

The path toward sustainable food systems is complex and requires contributions from all actors—students, cafeteria staff, university administrators, local producers, and policymakers. Universities must therefore embrace their role not only as providers of food but also as educators, innovators, and change agents. By integrating sustainable practices into everyday food service, universities can inspire lifelong habits, reduce their ecological footprint, and contribute meaningfully to the Sustainable Development Goals (SDGs).

We hope this guideline will serve as a practical roadmap for universities committed to transforming their food systems. By working together across disciplines and responsibilities, we can shape campus environments that are healthier, more inclusive, and more sustainable—for today's students and for generations to come.

Abbreviations & Acronyms

ASC	Aquaculture Stewardship Council
CF	Carbon Footprint
FAO	Food and Agriculture Organization of the United Nations
GHG	Greenhouse Gas
M&E	Monitoring & Evaluation
MSC	Marine Stewardship Council
SAFA	Sustainability Assessment of Food and Agriculture systems
SDG	Sustainable Development Goal
SFS	Sustainable Food Systems
VC	Value Chain
WF	Water Footprint
WHO	World Health Organization

Introduction

The world today is facing unprecedented environmental challenges. Climate change, biodiversity loss, resource depletion, and rising food insecurity are all interconnected with our methods of food production, consumption, and waste. According to the Food and Agriculture Organization, food systems account for more than one-third of global greenhouse gas emissions, significantly impacting both planetary and human health.

Introduction

Transitioning toward sustainable food systems is crucial for addressing the climate crisis, improving public health, reducing inequalities, and safeguarding resources for future generations. Central to this shift is the concept of sustainable diets: dietary patterns that promote health, have a low environmental impact, and are culturally acceptable, economically fair, and accessible to all.

Universities, as influential institutions of learning and innovation, have both the responsibility and the opportunity to lead this transition. With their extensive reach and daily impact on thousands of students and staff, universities can serve as role models for climate-conscious behavior and sustainability-driven thinking. Cafeterias, in particular, play a significant role in this process. They are not just places to eat; they are living laboratories where sustainable practices can be demonstrated, scaled, and normalized. By reducing food waste and opting for local, seasonal, and plant-based ingredients, university cafeterias can significantly reduce their environmental footprint while promoting healthier communities. Additionally, sustainable cafeteria practices can influence students' lifelong habits, helping to cultivate future generations of environmentally aware citizens and professionals.

Greenovators has developed this guideline to assist universities in rethinking their cafeteria services through a sustainability perspective. This resource offers a clear, practical, and science-based framework to guide institutions in transforming their food environments. It addresses vital areas such as food procurement, menu design, waste reduction, energy and water consumption, staff engagement, and student participation. By following this guideline, universities can take significant steps toward achieving both national and global sustainability goals, including the United Nations Sustainable Development Goals (SDGs), while enhancing their identity as forward-thinking, socially responsible institutions. Together, through informed decisions and collaborative action, we can transform university campuses into vibrant hubs of sustainability – one plate at a time.

Aims & Objectives

Through this guideline, we aspire to inspire decision-makers to view food as more than just fuel; it is a tool for education, a catalyst for environmental action, and a means to build healthier, more resilient communities. By supporting sustainable practices in sourcing, serving, and sharing food, we believe universities can become leaders in climate responsibility and social equity, empowering the next generation to embrace and carry these values forward.

Our objectives are to:

1. Identify key areas of cafeteria operations where sustainability improvements can have the greatest impact, including food sourcing, waste management, menu planning, energy use, and packaging.
2. Provide clear, actionable guidance on implementing sustainable practices that are practical and scalable in university settings.
3. Encourage the adoption of sustainable diets that promote health and well-being while minimizing environmental harm, in line with national and global recommendations.
4. Support alignment with international frameworks, such as the United Nations Sustainable Development Goals (SDGs), and national climate and food policy targets.
5. Empower cafeteria staff, administrators, and students with the knowledge, tools, and inspiration necessary to drive meaningful change in campus food environments.
6. Promote collaboration and knowledge-sharing among departments, student groups, and stakeholders to embed sustainability into the university's identity and daily operations.
7. Establish a system for monitoring and continuous improvement, encouraging reflection, evaluation, and innovation in sustainable food practices over time.

SECTION 1

SUSTAINABILITY

1.1 Sustainable Food Systems

A sustainable food system (SFS) refers to the complete network of individuals and activities involved in producing, processing, distributing, consuming, and disposing of food. This includes components from agriculture, forestry, and fisheries, as well as the broader economic, social, and environmental contexts they operate within.

These systems are made up of various sub-systems—like farming, input supply, and waste management—and are influenced by and connected to other major systems such as health, energy, and trade. Because of this interconnectedness, changes in one system (e.g., a shift in energy policy favoring biofuels) can significantly affect the entire food system.

A truly sustainable food system is one that ensures long-term food security and nutrition without compromising the ability of future generations to meet their own needs. This involves:

- Economic sustainability – ensuring profitability across all sectors
- Social sustainability – promoting equity and social well-being
- Environmental sustainability – maintaining or improving the natural resource base

Sustainable food systems are central to achieving the United Nations Sustainable Development Goals (SDGs), especially those targeting hunger, food security, and nutrition by 2030. Transforming global food systems requires coordinated efforts that are inclusive, environmentally responsible, and focused on delivering healthy diets. These efforts must span across local to global levels, recognizing the complexity and interdependence of challenges within food systems.

In today's fast-changing world, food systems are at the center of some of the most pressing global challenges — and opportunities. With rising populations, rapid urbanization, shifting consumer preferences, climate change, and resource depletion, the way we produce, distribute, and consume food is evolving rapidly. While progress in food systems has brought benefits like expanded food choices and job creation in food industries, it has also introduced new threats to nutrition, health, and the environment. The increased consumption of ultra-processed, low-nutrient foods, growing food waste, and limited access for small-scale producers to fair markets are just a few of the pressing issues.

The Food and Agriculture Organization of the United Nations recognizes that while modern food systems have improved food availability and created jobs, they've also led to serious challenges—including poor nutrition, environmental degradation, and inequities in market access. To address these, FAO promotes a holistic transformation of food systems guided by five key action areas:

1. PROMOTING SUSTAINABLE AGRICULTURE PRACTICES

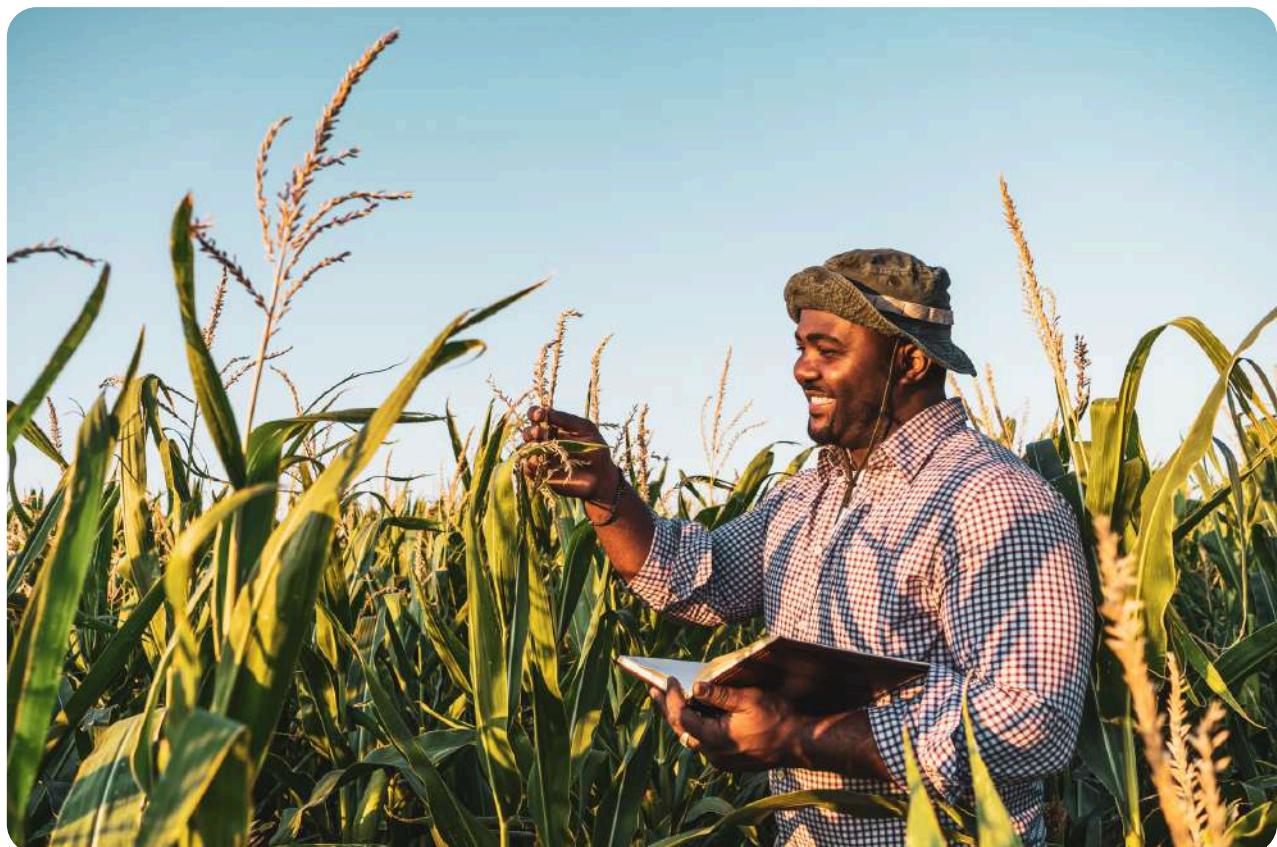
ENCOURAGE FARMING TECHNIQUES THAT CONSERVE RESOURCES, IMPROVE SOIL HEALTH, AND REDUCE ENVIRONMENTAL HARM.

2. SUPPORTING LOCAL FOOD SYSTEMS

STRENGTHEN SHORT SUPPLY CHAINS BY SOURCING LOCALLY, EMPOWERING SMALL-SCALE PRODUCERS, AND IMPROVING FOOD ACCESS WITHIN COMMUNITIES.

3. REDUCING FOOD WASTE

PREVENT LOSS AT ALL STAGES BY IMPROVING LOGISTICS, STORAGE, AND CONSUMER BEHAVIOR, THUS CONSERVING RESOURCES AND REDUCING EMISSIONS.


4. ENCOURAGING DIETARY DIVERSIFICATION

MOVE AWAY FROM MONOCULTURES AND ULTRA-PROCESSED DIETS BY PROMOTING DIVERSE, BALANCED, AND CULTURALLY APPROPRIATE FOOD CHOICES FOR BETTER HEALTH AND SUSTAINABILITY.

5. INVESTING IN RESEARCH AND DEVELOPMENT

ADVANCE INNOVATION, TECHNOLOGIES, AND DATA SYSTEMS THAT SUPPORT RESILIENT AND ADAPTIVE FOOD SYSTEMS ALIGNED WITH SUSTAINABILITY GOALS.

Adopting a food systems approach means looking at the big picture, understanding how each part of the system connects, and designing solutions that support people, the planet, and long-term prosperity. This holistic view is key to reshaping food systems that are sustainable, resilient, and capable of nourishing all.

Current strategies to improve food security and nutrition remain constrained by their limited scope and insufficient integration across sectors. Many interventions are designed and implemented in isolation, failing to reflect the interdependencies between food systems and areas such as health, environment, education, trade, and gender, thereby diminishing their overall effectiveness. Traditional approaches often prioritize food production as the central solution, which overlooks critical dimensions including equitable distribution, affordability, dietary diversity, and market access. This narrow emphasis can also generate unintended negative consequences through systemic trade-offs.

Although more recent frameworks attempt to apply systems thinking, they too exhibit limitations: the value chain model remains overly commodity-specific, disregarding the multi-commodity realities of smallholder agriculture and the necessity of diverse diets for nutrition, while the market systems approach, though broader, typically addresses barriers within a single market context and thus fails to encompass the full complexity of food systems. Collectively, these limitations highlight the need for more holistic, cross-sectoral, and context-sensitive approaches that can address the structural drivers of food insecurity and malnutrition in a sustainable and equitable manner.

Sustainable food system development requires a holistic perspective, where progress is measured across three interdependent dimensions: economic, social, and environmental. True sustainability means generating benefits in all three areas simultaneously, without compromising one for the sake of another.

The benefits of a food system approach

A food systems approach provides a powerful framework to align with and enhance FAO's priority areas. By viewing food systems holistically, this approach strengthens cross-sectoral coordination, data use, stakeholder engagement, and resilience building across five main activity areas.

Activity Area	Importance
Enhancing Data Systems for Sustainable Transitions	<ul style="list-style-type: none">Encourages systematic data collection and analysis across the full spectrum of food system activities.Promotes integration and comparison of data from various sectors to better evaluate system performance and inform strategic actions.
Strengthening Policy Alignment and Evidence-Based Decision-Making	<ul style="list-style-type: none">Supports the development of policies that address structural root causes of food system challenges.Promotes coordination across diverse government sectors.Helps build the institutional capacity for collaboration
Fostering Public-Private Partnerships for System-Wide Transformation	<ul style="list-style-type: none">Facilitates market-led system changes aligned with national strategies and supported by policy innovation.Promotes stakeholder collaboration across disciplines and sectors through joint governance platforms and partnerships.
Building and Sharing Local and Global Knowledge	<ul style="list-style-type: none">Promotes local knowledge-sharing through networks linking research institutions, labs, and extension services with community actors.Connect system thinkers and technical experts from diverse fields to share best practices and solutions.
Enhancing Risk Awareness and Resilience	<ul style="list-style-type: none">Encourages the comprehensive assessment of economic, environmental, and social risks.Supports the design of integrated solutions that address vulnerabilities and strengthen system-wide preparedness and response capacity.

1.2 Sustainable Healthy Diet

Dietary choices are a major determinant of both human health and the sustainability of our planet. Current global trends—such as rising consumption of red and processed meat, refined sugars, and ultra-processed foods—have contributed to a higher incidence of obesity, type II diabetes, cardiovascular disease, and certain cancers. At the same time, intensive food production linked to these diets accelerates climate change, biodiversity loss, water scarcity, and soil degradation.

Sustainable healthy diets aim to achieve a balance. They:

- Promote health and well-being.
- Minimize environmental pressure.
- Remain safe, accessible, affordable, and culturally acceptable.
- Contribute to the protection of biodiversity and ecosystems.

Sustainable diets are closely linked with the United Nations Sustainable Development Goals (SDGs).

2. ZERO HUNGER

SDG 2.4: By 2030, ensure sustainable food production systems and resilient agricultural practices.

12. RESPONSIBLE CONSUMPTION AND PRODUCTION

SDG 12.2: Achieve the sustainable management and efficient use of natural resources.

SDG 12.3: Halve global food waste.

SDG 12.4: Ensure environmentally sound management of chemicals and waste.

SDG 12.8: Strengthen awareness for sustainable lifestyles worldwide.

In line with these targets, several countries have integrated sustainability into their national dietary guidelines, though there are still gaps in explicitly connecting diet and environmental impact. University cafeterias are uniquely positioned to lead by example. With this guideline, universities can both reduce their environmental impacts and improve health outcomes through healthy menus.

SECTION 2

SUSTAINABLE FOOD

CATERING

2.1 Principles of Sustainable Food Catering

Sustainable food catering represents an important intersection of environmental responsibility, social equity, and public health. The choices made in catering can have significant consequences throughout the entire food service value chain, impacting agricultural practices, energy consumption, well-being, and community resilience.

The foundation of a sustainable catering approach is environmentally responsible sourcing. Prioritizing seasonal and regional procurement plays a crucial role in minimizing the carbon and water footprints associated with food production. By focusing on produce that aligns with natural growing cycles and is sourced from local suppliers, catering services can reduce emissions linked to transportation and eliminate the need for energy-intensive practices like deep-freezing or greenhouse cultivation. Additionally, using organic or bio-certified products further reduces environmental harm by avoiding synthetic pesticides and chemical fertilizers, which supports soil health and biodiversity. When possible, fair-trade certification adds another layer of social sustainability by ensuring that products are sourced under fair labor conditions and stable pricing structures for producers, especially in economically vulnerable regions.

Ethical sourcing standards also apply to animal-based products. Meat and dairy should come from local or certified organic producers that uphold high standards of animal welfare. Eggs must be cage-free or organic, while seafood should be selected based on sustainability rankings, such as those from the Marine Stewardship Council (MSC), Aquaculture Stewardship Council (ASC), or national guides assessing environmental impact. Caterers should avoid high-impact luxury items like red tuna, foie gras, and caviar, and instead opt for sustainable alternatives and lower-impact cuts.

Developing menus that align with both planetary and human health is equally critical. Catering menus should emphasize plant-based options and diversified protein sources. For instance, a suggested ratio could be one red meat option for every ten meals, with offerings split among white meat, fish, and vegetarian dishes. Menus should avoid serving meat-based dishes consecutively and ensure that vegetarian, and ideally vegan, options are available for all main courses. In addition to protein considerations, the inclusion of whole grains, seasonal fruits and vegetables, and ethically sourced beverages like organic coffee and tea helps create a more holistic dietary offering. These principles not only promote well-being but also reduce the environmental burden of food systems.

Minimizing food loss and waste throughout the entire supply chain is another essential aspect. This begins with accurately forecasting guest numbers, practicing portion control, and adopting mindful kitchen practices. Overproduction can be avoided through strategic communication between event organizers and suppliers, as well as by opening perishable items only when consumption is assured.

In cases where surplus food is unavoidable, redistribution—such as offering leftovers to catering staff—can help mitigate waste. Monitoring plate waste, which constitutes a measurable portion of total food waste, either by weight or through visual assessments, can inform ongoing improvements. Generally, caterers should adopt a philosophy that values quality over quantity, tailoring portion sizes and menu complexity to actual needs and consumption patterns.

The environmental impact of beverage service is often underestimated. Replacing bottled mineral water with safe, drinkable tap water significantly reduces emissions, as research indicates that bottled water may have a lifecycle carbon footprint up to 400 times greater than that of tap water. When serving alcoholic beverages, caterers should prioritize local wines and promote moderation. To support broader waste-reduction goals, plastic bottles, single-use stirrers, and straws should be entirely eliminated from service settings.

In terms of material use, careful consideration must be given to food packaging and tableware. Reusable tableware is the most sustainable option due to its significantly lower lifecycle emissions compared to disposable alternatives. When reusables are not feasible, compostable and paper-based items are preferred. Packaging should be minimal, recyclable, and, whenever possible, eliminated altogether. Kitchen operations should also integrate eco-conscious practices, such as utilizing energy- and water-efficient appliances and environmentally friendly cleaning products.

2.2 The environmental impact of conventional food practices

Conventional food practices in institutional catering impose sizable environmental burdens across the entire meal lifecycle. This section synthesizes evidence from healthcare, university, and industrial catering contexts to clarify key environmental risks, how those risks are measured, the scale of impacts reported for food services, and the specific footprint of university cafeterias.

Key Environmental Risks of Conventional Food Practices

- Resource-intensive supply chains. Institutional menus, particularly those centered on animal proteins (beef, lamb, cheese), carry high embedded resource use. The production of these items is consistently associated with elevated carbon and water footprints compared with plant-based options. In menu-based assessments of mass catering, main dishes contribute the largest share of per-meal environmental pressure because they concentrate animal protein and fats.

- Linear, loss-prone production. Conventional kitchen workflows emphasize throughput and uniformity. Without portion calibration, dynamic forecasting, or feedback loops, this leads to higher pre-consumer waste (prep and serving losses) and post-consumer plate waste. Food discarded at the end of the chain embodies all upstream resources (land, water, energy) and emissions.

- Water demand and scarcity pressure

Food services indirectly appropriate large volumes of freshwater through the ingredients they purchase (embedded or “virtual” water), while also using water directly for washing, sanitizing, and cooking. Red-meat dishes are the principal driver of menu water footprint; dairy also ranks high. Conventional operations often lack water-efficiency controls (e.g., metering, reuse, or rainwater capture), magnifying demand.

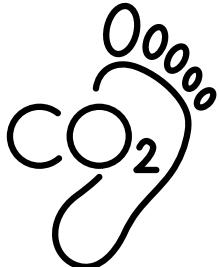
- Greenhouse gas emissions.

From farm inputs and enteric fermentation to cold-chain logistics and on-site cooking, meal provision generates CO₂e emissions. Ruminant meats and dairy dominate upstream impacts, while kitchen fuel and electricity add a smaller but non-negligible operational component. Where waste is landfilled, methane emissions further increase the footprint.

- Land conversion, biodiversity loss, and soil degradation.

The demand for feed and pasture underpinning animal-source foods is linked to habitat conversion and soil quality decline. Conventional sourcing that prioritizes price and standardized specifications rarely screens for biodiversity co-benefits.

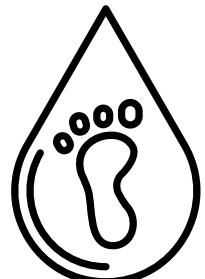
- Air and water pollution.


Nutrient runoff (nitrogen, phosphorus) from agricultural production contributes to eutrophication; ammonia and particulates from manure management and fertilizer use drive acidification and air-quality impacts. In kitchens, conventional cleaning products add chemical loads to wastewater when environmental criteria are absent.

How impacts are measured

Environmental performance in food services is quantified using standardized indicators. For Greenovators, the following metrics are recommended because they align with published studies, map to recognizable hotspots, and can be operationalized at campus scale.

CARBON FOOTPRINT (CF)

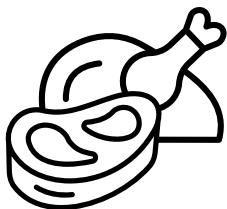


Reported as kilograms of CO₂-equivalent per serving or per meal; system boundaries typically include ingredient production (dominant), transport, storage, preparation (fuel/electricity), and end-of-life of food waste.

Ingredient-level CF factors are aggregated to dish and menu footprints; menu composition (share of ruminant meat) is the key driver.

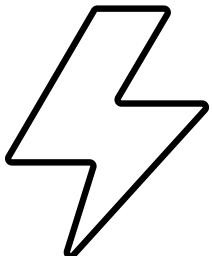
WATER FOOTPRINT (WF)

Reported as liters or m³ per serving, often disaggregated into: blue (surface/groundwater), green (rainwater), and grey (water required to assimilate pollution loads). Ingredient-level WF factors (e.g., beef vs. legumes) are summed to dishes/menus; menu design and procurement drive results. Direct kitchen water use (washing/sanitizing) can be monitored separately with meters



FOOD WASTE INTENSITY

Measured as grams (or kilograms) per cover and segmented into: kitchen/prep waste, serving losses (buffet/line residuals), and post-consumer plate waste. Tracking by meal component (main, side, salad, dessert) reveals where acceptance and portioning need attention.


MENU COMPOSITION INDICATORS

% of meals featuring ruminant meat; % plant-forward mains; % seasonal/local produce by weight; these structural metrics link directly to CF/WF outcomes and are straightforward to govern.

ENERGY USE

kWh per meal in production areas, disaggregated by end-uses (ovens, dishwashers, refrigeration, ventilation). This clarifies operational vs. procurement hotspots.

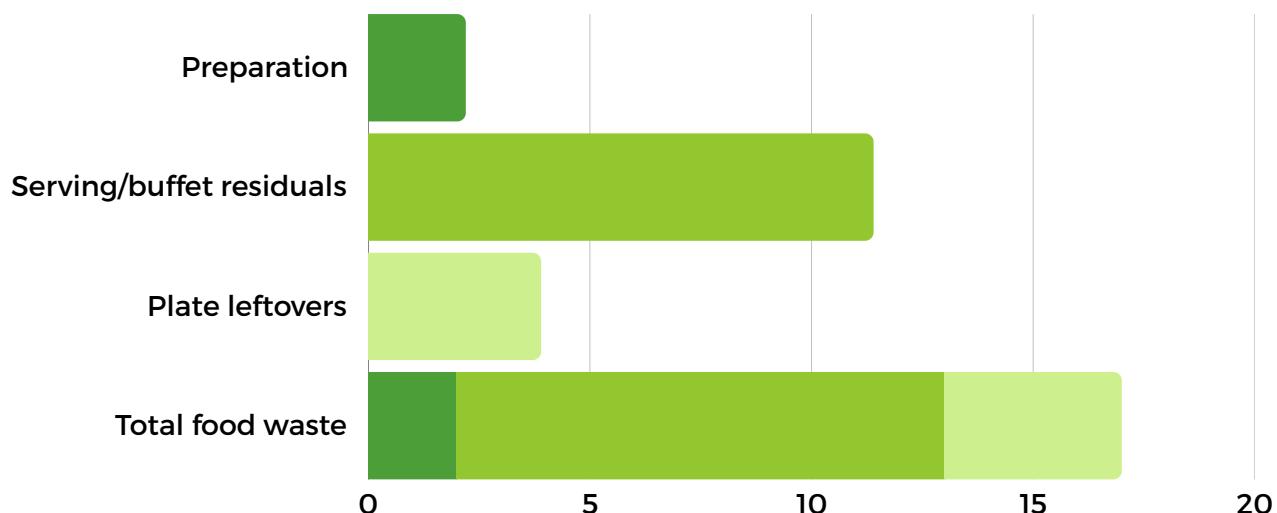
DATA SOURCES AND TOOLS

Practical implementations combine published CF/WF databases at ingredient level with kitchen metering and waste audits. Where possible, use consistent recipes, measured portions, and defined boundaries (e.g., “cradle-to-bin” for served food).

By applying these indicators consistently, institutions can not only monitor the environmental performance of food services but also identify the most effective levers for change; whether in menu design, procurement practices, or kitchen operations. Together, these metrics create a transparent and evidence-based foundation for setting targets, tracking progress, and communicating impact to stakeholders. Ultimately, the goal is not only to quantify impacts, but to transform measurement into actionable strategies that foster a more sustainable campus food system.

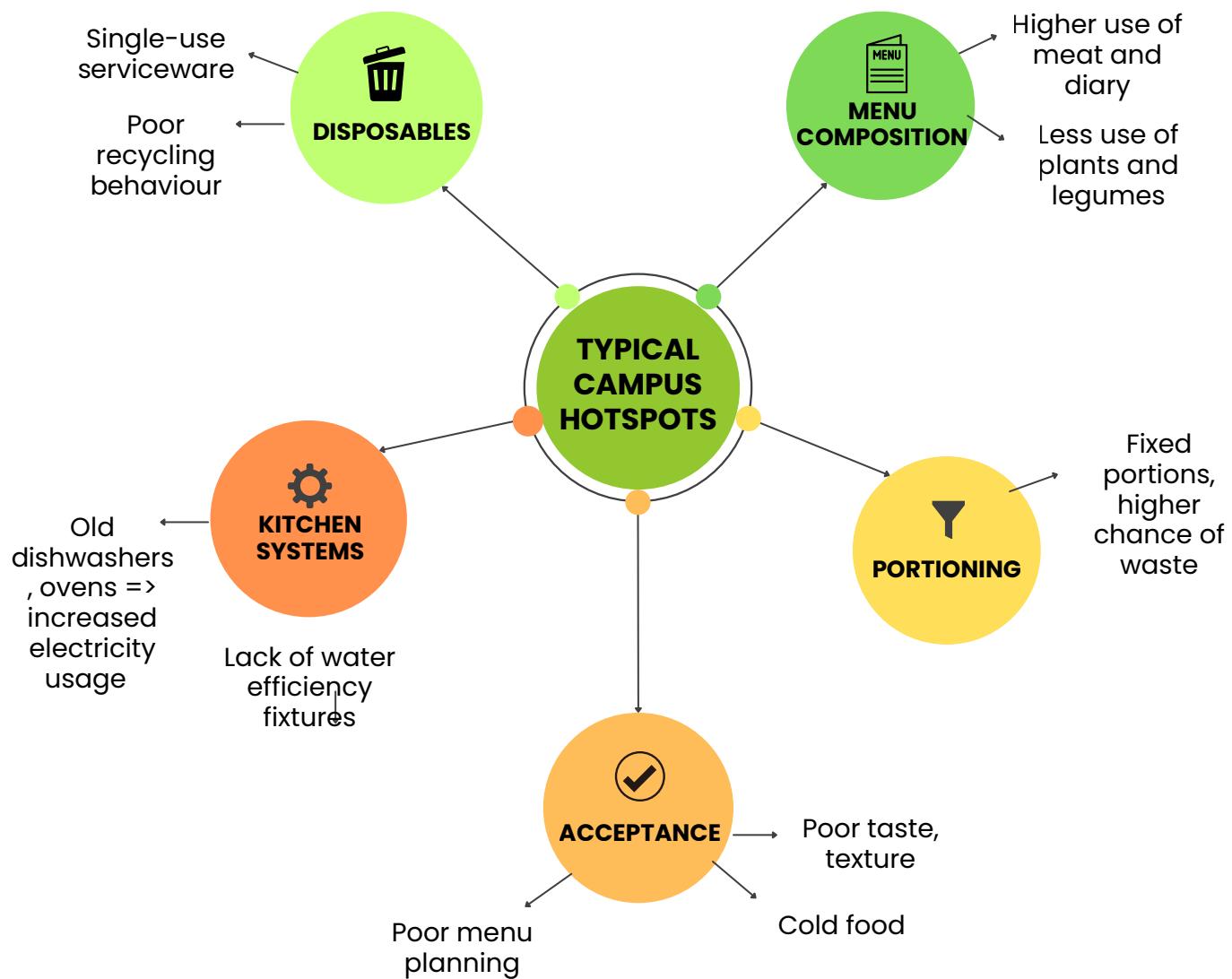
What the Numbers Say

Global food production is responsible for roughly 70% of freshwater withdrawals and 25–30% of anthropogenic GHG emissions. Catering menus mirror these patterns: the highest impacts cluster in animal-protein mains, while plant-based mains substantially reduce both WF and CF.



In industrial catering menu analyses, main dishes exhibit the largest footprints—order-of-magnitude values around ~1,050 liters of water per serving and ~1.6 kg CO₂e per serving for typical animal-protein mains. Soups and sides, generally plant-based, contribute far less. Positive correlations are consistently observed between a dish's protein/energy density and its water/carbon footprints, reflecting the concentration of animal products in mains.

Food waste patterns have also been studied across the literature. measured plate waste commonly ranges from single-digit percentages up to one-third of served food depending on context, menu acceptance, and portioning. In multi-year hospital assessments, average plate waste rates have been reported in the 9–14% range at lunch and 7–18% at dinner (with peaks surpassing 25–30%). Waste hotspots include eggs, dairy, and pasta dishes—important clues for menu redesign and texture/seasoning adjustments.


Where detailed audits are available, total food discarded over short observation windows has averaged ~17.5% of prepared food across the kitchen-to-plate continuum, with ~2.2% arising during preparation, ~11.3% as serving/buffet residuals, and ~3.9% as plate leftovers. These ratios improve markedly with better forecasting, batch cooking, and portion calibration.

Global estimates suggest the combined environmental, social, and economic cost of food waste totals trillions of USD annually. Within that total, consumption-stage discards dominate, and food services account for roughly a third of this phase—underscoring the leverage of institutional change.

University Cafeterias: Specific Impacts and Levers

University cafeterias serve large, predictable volumes and shape dietary norms among young adults. They also concentrate the decision levers—menu policy, procurement standards, kitchen equipment, and waste services—needed to shift footprints quickly. A significant share of empirical menu-based footprint studies focus on university restaurants, making this one of the best-understood institutional contexts.

- Acceptance: Low acceptance (taste, temperature, texture) contributes to higher food waste. Well-seasoned, culturally familiar plant-forward mains improve uptake.
- Kitchen systems: Older dishwashers, ovens, and ventilation increase kWh/meal; lack of water-efficiency fixtures elevates direct water use.
- Materials & disposables: Single-use serviceware and condiment sachets add waste, contaminate organics bins, and complicate recycling.
- Menu composition: A high frequency of red-meat mains drives CF and WF; dairy-heavy desserts add to the load. Plant-forward mains and pulses markedly lower both.
- Portion sizes: Overserved portions increase plate waste. Calibrated default portions help reduce leftovers.

SECTION 3

FOOD SOURCING & PREPARATION

3.1 Sustainable Food Sourcing

Sourcing food sustainably is a key strategy in transforming food environments to align with ecological, social, and ethical values. For university cafeterias, this means adopting procurement practices that reduce environmental impact, support local economies, and promote public health. The goal is not only to serve meals, but also to make those meals part of a broader commitment to sustainability and social responsibility.

A sustainable sourcing approach involves careful consideration of what is bought, where it comes from, and how it is produced. The following three principles form the foundation of a sustainable sourcing model that can be implemented in institutional food services such as campus cafeterias.

01

Prioritize Seasonal and Locally Sourced Produce

Using seasonal and locally available ingredients is a fundamental step in reducing the environmental footprint of food services. Seasonal produce requires less energy-intensive production methods, as it is grown in accordance with natural cycles rather than artificial inputs. Local sourcing, meanwhile, drastically cuts down on “food miles” (the distance food travels from farm to plate) thereby lowering greenhouse gas emissions and reducing dependency on long transportation chains. Additionally, local procurement strengthens regional food systems. By buying from nearby farmers, cafeterias can help preserve agricultural land, protect native crop varieties, and reinforce rural-urban connections. According to the FAO, this type of community-centered sourcing promotes food sovereignty, improves traceability and accountability in supply chains, and can revitalize traditional food cultures that might otherwise be lost in globalized markets.



02

Include More Plant-Based Meal Options

Increasing the availability of plant-based dishes is one of the most impactful actions institutions can take for sustainability. Meals centered around vegetables, legumes, grains, and nuts generally require far fewer natural resources—such as land and water—compared to animal-based meals. They also contribute less to deforestation, biodiversity loss, and greenhouse gas emissions.

By incorporating a variety of satisfying, culturally inclusive plant-based options, cafeterias can help normalize healthier dietary patterns while respecting individual preferences. These meals are often cost-effective, accessible, and nutritionally beneficial. Encouraging students to explore diverse plant-based cuisines can also promote food literacy and raise awareness about the links between diet and planetary health.

03

Encourage Partnerships with Local Producers

Developing direct relationships with smallholder farmers, producers, or food cooperatives is an excellent way to ensure transparency, fairness, and sustainability in food procurement. Local food procurement enhances sustainability by shortening the distance between where food is grown and where it is consumed. Products sourced locally often carry distinct attributes tied to their geographic origin—such as indigenous crop varieties or traditional production techniques. These unique traits not only serve as strong selling points in the marketplace but also contribute to environmental and cultural sustainability, as these foods are typically well-suited to local climates and ecosystems. Collaborating with local stakeholders also allows for more flexibility in adapting menus to seasonal availability. Over time, such partnerships can contribute to the development of more resilient, community-rooted food systems that benefit both people and the environment.

The shift toward sustainable food sourcing is not just about ingredient selection; it's about transforming cafeterias into role models for climate-conscious, community-driven institutions.

When implemented effectively, these practices can:

- Lower the ecological footprint of campus food services
- Create educational opportunities around sustainability and nutrition
- Improve student engagement with food systems
- Strengthen the local economy and food sovereignty
- Build trust through transparent, responsible sourcing

To measure progress, tools such as the SAFA (Sustainability Assessment of Food and Agriculture systems) framework by FAO can be used to assess the sustainability of procurement practices across economic, environmental, social, and governance dimensions.

3.2 Energy and Water Efficiency

Fresh water is one of our most essential and limited natural resources—and it's under increasing pressure from human activity. Today, the average European consumes around 3,550 liters of water per day, much of it hidden in the food we eat, the products we buy, and the services we use. As living standards and incomes rise, this figure continues to grow.

While water-saving technologies and policies are becoming more common, they're not yet enough to fully address the risk of water scarcity. That's why public education and engagement are now more crucial than ever. Studies have shown that most people underestimate their own water use, particularly the indirect water footprint tied to everyday consumption choices. Fortunately, research also shows that when people are given a chance to actively participate in improving local water quality they become much more aware, responsible, and engaged. In the context of university cafeterias and food services, this highlights the importance of training kitchen staff, educating students, and involving the entire campus community in sustainability practices. A well-informed team can significantly reduce waste—not just by changing tools, but by changing habits. By introducing smarter practices and educating staff, institutions can play a vital role in conserving resources while reducing operational costs and environmental harm.

Recommended strategies for a cost-efficient cafeteria

01 Adopt Energy-Efficient Equipment

Modernizing food service appliances with energy-efficient alternatives is a simple yet powerful move. Technologies like induction cooktops, low-energy dishwashers, and energy-star refrigerators significantly reduce both electricity and water use. For instance, ENERGY STAR-rated appliances have been shown to cut water usage by up to 90% and energy by 50% compared to conventional models. Additionally, proper maintenance and use of smart timers, LED lighting, and motion sensors can help avoid unnecessary energy consumption, making cafeterias both efficient and future-ready.

02 Train Staff in Water Conservation Techniques

To ensure sustainable operations, cafeteria staff should be trained not only in sustainability principles but also in practical, day-to-day water-saving practices. Below are key habits and tools that can significantly reduce water consumption:

Pre-Rinse Stations: Use low-flow pre-rinse spray valves, which are far more efficient and now standard under environmental laws

Recommended strategies for a cost-efficient cafeteria

Dishwashing: Train staff to scrape food into bins before rinsing, presoak utensils in basins, and only run dishwashers when fully loaded. Ensure machines aren't using more water than specified.

Manual Washing: Encourage the use of three-compartment sinks instead of running water, and ensure conveyor washers are fitted with sensors that only activate water flow when dishes are present.

Leak Monitoring: Instruct teams to read water meters regularly and check for leaks in off-hours. Most leaks come from toilets or dishwashers.

Recommended strategies for a cost-efficient cafeteria

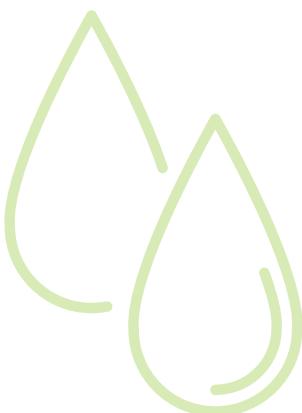
03 Monitor, Track, and Evaluate Usage Regularly

Cafeterias are encouraged to install water and energy meters to monitor real-time usage and uncover potential inefficiencies. This data not only helps evaluate the effectiveness of sustainability efforts but also supports continuous improvement. For more detailed insights, smart sub-meters can be placed on high-usage appliances and kitchen zones to track patterns, detect leaks, and enhance reporting. Connecting these meters to digital dashboards allows for clear, visual monitoring of the cafeteria's overall resource performance.

Water Meters	Properties
Standard utility water meters	<ul style="list-style-type: none">• Installed by local water authorities.• Track total water usage in cubic meters (m^3) or gallons.• Good for monthly tracking, but usually lack detailed breakdowns
Sub-Meters (for kitchens, dishwashers, restrooms)	<ul style="list-style-type: none">• Installed separately on specific parts of the building• Help pinpoint where water is used the most.• Useful for comparing areas and identifying inefficiencies.

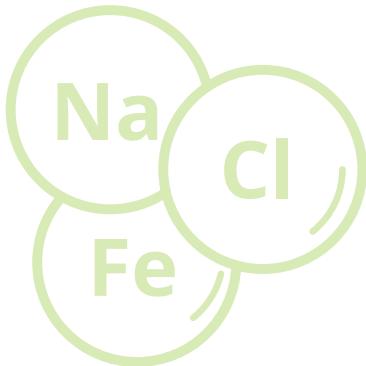
Recommended strategies for a cost-efficient cafeteria

Water Meters	Properties
Flow Meters	<ul style="list-style-type: none">• Measure water flow through a specific appliance or pipe.• Installed on devices like dishwashers or pre-rinse spray valves.• Good for checking if appliances are using water within expected limits.
Smart Water Meters	<ul style="list-style-type: none">• Digital meters that track real-time usage.• Offer remote monitoring through apps or dashboards.• Can alert you to unusual spikes = possible leaks.• Great for universities or large cafeterias aiming for detailed analytics


Recommended strategies for a cost-efficient cafeteria

Energy Meters	Properties
Plug Load Meters	<ul style="list-style-type: none">Plugged into outlets to monitor the energy use of individual appliances (like ovens, refrigerators).Great for spotting energy hogs.
Smart Electrical Sub-Meters	<ul style="list-style-type: none">Installed on kitchen circuits or appliances to track real-time electricity consumption.Help identify overuse or faulty equipment.
Building Management Systems (BMS) with Metering	<ul style="list-style-type: none">Centralized control panel that integrates water, electricity, and sometimes gas use.Ideal for larger institutions aiming to track trends and report progress.

3.3 Eco-Friendly Cooking Methods


Sustainable cooking practices are essential for minimizing the environmental footprint of university cafeterias while ensuring food safety, nutritional quality, and affordability. The goal is to prepare meals that are both healthy and environmentally responsible through energy-efficient, resource-conscious, and safe cooking methods.

Water Conservation

Water is used extensively in cooking, cleaning, and hygiene processes. Efficient management is key to sustainability. Reuse cooking water where safe (e.g., broth from boiling vegetables can be used in soups).

Nutrient Preservation and Food Quality

Eco-friendly cooking does not only reduce emissions but also ensures that students receive meals rich in nutrients.

- Cook vegetables lightly (e.g., blanching, steaming) to preserve vitamins and enhance carotenoid bioavailability.
- Limit the use of fats, oils, salt, and sugar – apply sparingly and only for flavor.
- Remove excess fat from soups and stocks before serving.
- Ensure fresh ingredients are prioritized to reduce packaging waste and improve taste.

Food Safety and Hygiene

Food safety must be embedded in all eco-friendly cooking practices. The WHO Five Keys to Safer Food should be promoted and enforced.

1. Keep clean
2. Separate raw and cooked food
3. Cook thoroughly
4. Keep food at safe temperatures
5. Use safe water and raw materials

Integrating Nutrition and Sustainability in Cooking

- Prepare seasonal and regional products to reduce transport-related emissions.
- Freeze or preserve surplus food (bread, vegetables, soups, sauces) to prevent spoilage.
- Reduce desserts high in sugar and fat to a maximum of two servings per week.
- Offer plant-based meals daily, with one fully plant-based day per week.
- Ensure whole grains, vegetables, fruits, and salads are consistently available.

Cooking practices can bridge the gap between nutrition and sustainability by supporting nutrient retention, waste reduction, and environmentally responsible food choices.

Cultural and Behavioral Practices

Eco-friendly methods also include promoting dietary shifts that reduce environmental impact while respecting cultural diversity. One way to make this engaging for students is through weekly food themes that both educate and motivate behavioral change.

Green Monday

Meals built entirely around leafy greens and other vegetables rich in vitamins and minerals

Local Harvest Tuesday

Dishes prepared with locally sourced, seasonal produce

Zero-Waste Wednesday

Menus featuring creative use of leftovers (e.g., soups from vegetable trimmings, broccoli stem salad).

Protein-Smart Thursday

Focus on plant-based proteins such as legumes, pulses, and nuts, highlighting both health and environmental benefits.

Fusion Friday

Sustainable meals inspired by international cuisines but adapted with local, seasonal ingredients.

3.4 Sustainable Menu Preparation Principles

Developing sustainable menus goes beyond promoting health—it also requires addressing environmental, cultural, and economic dimensions of food systems. Menu planning should therefore integrate nutritional principles with ecological responsibility, cultural appropriateness, and affordability.

Health Orientated Principles

FAT CONTENT

- Menus should be designed so that total fat does not exceed 30% of daily energy intake.
- Saturated fat content should remain below 10% of energy, and trans fats below 1%.
- Healthier plant-based oils such as olive, sunflower, or corn oil should be used in cooking and dressings, replacing solid fats and butter.

SALT REDUCTION

- Daily sodium contribution from meals should remain below 5 g per person.
- High-sodium flavorings (e.g., bouillon cubes, soy sauce, processed condiments) should be minimized.
- Herbs, spices, lemon, and other natural flavor enhancers should be used as alternatives to salt.

SUGAR LIMITATION

- Menus should limit free sugar to less than 10% of daily energy, with a target of <5% where possible.
- Sweetened desserts and beverages should be restricted; fruit-based, whole-grain, or unsweetened alternatives should be prioritized.
- Water should be offered as the default beverage, with no added sugar drinks included in the daily menu cycle.

FRUIT AND VEGETABLE PROVISION

- Each daily menu must provide at least 400 g of fruits and vegetables per person, incorporating both cooked and raw options.
- Seasonal and locally sourced varieties should be prioritized to support sustainability.
- Salad bars, fresh fruit offerings, and vegetable-rich main courses should be standard features.

MINIMIZATION OF PROCESSED AND FRIED FOODS

- Processed items high in sodium, fat, or additives (e.g., packaged meats, instant noodles, pre-fried snacks) should not be included in regular menus.
- Deep-fried foods should be avoided; alternative preparation methods such as baking, steaming, or grilling should be applied to maintain nutritional quality.

Economic & Social Dimensions

Cafeterias should prioritize cost-effective, nutrient-dense ingredients such as legumes, whole grains, and seasonal produce to keep meals affordable for all students and staff, while sourcing locally wherever possible to support regional farmers, cooperatives, and fair trade suppliers.

Menus should reflect the cultural diversity of the community, offering inclusive options that respect traditions while promoting plant-based and vegetarian dishes as mainstream choices. Equity must be a guiding principle, ensuring that sustainable and healthy meals are not positioned as premium options but are accessible to everyone.

At the same time, careful menu planning should help reduce food waste. By integrating these economic and social considerations, cafeterias can contribute to stronger local economies, inclusive communities, and fair access to nutritious meals.

SECTION 4

WASTE

MANAGEMENT

4.1 Waste Reduction Strategies

Food waste is one of the most pressing challenges facing institutional catering, with universities being particularly significant actors. University cafeterias operate at the scale of small cities, preparing and serving thousands of meals daily. This makes them powerful spaces to foster sustainable practices, but also hotspots for inefficiencies that contribute to environmental degradation, financial losses, and social inequities. Global research shows that universities can generate anywhere from 0.12 to 50 kg of food waste per capita per day, with variability depending on menu design, management systems, and student behavior. Addressing waste in higher education institutions offers a unique opportunity: it not only reduces the environmental and economic costs of catering but also influences the habits of young adults who are at a formative stage in building lifelong attitudes toward food. Waste reduction in university cafeterias thus serves a dual purpose—reducing immediate resource burdens while also educating future generations of professionals and decision-makers in sustainable consumption.

Universities can generate anywhere from 0.12 to 50 kg of food waste per capita per day

Stages of Waste Production in University Food Services

Food waste in university cafeterias occurs at multiple stages of the foodservice process, each involving different actors and requiring tailored interventions.

During meal preparation, waste arises from inaccurate forecasting of student attendance, excessive trimming during food processing, poor storage practices leading to spoilage, and the overproduction of meals in anticipation of high demand. This stage is predominantly under the control of catering staff and management practices.

At the serving stage, waste results from buffet leftovers, rigid pre-plating systems that limit flexibility, or oversized portions that do not reflect students' actual appetites. For example, large trays of prepared meals may remain untouched in buffet settings when demand is overestimated, or students may be forced to accept standard portions that are too large for them to finish. Catering staff and institutional procurement contracts influence this stage, as policies determine portion sizes and serving modes.

Finally, at the post-service stage, plate waste is generated when students leave uneaten food behind. This often occurs because meals are poorly matched to student preferences, the food is unappealing in taste, presentation, or temperature, or because students are rushed and have insufficient time to finish eating. Students are the primary actors at this stage, but the cafeteria environment and staff supervision play important roles in shaping behavior.

Different actors influence these stages in different ways. Kitchen staff are key in preparation and serving, while students directly drive waste after serving. For universities, it is essential to recognize that food waste is not only a technical problem of logistics and kitchen management but also a social issue that involves behavior, culture, and education.

Strategies for waste reduction are developed according to food production stages: (1) Meal Preparation, (2) Serving, (3) Post-service.

Stage 1 Meal Preparation

At the preparation stage, the focus must be on efficiency, accuracy, and prevention. Better forecasting of demand is essential to prevent overproduction; studies in both hospital and university settings confirm that systematic forecasting reduces kitchen losses significantly. Advanced digital tools, such as predictive software that incorporates student meal booking systems, have been shown to improve accuracy and reduce surplus food. Batch cooking, in which smaller quantities are prepared throughout the service period, prevents large amounts of food from being prepared unnecessarily and reduces the likelihood of mass disposal when demand is lower than expected. Staff training is also a critical solution. When catering staff are made aware of the environmental and financial implications of waste, and when they are provided with simple monitoring tools, they become more engaged in reducing waste.

Stage 1 Meal Preparation

Training programs should emphasize careful trimming, safe storage practices, and the creative repurposing of surplus ingredients. Repurposing is particularly effective: unused vegetables can be transformed into soups or sauces, while surplus cooked grains or proteins can be incorporated into new dishes for the following day, provided food safety standards are maintained.

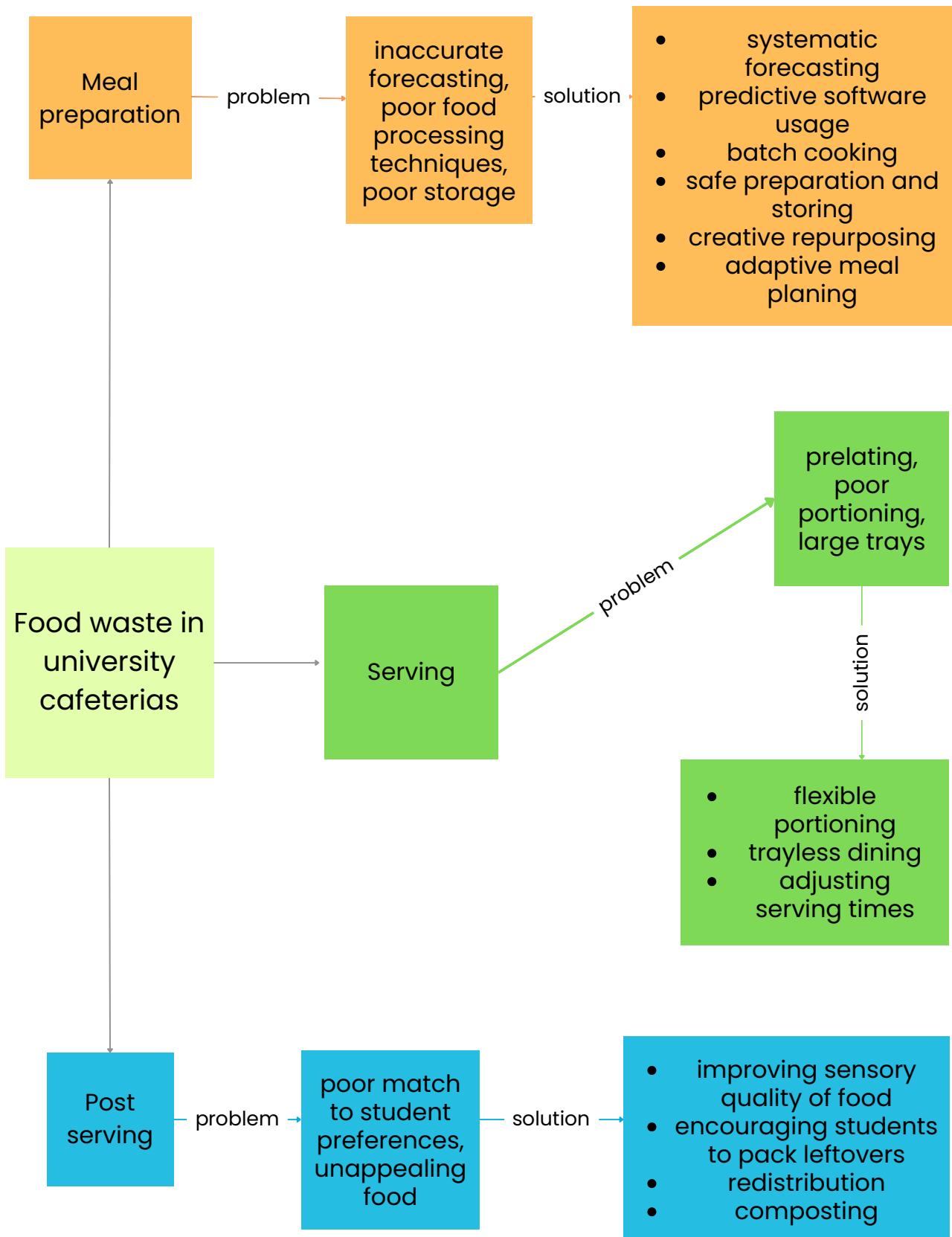
Procurement policies should also support waste reduction by allowing more flexible purchasing and menu adjustments. Rigid procurement contracts often force kitchens to prepare fixed amounts of food, even when demand fluctuates. Universities that allow adaptive menu planning based on real-time attendance data see lower preparation waste.

Stage 2 Serving

At the serving stage, solutions must balance operational efficiency with student choice. Oversized and rigid portion standards are a persistent problem in institutional catering and remain one of the most visible causes of waste. Flexible portioning—allowing students to choose small, medium, or large servings—has proven to reduce waste significantly in both schools and universities. The introduction of “taste portions” enables students to sample dishes before committing to a full portion, thereby preventing food rejection and waste. Trayless dining is another effective intervention. Research in multiple universities has shown that when trays are removed, students take fewer dishes at a time, leading to reduced portion sizes and lower plate waste. Adjusting serving times and extending dining hours can also help. Students who feel rushed often leave food uneaten, while those with longer, more relaxed meal periods consume more of what they take.

Stage 3 Post-Serving

At the post-serving stage, interventions must focus on changing student behavior and cafeteria systems. Plate waste is a direct outcome of students' choices and experiences. Educational campaigns and awareness programs can help students understand the environmental and economic consequences of waste. For example, interventions in Latvian schools using plate waste trackers and educational campaigns demonstrated reductions of up to 50%, although sustained impact required continuous reinforcement. Similar programs at universities, when combined with transparent reporting of waste data, encourage students to see themselves as active participants in sustainability. Improving the sensory quality of meals—better taste, appealing presentation, and appropriate serving temperatures—also reduces post-service waste.



Stage 3 Post-Serving

Hospital studies show that improving quality directly decreases plate waste, and this principle applies to student dining halls as well. Universities can also introduce practical systems to reduce plate waste, such as allowing students to safely pack leftovers to take home. This option has been shown to reduce immediate disposal while aligning with students' schedules and food preferences.

Another strategy is the redistribution of untouched surplus food. Partnerships with local food banks or student support services can ensure that safe, uneaten meals serve a social purpose rather than being discarded. Composting and anaerobic digestion are secondary measures for unavoidable waste but should be integrated into campus waste management to close the loop and engage students in a culture of circularity.

Lessons from Case Studies and Literature

Evidence from diverse institutional contexts highlights both the challenges and the opportunities of waste reduction. Universities are particularly well-studied: Leal Filho et al. found that waste reduction initiatives such as trayless dining, composting programs, and flexible portion sizes together reduced waste volumes by between 13% and 50%. These reductions were most effective when operational interventions were combined with educational campaigns that engaged students directly. The study emphasized that universities can act as “living laboratories” for sustainability, embedding food waste awareness into campus culture.

Waste reduction initiatives reduced waste volumes by between 13% and 50%

Derqui et al. showed that Spanish school canteens, when waste was measured and made visible to staff and students, revealed hidden inefficiencies in food production. By exposing these inefficiencies, institutions were able to reallocate resources and lower waste levels. The findings suggest that visibility and transparency are critical in institutional foodservice, where waste is often normalized or overlooked.

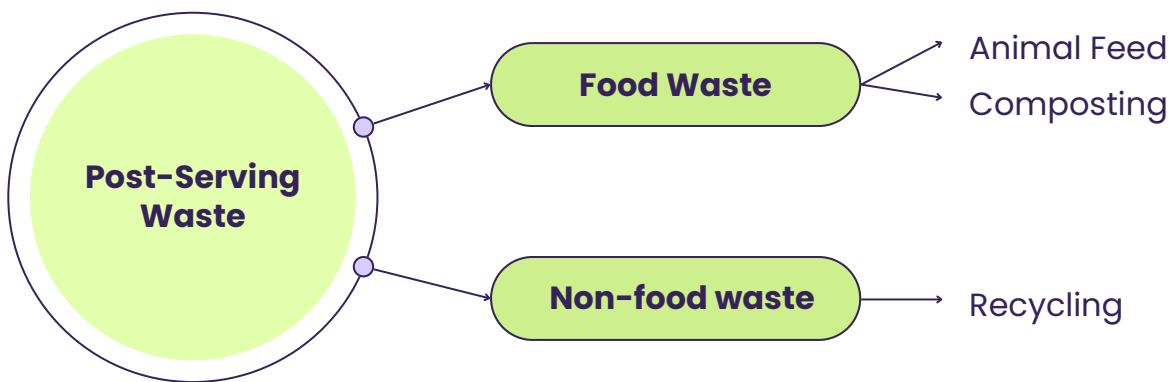
Lonska et al. tested interventions in Latvian schools and discovered that while plate waste trackers and awareness campaigns reduced waste, organizational changes such as extending breaks or increasing plate sizes sometimes increased waste. This underscores the importance of tailoring interventions to the specific institutional context. A measure that works in one setting may have unintended consequences in another.

Balzaretti et al. examined Italian school meals and found that portion sizes specified in public tenders were often larger than necessary, leading not only to waste but also to overnutrition and higher obesity risks among children. The study highlights that waste reduction strategies in universities must also align with nutritional goals: portion control must ensure adequacy without excess. The economic argument is equally strong. Clowes et al. documented that across 86 catering sites, waste reduction initiatives achieved a benefit-cost ratio of more than 6:1. Most sites recouped their investment in under two years, and many within the first year. For universities, which operate under budget constraints, such evidence provides a compelling case for prioritizing waste reduction not only as an environmental necessity but also as a financially sound policy.

Finally, Urugo et al. emphasized the importance of multi-level strategies. Technological innovations, supply chain optimization, educational efforts, and supportive regulations must be combined to achieve lasting reductions. In the university context, this translates into integrating digital forecasting tools, flexible procurement, behavior-focused interventions for students, and campus-wide policies that embed sustainability into catering contracts and institutional priorities.

Together, these lessons suggest that waste reduction in university cafeterias requires a holistic approach. It is not sufficient to rely on single measures such as portion control or awareness campaigns. Instead, comprehensive strategies should be adopted that address waste at each stage of the foodservice process, supported by continuous monitoring, staff engagement, and student participation. When effectively implemented, these strategies can transform cafeterias into role models for sustainability.

4.2 Post-Serving Waste Management


Waste management is a vital component of sustainable cafeteria operations. Beyond reducing environmental harm, responsible waste practices can conserve resources, support campus engagement, and even enrich local ecosystems. This section outlines a comprehensive approach to properly manage waste in university settings through targeted actions.

Post-serving food waste can be categorized in two; food waste and non-food waste.

Non-Food Waste

Non-food waste in catering operations primarily arises from plastic and paper serving ware, as well as the packaging used for food serving and transportation. Addressing this waste stream is essential, as it contributes significantly to the overall environmental footprint of food services. Transitioning to sustainable serving materials not only reduces non-biodegradable waste but also strengthens the resilience and sustainability of the wider food system.

- Durable, washable trays, cutlery, and dishes should be prioritized over single-use plastics.
- Where disposables are unavoidable, compostable or biodegradable alternatives are recommended.
- Recycling systems should be clearly implemented and communicated, ensuring proper separation and collection of paper, cardboard, plastics, and other recyclable materials.
- To further encourage responsible practices, cafeterias can offer discounts or loyalty incentives for students who bring their own reusable containers.
- Finally, avoiding excessive packaging and opting for minimal, eco-friendly designs helps reduce unnecessary waste at the source.

Food Waste As Animal Feed

Some types of food waste, if clean, uncontaminated, and properly handled, can be repurposed as animal feed. This strategy prevents valuable organic matter from being discarded and contributes to circular food systems by closing the loop between food service operations and agriculture. Suitable scraps may include items such as vegetable trimmings, bread, or other plant-based leftovers that remain safe for animal consumption.

Institutions should establish partnerships with local farms, cooperatives, or licensed animal feed programs to arrange for the safe and regular collection of such waste. All practices must strictly comply with national and local food safety and animal health regulations to ensure both human and animal wellbeing.

To support this process, kitchen staff should be trained to properly separate animal feed-appropriate waste from general food waste and other discard streams. Clear signage, designated containers, and monitoring procedures can help maintain consistency and prevent contamination. By redirecting eligible food scraps to animal feed, food services not only reduce landfill contributions but also support local agricultural systems and strengthen community-level sustainability.

Food Waste For Composting

Composting is a natural process that converts food scraps and other biodegradable waste into nutrient-rich soil. By composting cafeteria waste, institutions can significantly reduce contributions to landfills, lower greenhouse gas emissions, and generate valuable organic fertilizer for campus use. This practice not only supports waste reduction but also creates visible sustainability outcomes that benefit both the environment and the campus community.

Institutions can install on-site compost bins or composting machines to process items such as fruit peels, vegetable trimmings, coffee grounds, and biodegradable packaging. Where on-site systems are not feasible, partnerships with local composting facilities should be established to ensure proper handling of organic waste.

The finished compost can be used in campus gardens, landscaping projects, or tree-planting initiatives, creating a closed-loop system that demonstrates the practical value of waste-to-resource strategies. To maximize effectiveness, clear educational signage should be placed at waste stations to guide students and staff in separating compostable items correctly. Awareness campaigns, workshops, or integration into sustainability programs can further strengthen participation and foster a culture of environmental responsibility.

Using composted food waste to support green initiatives not only strengthens the campus ecosystem and improves air quality but also symbolically connects waste reduction to regeneration. Institutions can:

- Launch campus-wide tree planting initiatives supported by cafeteria compost.
- Align tree planting targets with food waste reduction metrics.
- Collaborate with student clubs or local environmental organizations.
- Apply compost in existing green areas to promote healthy soil and root growth.

By linking cafeteria actions to wider sustainability initiatives, universities can create an environment that fosters ecological responsibility and student engagement. Opportunities include:

- Integrating compost into campus landscaping and garden maintenance routines.
- Developing vertical gardens or green walls near dining spaces.
- Encouraging student participation in designing and maintaining green spaces (e.g., edible gardens, biodiversity projects).
- Tracking and showcasing sustainability progress through visual dashboards, reports, or campus-wide campaigns.

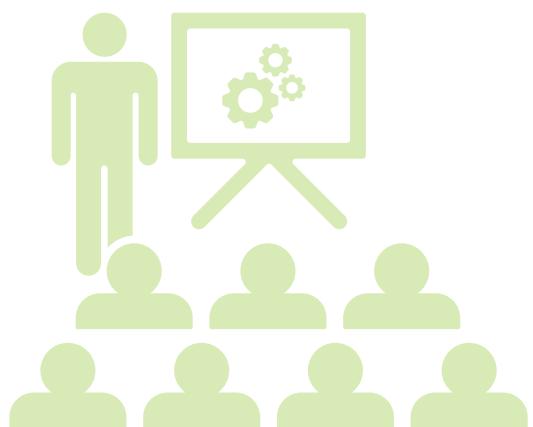
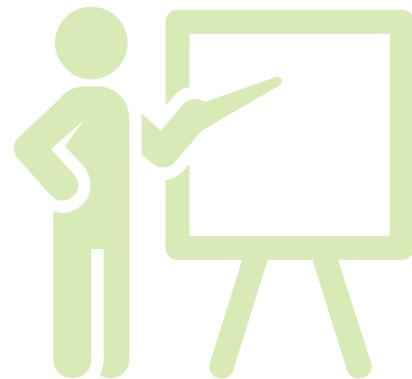
SECTION 5

ENGAGEMENT

Student Engagement and Awareness

Universities are not only centers of academic learning but also powerful environments for shaping lifelong food habits. Students are central actors in the campus food system: their choices, behaviors, and voices directly influence the demand for healthier and more sustainable food. Engaging students in meaningful ways ensures that the transformation toward a sustainable food environment is both effective and lasting. Awareness-raising activities should go beyond traditional communication and instead create spaces where students actively participate. Posters, brochures, and infographics placed in cafeterias can highlight the environmental and health benefits of sustainable meals. Social media campaigns, short videos, and student-led blogs can extend these messages beyond the cafeteria, reaching wider student communities. In addition to communication, hands-on engagement creates stronger connections. Sustainable recipe challenges, sustainable food festival, or “Zero Waste Wednesdays” encourage peer-to-peer learning. Volunteering opportunities, such as visits to local farms or assisting with food redistribution initiatives, further strengthen students’ sense of responsibility and ownership.

Feedback loops are also essential. Student surveys, polls, or suggestion boards allow cafeterias to adapt menus according to preferences while maintaining nutritional and sustainability standards. Transparent communication about food sources, preparation methods, and pricing helps build trust.



By fostering awareness, participation, and dialogue, universities can cultivate a generation of students who are not only informed consumers but also advocates for healthier and more sustainable food systems.

Staff Engagement

Cafeteria and university staff are the backbone of food service operations and play a critical role in implementing sustainability guidelines. Their active involvement and understanding are crucial for success. For engagement to be meaningful, staff must be equipped with knowledge, tools, and support systems that enable them to adapt daily practices.

Training programs should be practical, ongoing, and multidisciplinary. For example:

- Kitchen staff and caterers can receive training on healthier recipes, food safety, portion control, and eco-friendly cooking methods.
- Procurement officers may be supported with product lists that align with nutritional and sustainability criteria, as well as training on reading nutrition labels and selecting local, seasonal products.
- University staff and administrators can benefit from implementation guides, FAQs, and case studies that demonstrate why sustainability matters and how it can be achieved.

Clear communication about roles and responsibilities is vital. Staff should understand not only the rationale behind sustainable practices but also how these changes affect their daily tasks. Visual tools such as checklists, recipe books, and catalogues of compliant products can make implementation easier. Recognition also matters. Highlighting staff contributions through internal newsletters, appreciation events, or certification schemes can motivate continued engagement.

Ultimately, empowering staff with the right resources transforms them into champions of sustainability within the university setting.

Stakeholder Engagement

Transforming university food systems requires collaboration among diverse yet interdependent stakeholders. These include students, cafeteria staff, suppliers, caterers, faculty, local producers, and policymakers. Partnerships among these actors are not optional—they are vital for long-term change.

Universities should establish mechanisms for knowledge exchange and dialogue. This can take the form of regular stakeholder meetings, advisory committees, or digital platforms where challenges, best practices, and innovative ideas are shared. Linking stakeholders with “knowledge providers” such as academic experts, NGOs, or local networks ensures that evidence-based practices are translated into action.

Community-building activities such as farm visits, communal events, and youth-led initiatives create a sense of belonging and shared purpose. Collecting feedback through preference surveys or pilot projects ensures that all stakeholders feel heard and valued. Through inclusive and consistent collaboration, universities can create resilient food systems that benefit both human and planetary health while reinforcing their role as hubs of innovation and partnership.

SECTION 6

MONITORING & EVALUATION

Monitoring and evaluation (M&E) are central to ensuring that university cafeterias operate sustainably and that improvements are real, measurable, and enduring. A systematic M&E framework allows institutions to benchmark their performance, identify areas of inefficiency, and guide corrective actions. Importantly, monitoring processes should encompass environmental, nutritional, and social dimensions, reflecting the holistic role of food services in university life. Universities can adopt multidimensional assessment tools to evaluate food system sustainability. Evidence from Australian universities demonstrated low scores in governance and monitoring systems, underlining the urgent need for structured approaches to evaluate institutional practices

Measuring Sustainability in Dining Operations

Operational monitoring in dining services requires a combination of quantitative and qualitative methods. Composite sustainability indicators have been proposed to simultaneously capture nutritional quality, environmental impact, and social outcomes. Advanced digital monitoring has a growing role. Predictive models using machine learning have been deployed in campus dining to forecast meal demand based on weather conditions, calendar events, and historical consumption patterns. Since students are the primary users of university cafeterias, their perspectives must be central to any M&E system. A study using Importance–Performance Analysis (IPA) in South Korean universities revealed significant gaps between students' sustainability expectations and the practices they observed. Students prioritized measures such as food waste reduction, composting, reusable dishware, and efficient water use, yet perceived these practices as poorly implemented on their campuses. This demonstrates the value of integrating structured student feedback into monitoring processes to ensure alignment between cafeteria practices and user expectations.

Designing a Monitoring & Evaluation System

To be effective, an M&E system for university food services should include:

- Clearly defined objectives and indicators, such as food waste per cover, proportion of plant-based meals, and student satisfaction.
- Use of standardized assessment tools and multidimensional sustainability scorecards.
- Routine waste audits and digital tracking, coupled with predictive analytics to enhance forecasting.
- Student engagement through feedback mechanisms, surveys, and participatory initiatives.
- Regular benchmarking and reporting, ensuring transparency and continuous improvement across governance, operations, and outcomes.

Through structured monitoring and evaluation, universities can move beyond ad hoc initiatives and embed sustainability into the core of their foodservice systems. This not only improves environmental performance but also supports student education and strengthens institutional leadership in sustainable development.

FUTURE VISION

At Greenovators, we believe the future of food catering goes far beyond serving meals—it is about shaping healthier communities, resilient ecosystems, and more responsible institutions. Our long-term vision extends beyond individual cafeterias. We aim to build a network of sustainable cafeterias across universities and schools, creating a vibrant community of practice where institutions can learn from one another and share successful strategies. By setting these examples, we hope to inspire the broader adoption of sustainable catering models at both national and regional levels.

Another key ambition is to influence national dietary guidelines and food policies, ensuring that sustainability becomes a core principle alongside health. We believe cafeterias can demonstrate to policymakers that sustainable diets are not only practical but also impactful when implemented at scale.

Equally, we see students and staff as essential change agents. Their daily engagement with food makes them natural advocates for healthier and more sustainable choices. By empowering campus communities, we foster leadership that extends beyond university walls and into society at large.

Our main goals are to:

- Build a connected network of sustainable cafeterias.
- Support the integration of sustainability into national dietary guidelines and food policies.
- Empower students and staff to lead the transformation toward sustainable food systems.

This is our roadmap for the future: a movement where good food is also good for the planet, where campuses become living laboratories for sustainability, and where collective action drives systemic change.

References

SECTION 1

1. Food and Agriculture Organization of the United Nations. (n.d.). Sustainable food systems: Concept and framework. FAO. <https://www.fao.org/3/ca2079en/CA2079EN.pdf>
2. Swedish Food Agency. (2015). Find your way to eat greener, not too much and be active. Swedish Food Agency.
3. GreenMetric. (2023). UI GreenMetric guidelines (2022). GreenMetric.
4. United Nations General Assembly. (2015). Transforming our world: The 2030 Agenda for Sustainable Development (A/RES/70/1). United Nations. <https://sdgs.un.org/2030agenda>
5. Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., ... Murray, C. J. (2019). Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. *The Lancet*, 393(10170), 447–492. [https://doi.org/10.1016/S0140-6736\(18\)31788-4](https://doi.org/10.1016/S0140-6736(18)31788-4)
6. Food and Agriculture Organization of the United Nations, & World Health Organization. (2019). Sustainable healthy diets: Guiding principles. FAO & WHO.
7. Fanzo, J., Bellows, A. L., Spiker, M. L., Thorne-Lyman, A. L., & Bloem, M. W. (2021). The importance of food systems and the environment for nutrition. *The American Journal of Clinical Nutrition*, 113(1), 7–16. <https://doi.org/10.1093/ajcn/nqaa313>
8. Hatjiathanassiadou, M., Rolim, P. M., & Seabra, L. M. A. J. (2023). Nutrition and its footprints: Using environmental indicators to assess the nexus between sustainability and food. *Frontiers in Sustainable Food Systems*, 6, 1078997. <https://doi.org/10.3389/fsufs.2022.1078997>

References

9. Meybeck, A., & Gitz, V. (2017). Sustainable diets within sustainable food systems. *Proceedings of the Nutrition Society*, 76(1), 1–11. <https://doi.org/10.1017/S0029665116000614>
10. Verschuren, W. M., Boer, J. M., & Temme, E. H. (2022). Optimal diet for cardiovascular and planetary health. *Heart*, 108(15), 1234–1239. <https://doi.org/10.1136/heartjnl-2021-319560>
11. Hilborn, R., Banobi, J., Hall, S. J., Pucylowski, T., & Walsworth, T. E. (2018). The environmental cost of animal source foods. *Frontiers in Ecology and the Environment*, 16(6), 329–335. <https://doi.org/10.1002/fee.1822>
12. Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. *Nature*, 515(7528), 518–522. <https://doi.org/10.1038/nature13959>
13. Heller, M. C., & Keoleian, G. A. (2015). Greenhouse gas emission estimates of US dietary choices and food loss. *Journal of Industrial Ecology*, 19(3), 391–401. <https://doi.org/10.1111/jiec.12174>

SECTION 2

14. World Economic Forum. (2019). Sustainable catering guidelines. World Economic Forum. https://www3.weforum.org/docs/WEF_Sustainable_Catering_Guidelines_2019.pdf
15. University of Zurich Sustainability Team, & ETH Zurich Administrative Department of Safety, Security, Health and Environment. (n.d.). Guideline: Sustainable catering. University of Zurich & ETH Zurich.
16. Baygut, H., & Bilici, S. (2021). Sustainability in Food Services. *Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi*, 12(3), 422–429. DOI: 10.22312/sdusbed.1022416

References

17. Bux, C., Zizzo, G., Roe, B. E., & Amicarelli, V. (2025). A comparative assessment of food waste and carbon footprint toward a more sustainable healthcare foodservice. *Journal of Cleaner Production*, 495, 145102. <https://doi.org/10.1016/j.jclepro.2025.145102>
18. Guimarães, N. S., Reis, M. G., Costa, B. V. d. L., Zandonadi, R. P., Carrascosa, C., Teixeira-Lemos, E., ... (2024). Environmental footprints in food services: A scoping review. *Nutrients*, 16(13), 2106. <https://doi.org/10.3390/nu16132106>
19. Lins, M., Zandonadi, R. P., Raposo, A., & Ginani, V. C. (2021). Food waste on foodservice: An overview through the perspective of sustainable dimensions. *Foods*, 10(6), 1175. <https://doi.org/10.3390/foods10061175>
20. Özer, C. O., Demir Özer, E., & Başdoğan, D. (2025). Sustainability in the industrial catering menus: Nutritional and environmental impact assessment. *Journal of Industrial Ecology*, 29(5), 1013–1021. <https://doi.org/10.1111/jiec.70035>

SECTION 3

21. Food and Agriculture Organization of the United Nations; Alliance of Bioversity International; & CIAT; Editora da UFRGS. (2021). Public food procurement for sustainable food systems and healthy diets: Volume 1 [FAO/Alliance of Bioversity International & CIAT, Editora da UFRGS]. Rome. <https://doi.org/10.4060/cb7960en>
22. Food and Agriculture Organization of the United Nations, Alliance of Bioversity International, CIAT, & Editora da UFRGS. (2021). Public food procurement for sustainable food systems and healthy diets: Volume 2. FAO. <https://doi.org/10.4060/cb7969en>
23. Seelen, L. M. S., Flaim, G., Jennings, E., & De Senerpont Domis, L. N. (2019). Saving water for the future: Public awareness of water usage and water quality. *Journal of Environmental Management*, 242, 246–257. <https://doi.org/10.1016/j.jenvman.2019.04.047>.

References

24. Deptford, A., Allieri, T., Childs, R., Damu, C., Ferguson, E., Hilton, J., ... Hall, A. (2017). Cost of the Diet: A method and software to calculate the lowest cost of meeting recommended intakes of energy and nutrients from local foods. *BMC Nutrition*, 3(1), 26. <https://doi.org/10.1186/s40795-017-0136-2>.
25. German Nutrition Society (Ed.). (2024). 15th DGE Nutrition report. German Nutrition Society.
26. Gärtner, C., Stahl, W., & Sies, H. (1997). Lycopene is more bioavailable from tomato paste than from fresh tomatoes. *The American Journal of Clinical Nutrition*, 66(1), 116–122. <https://doi.org/10.1093/ajcn/66.1.116>
27. Crippa, M., Solazzo, E., Guzzardi, D., Monforti-Ferrario, F., Tubiello, F. N., & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. *Nature Food*, 2(3), 198–209. <https://doi.org/10.1038/s43016-021-00225-9>
28. Food and Agriculture Organization of the United Nations. (2022). Greenhouse gas emissions from agrifood systems: Global, regional and country trends, 2000–2020 (FAOSTAT Analytical Brief Series No. 50). FAO. <https://doi.org/10.4060/cc2922en>
29. World Health Organization. (2021). Action framework for developing and implementing public food procurement and service policies for a healthy diet. WHO. <https://www.who.int/publications/i/item/9789240035077>.
30. Republic of the Philippines Department of Education. (2017). Policy and guidelines on healthy food and beverage choices in schools and in DepEd offices. Department of Education. <https://www.deped.gov.ph/2017/06/21/do-13-s-2017>
31. World Health Organization. (2006). Five keys to safer food manual. WHO. <https://www.who.int/publications/i/item/9789241594634>

References

32. Carletto, F. C., Ferriani, L. O., & Silva, D. A. (2023). Sustainability in food service: A systematic review. *Waste Management & Research*, 41(2), 285–302. <https://doi.org/10.1177/0734242X221148723>
33. Strasburg, V. J., & Jahno, V. D. (2017). Application of eco-efficiency in the assessment of raw materials consumed by university restaurants in Brazil: A case study. *Journal of Cleaner Production*, 161, 178–187. <https://doi.org/10.1016/j.jclepro.2017.05.127>
34. Food and Agriculture Organization of the United Nations. (2011). Global food losses and food waste: Extent, causes and prevention. FAO. <https://www.fao.org/3/i2697e/i2697e.pdf>
35. Aamir, M., Ahmad, H., Javaid, Q., & Hasan, S. M. (2018). Waste not, want not: A case study on food waste in restaurants of Lahore, Pakistan. *Journal of Food Products Marketing*, 24(5), 591–610. <https://doi.org/10.1080/10454446.2017.1402581>.
36. World Health Organization, & Food and Agriculture Organization of the United Nations. (2003). Diet, nutrition and the prevention of chronic diseases: Report of a joint WHO/FAO expert consultation (WHO Technical Report Series, No. 916). WHO. <https://www.who.int/publications/i/item/924120916X>
37. Food and Agriculture Organization of the United Nations. (2010). Fats and fatty acids in human nutrition: Report of an expert consultation (FAO Food and Nutrition Paper, No. 91). FAO. <https://www.fao.org/3/i1953e/i1953e00.pdf>
38. Nishida, C., & Uauy, R. (2009). WHO scientific update on health consequences of trans fatty acids: Introduction. *European Journal of Clinical Nutrition*, 63(Suppl 2), S1–S4. <https://doi.org/10.1038/ejcn.2009.13>
39. World Health Organization. (2018). Guidelines: Saturated fatty acid and trans-fatty acid intake for adults and children (Draft issued for public consultation in May 2018). WHO. <https://www.who.int/docs/default-source/documents/health-topics/ncd/guidelines-sfa-tfa-public-consultation.pdf>.

References

40. World Health Organization. (2018). REPLACE: An action package to eliminate industrially-produced trans-fatty acids (WHO/NMH/NHD/18.4). WHO. <https://www.who.int/publications/i/item/9789241550531>

41. World Health Organization. (2015). Guideline: Sugars intake for adults and children. WHO. <https://www.who.int/publications/i/item/9789241549023>

42. Halpern, B. S., Cottrell, R. S., Blanchard, J. L., Bouwman, L., Froehlich, H. E., Gephart, J. A., ... Williams, D. R. (2019). Putting all foods on the same table: Achieving sustainable food systems requires full accounting. *Proceedings of the National Academy of Sciences*, 116(37), 18152–18156. <https://doi.org/10.1073/pnas.1913308116>

43. Hatjiathanassiadou, M., Souza, S. R. G. D., Nogueira, J. P., Oliveira, L. D. M., Strasburg, V. J., Rolim, P. M., & Seabra, L. M. A. J. (2019). Environmental impacts of university restaurant menus: A case study in Brazil. *Sustainability*, 11(19), 5157. <https://doi.org/10.3390/su11195157>

44. Harmon, A. H., & Gerald, B. L. (2007). Position of the American Dietetic Association: Food and nutrition professionals can implement practices to conserve natural resources and support ecological sustainability. *Journal of the American Dietetic Association*, 107(6), 1033–1043. <https://doi.org/10.1016/j.jada.2007.03.019>.

SECTION 4

45. Leal Filho, W., Barbir, J., Kalbusch, A., Setti, A. F. F., Lange Salvia, A., Anholon, R., ... Platje, J. (2023). Toward food waste reduction at universities. *Environment, Development and Sustainability*, 25(4), 3535–3552. <https://doi.org/10.1007/s10668-022-02221-0>.

46. Derqui, B., Fayos, T., & Fernandez, V. (2018). Towards a more sustainable food supply chain: Opening up invisible waste in food service. *Appetite*, 129, 74–85. <https://doi.org/10.1016/j.appet.2018.06.004>.

References

47. Lonska, J., Uliņšek, R., Ābeltaņa, A., & Kokina, I. (2025). Reducing plate waste in Latvian schools. *Foods*, 14(3), 622. <https://doi.org/10.3390/foods14030622>.

48 Clowes, A., Hanson, C., & Swannell, R. (2018). The business case for reducing food loss and waste: Catering. World Resources Institute. <https://www.wri.org/research/business-case-reducing-food-loss-and-waste-catering>

49. Urugo, J., Ng, C., Ahn, J., & Riaz, M. N. (2024). Review of food waste reduction strategies. *Comprehensive Reviews in Food Science and Food Safety*, 23(4), 1585–1612. <https://doi.org/10.1111/1541-4337.13195>

50. Manimaran, A., Rahim, H. A., Kandasamy, P., Subramanian, R., & Mahendran, R. (2025). Challenges and strategies to reduce food waste in Malaysian hospitals. *BMC Health Services Research*, 25, 1198. <https://doi.org/10.1186/s12913-025-1198-7>

51. Balzaretti, C. M., Ventura, V., Ratti, S., Ferri, E., Fornari, E., & Spigarolo, R. (2020). Portion sizes and sustainability of school meals: An Italian case study. *Eating and Weight Disorders*, 25(2), 437–444. <https://doi.org/10.1007/s40519-019-00654-7>

52. Food and Agriculture Organization of the United Nations. (2014). SAFA: Sustainability assessment of food and agriculture systems guidelines (Version 3.0). FAO. <https://www.fao.org/nr/sustainability/sustainability-assessments->

53. Ministerio de Salud Pública (Uruguay). (2024). Manual para cantinas saludables en centros educativos [Manual for healthy canteens in educational centers]. Ministerio de Salud Pública.

54. Lartey, A., Meerman, J., & Wijesinha-Bettoni, R. (2018). Why food system transformation is essential and how nutrition scientists can contribute. *Annals of Nutrition and Metabolism*, 72(3), 193–201. <https://doi.org/10.1159/000488910>

References

55. Spiker, M. L., Knoblock-Hahn, A., Brown, K., Giddens, J., Hege, A. S., Sauer, K., ... Steiber, A. (2020). Cultivating sustainable, resilient, and healthy food and water systems: A nutrition-focused framework for action. *Journal of the Academy of Nutrition and Dietetics*, 120(6), 1057–1067. <https://doi.org/10.1016/j.jand.2020.03.015>

56. Food and Agriculture Organization of the United Nations, & INRAE. (2020). Enabling sustainable food systems: Innovators' handbook. FAO. <https://doi.org/10.4060/ca9917en>

57. Niles, M. T., Ahuja, R., Barker, T., Esquivel, J., Guterman, S., Heller, M. C., ... Vermeulen, S. (2018). Climate change mitigation beyond agriculture: A review of food system opportunities and implications. *Renewable Agriculture and Food Systems*, 33(3), 297–308. <https://doi.org/10.1017/S1742170518000029>

58. United Nations Food Systems Summit Scientific Advisory Committee. (2025). Theme 2: Planetary boundaries in food systems transformation – Transforming food systems to return to Earth's limits (UN Food Systems Summit +4 Report). United Nations.

SECTION 6

59. Sacks, G., Chan, J., Mann, D., Dickie, S., Gaucher Holm, A., Naughton, S., ... Swinburn, B. (2025). Benchmarking the healthiness, equity and environmental sustainability of university food environments in Australia, 2021/22. *BMC Nutrition*, 11, 38. <https://doi.org/10.1186/s40795-025-00838-4>.

60. Oo Norasak, K., Dyrbye-Wright, O., Stull, V. J., Grabow, M. L., & Patz, J. (2025). Strategies to curb food waste on university campuses: A scoping review. *Journal of Sustainability Research*, 7(2), e250034. <https://doi.org/10.20900/jsr20250034>

References

61. Türker, G. F., Kılıç, S., & Demir, B. (2025). Reducing food waste in campus dining: A data-driven approach. *Sustainability*, 17(2), 379. <https://doi.org/10.3390/su17020379>
62. Yoon, B., Lee, J., & Lim, H. (2023). Campus dining sustainability: A perspective from college students. *Sustainability*, 15(3), 2134. <https://doi.org/10.3390/su15032134>