

Hélio Alves: marido, pai, ator, autor, escritor, músico percussionista, dançarino, cozinheiro, jardineiro, artesão, artista plástico, inventor e... Professor!

Nas horas vagas, médico, pediatra e cirurgião pediátrico!

Mais de 35 anos atuando como médico e professor de medicina. Professor da Faculdade de Medicina de Itajubá - FMIT – Grupo AFYA Médico formado pela Universidade do Estado do Rio de Janeiro (UERJ) Especialista em Pediatria pela Pontifícia Universidade Católica do Rio de Janeiro (PUC-RJ)

Especialista em Cirurgia Pediátrica pela Pontifícia Universidade Católica do Rio de Janeiro (PUC-RJ)

Mestre em Morfologia pela Universidade do Estado do Rio de Janeiro (UERJ)

Autor de inúmeros artigos, textos, apostilas e vídeo-aulas em diversos assuntos do conhecimento médico

Olá pessoal, vocês conhecem o Med_book – Medicina em Passatempos?

Que tal aprender enquanto se diverte?

Nosso objetivo não é ensinar os assuntos do curso de medicina, mas fazer um reforço do aprendizado de maneira lúdica e gostosa!

Queremos fazer você exercitar os conteúdos sem estresse e de um modo suave. Sem neuras!

Hoje vamos trabalhar o conteúdo da semana 1 de Sistemas Orgânicos Integrados.

Bom divertimento para todos!

CAÇA-PALAVRAS

Encontre no diagrama as palavras grifadas no texto. Elas podem estar na horizontal, na vertical ou na diagonal

Regulação da Temperatura Corporal

http://g1.globo.com/natureza/noticia/2015/03/na-era-do-gelo-o-frio-dizimou-os-pinguins-imperadores-da-antartica.html

Os seres <u>humanos</u> mantêm a <u>temperatura</u> corporal normal em um ponto fixo de 37 °C (98,6 °F). Devido à grande variação das temperaturas ambientais, o corpo possui <u>mecanismos</u>, coordenados pelo <u>hipotálamo</u> anterior, tanto para <u>geração</u> como para a <u>perda</u> de <u>calor</u> para manter a temperatura corporal <u>constante</u>. Quando a temperatura <u>ambiental</u> <u>diminui</u>, o <u>corpo</u> gera e conserva calor. Quando a temperatura ambiental <u>aumenta</u>, o corpo <u>reduz</u> a <u>produção</u> e aumenta a <u>dissipação</u> de calor.

O centro <u>termorregulador</u> está localizado no hipotálamo anterior. Este centro recebe <u>informações</u> sobre a temperatura ambiente a partir de <u>termorreceptores</u> da <u>pele</u>, e sobre a temperatura <u>interna</u> a partir de termorreceptores do próprio hipotálamo anterior. O hipotálamo anterior, então, orquestra as <u>respostas</u> apropriadas, que podem envolver mecanismos de geração ou dissipação de calor.

Se a temperatura interna estiver abaixo do ponto fixo pré-determinado da temperatura, os mecanismos de geração e <u>retenção</u> de calor são <u>ativados</u>. Estes mecanismos incluem o aumento da <u>taxa metabólica</u> (<u>hormônios tireoidianos</u>, <u>sistema nervoso simpático</u>), o <u>tremor</u> e a <u>vasoconstrição</u> dos vasos <u>sanguíneos</u> da pele (maior tônus simpático).

Se a temperatura interna estiver acima do ponto fixo pré-determinado da temperatura, os mecanismos de dissipação de calor são então ativados. Estes mecanismos incluem a <u>vasodilatação</u> dos vasos sanguíneos da pele (menor <u>tônus</u> simpático) e a maior <u>atividade</u> das fibras <u>colinérgicas</u> simpáticas que inervam as <u>glândulas</u> <u>sudoríparas</u>.

Fonte: Costanzo, L. S. Fisiologia. 6. ed. Rio de Janeiro: Elsevier, 2018.

Z	Ã	Χ	Q	U	K	N	Z	L	Ç	S	ı	М	Р	Á	Т	ı	С	0	Z	K	L
Р	L	М	-	С	ı	R	М	Е	Т	Α	В	Ó	L	I	С	Α	0	В	Υ	Α	Х
С	Е	V	Α	М	С	D	ı	М	ı	Ν	U	I	S	0	М	F	Х	J	Н	Q	G
Х	С	L	Α	V	S	ı	D	Z	D	G	Ν	Α	W	Р	Α	Т	G	Α	_	Н	L
Α	0	R	Е	Т	Е	N	Ç	Ã	0	U	U	Ε	N	0	М	С	0	R	Р	0	Â
R	Ν	E	С	E	В	Т	J	V	Ç	ı	Е	Р	Α	F	В	Ã	V	Н	0	R	N
K	S	W	N	R	М	Е	N	R	Q	N	Q	М	0	W	I	G	Α	S	Т	М	D
Α	Т	Е	R	М	0	R	R	Е	С	Е	Р	Т	0	R	Е	S	S	D	Á	Ô	U
W	Α	В	V	0	R	N	Х	F	Ã	0	Р	R	Q	Н	N	Е	0	Т	L	N	L
I	Z	F	0	R	М	Α	Ç	Õ	Е	S	Υ	Е	I	В	Т	S	D	Υ	Α	ı	Α
L	Т	Е	Ç	R	В	G	Z	С	Q	Т	I	М	Е	С	Α	N	I	S	М	0	S
Т	Е	М	Р	Е	R	Α	Т	U	R	Α	D	0	Н	J	L	М	L	U	0	S	Т
Z	Ç	U	Е	G	R	R	Ô	K	N	Е	Т	R	Α	G	Е	R	Α	Ç	Ã	0	R
С	L	V	Α	U	М	Е	N	Т	Α	F	S	М	V	I	Q	Υ	Т	Υ	S	J	U
I	Ã	0	М	L	0	S	U	D	0	R	ı	Р	Α	R	Α	S	Α	N	В	G	Х
Α	Т	ı	V	Α	D	0	S	Т	В	W	0	K	0	Т	K	Н	Ç	С	Υ	Α	Р
S	S	Р	L	D	ı	S	S	ı	Р	Α	Ç	Ã	0	S	ı	U	Ã	Р	ı	Р	D
I	Q	F	С	0	L	ı	N	Е	R	G	ı	С	Α	S	Т	V	0	R	Е	Ç	J
S	Α	D	Х	R	Z	I	R	S	F	U	N	R	Q	D	Е	Α	I	0	K	Z	D
Т	ı	R	Е	0	ı	D	ı	Α	N	0	S	V	F	S	L	Х	S	D	G	R	W
Е	Е	G	М	V	Α	S	0	С	0	N	S	Т	R	I	Ç	Ã	0	U	Α	Е	Т
М	С	R	G	F	Н	Н	U	М	Α	N	0	S	N	U	J	Υ	W	Ç	J	D	Н
Α	С	Χ	0	V	Р	Т	Α	J	G	Н	S	Н	ı	V	Н	0	U	Ã	K	U	Е
R	K	F	D	Ç	Y	Т	L	G	W	٦	Y	N	Е	R	V	0	S	0	Р	Z	В

DOMINOX

Encontre no diagrama as palavras grifadas no texto. Já existe uma palavra para ser usada como ponto inicial. Não considere os acentos.

Mecanismos para Geração de Calor

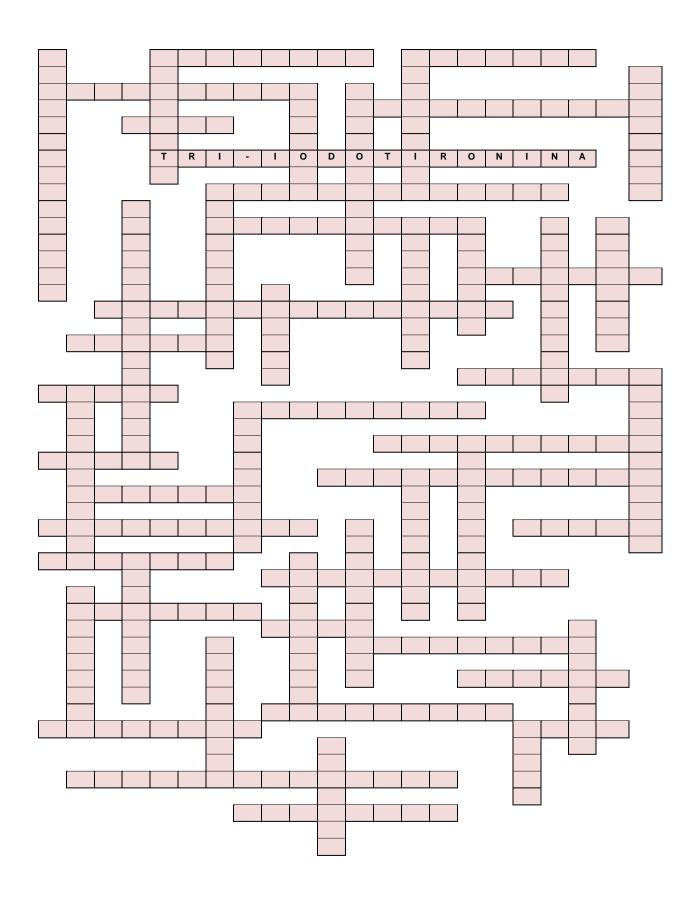
Quando a <u>temperatura ambiente</u> é inferior à temperatura <u>corporal</u>, ocorre a ativação de mecanismos que <u>aumentam</u> a <u>produção</u> de <u>calor</u> e reduzem a <u>perda</u> de calor. Estes mecanismos incluem a <u>estimulação</u> da produção de <u>hormônio tireoidiano</u>, a ativação do sistema <u>nervoso</u> simpático e os tremores. Componentes <u>comportamentais</u> também podem contribuir para reduzir a <u>exposição</u> da <u>pele</u> ao <u>frio</u> (p. ex., <u>envolver</u> o corpo com os braços, encolher-se, colocar mais roupas).

Hormônios Tireoidianos

Os hormônios tireoidianos são <u>termogênicos</u>: suas ações sobre os <u>tecidos</u> alvos produzem calor. As principais ações do hormônio tireoidiano são a estimulação de Na+-K+ ATPase e o aumento do <u>consumo</u> de O2, da taxa <u>metabólica</u> e da produção de calor. Portanto, é lógico que a exposição a temperaturas baixas ative os hormônios tireoidianos. O <u>mecanismo</u> desta ativação não está completamente <u>esclarecido</u>, mas inclui a maior <u>conversão</u> de <u>tiroxina</u> (T4) à forma ativa, <u>tri-iodetironina</u> (T3), nos tecidos alvos.

Uma vez que os hormônios tireoidianos são termogênicos, o <u>excesso</u> ou <u>déficit</u> destas substâncias causa distúrbios na <u>regulação</u> da temperatura corporal. No <u>hipertireoidismo</u> (p. ex., doença de <u>Graves, tumor</u> de tireoide), há aumento da taxa metabólica, do consumo de O2 e da produção de calor. No <u>hipotireoidismo</u> (p. ex., <u>tireoidite</u>, remoção <u>cirúrgica</u> da tireoide, <u>deficiência</u> de <u>iodo</u>), há redução da taxa metabólica, do consumo de O2 e da produção de calor e extrema sensibilidade ao frio.

Sistema Nervoso Simpático


As temperaturas ambientais baixas ativam o <u>sistema</u> nervoso <u>simpático</u>. Uma <u>consequência</u> desta ativação é a estimulação de <u>receptores</u> β no tecido <u>adiposo</u> marrom, o que aumenta a taxa metabólica e a produção de calor. Esta ação do sistema nervoso simpático é <u>sinérgica</u> com as ações dos hormônios tireoidianos: para que os hormônios tireoidianos produzam a termogênese <u>máxima</u>, o sistema nervoso simpático deve ser simultaneamente ativado pelas temperaturas baixas.

A segunda consequência da ativação do sistema nervoso simpático é a estimulação de receptores α1 na musculatura lisa vascular dos vasos sanguíneos cutâneos, o que produz vasoconstrição. A vasoconstrição reduz o fluxo sanguíneo para a superfície da pele e, consequentemente, diminui a perda de calor.

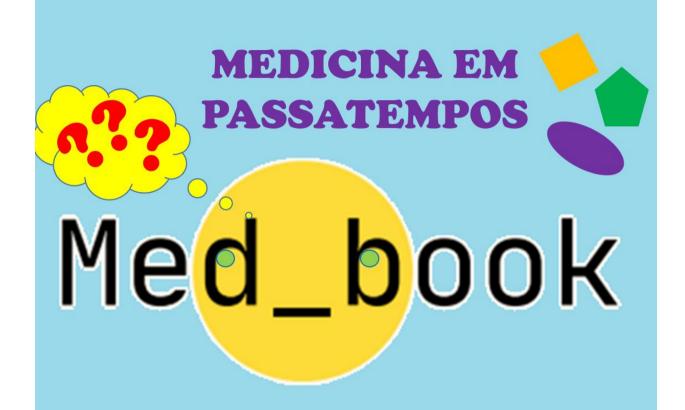
Tremor

O <u>tremor</u>, a <u>contração</u> rítmica da musculatura <u>esquelética</u>, é o mecanismo mais <u>potente</u> para o aumento da produção de calor pelo corpo. As temperaturas ambientais baixas ativam centros no <u>hipotálamo posterior</u>, que, então, ativam os <u>motoneurônios</u> α e γ que <u>inervam</u> a musculatura esquelética. A musculatura esquelética se contrai de forma rítmica, gerando calor e aumentando a temperatura corporal.

Fonte: Costanzo, L. S. Fisiologia. 6. ed. Rio de Janeiro: Elsevier, 2018.

ATIVIDADE 03

CRIPTOGRAMA


Símbolos iguais, letras iguais. Nas células em destaque aparecerá a função fisiológica de regulação da temperatura corporal. As letras que não se repetem já se encontram no diagrama.

Mecanismos de Dissipação do Calor

Quando a ambiente aumenta,		\$	Ð	•	\$	→	0	Æ	*	+	0					
a dissipação de calor deve ser maior.																
A febre é uma anormal da	\$	Z		A	©	•	6)	4				_				
temperatura corporal.																
A é um dos mecanismos	*	*	ô	4		\$	뺭	\$								
fisiológicos para dissipação do calor																
O calor é um subproduto normal do		\$	Æ	©	В	₽	93	•	慘	¥	4					
Os são substâncias	•	•	→	Ó	2	¢	•		®							
causadoras de febre.				"												
A maligna é caracterizada	٥	•	٠	\$		Æ	¢	→	4	•	☺					
por um grande aumento da taxa metabólica.																
O desvio do sangue para a superfície causa	A	\$		Ð	\$	Z	٥	•	ô	(3)	4					
e aumento da temperatura.																
Toda a pele do corpo apresenta	Æ	\$	→	4	4	→	→		0	\$	٠	Æ	4	+	\$	*
para percepção da temperatura.																
O centro está	Æ	\$	*	Ð	4	→	,	*			Z	©	ô	4	*	
localizado no hipotálamo anterior.										U						
A do tônus simpático	ô	•	Ð	•	•		•	6	69	4				ı		
aumenta a vasodilatação periférica.																
Os mecanismos para dissipação de calor	٥	•	٠	4	Æ			☺	4	4						
são coordenados pelo anterior.						Á										
O AAS inibe a produção de	٠	+	4	*	Æ	0	2	2		€ %	ô	•	•	0	100	
o que aciona a dissipação de calor.																
A perda de calor pelo corpo ocorre através	٥	4	•	A	❖	0		69	4							
de radiação e																
Um dos mecanismos para dissipação de	A	0	®-	4	ô	•	0.0	0	Æ	٥	6		4			
calor inclui a																
Um mecanismo de dissipação de calor é a	뺭	*	ô		+	í	•	☺	→	☺	*			•		
ativação das glândulas	1	1	Ī		I		l	I	l	1	I	1				

Fonte: Costanzo, L. S. Fisiologia. 6. ed. Rio de Janeiro: Elsevier, 2018.

GABARITOS

GABARITO 01

Z	Ã	Х	Q	U	K	N	Z	L	Ç	S	I	М	Р	Á	T	_	С	0	Ζ	K	L
P	L	М		CO	I	R	М	Е	Т	Α	В	Ó	L	I	С	Α	0	В	Υ	Α	Х
C	E	V	Α	М	С	D	I	М	I	N	U	I	S	0	М	F	Х	J	Н	Q	G
Х	C	(L)	А	V	S	I	D	Z	D	G	N	Α	W	Р	Α	Т	G	Α	I	Н	L
A	0	R	E	Т	Е	N	Ç	Ã	0	U	U	E	N	0	М	С	0	R	Р	0	Â
R	N	E	C	Ε	В	Т	J	V	Ç	ı	Е	Р	Α	F	В	Ã	V	Н	0	R	N
K	S	W	Ν	R	М	Е	N	R	Q	N	Q	М	0	W	I	G	Α	S	Т	М	D
Α	Т	Е	R	М	0	R	R	Е	С	Е	Р	T	0	R	Е	S	S	D	Á	Ô	U
W	Α	В	V	0	R	N	Х	F	Ã	0	Р	R	Q	Н	N	Е	0	Т	L	N	L
I	N	F	0	R	М	Α	Ç	Õ	Е	S	Υ	Ε	ı	В	Т	S	D	Υ	Α	- 1	А
L	Т	E	Ç	R	В	G	Z	С	Q	Т	-	М	Е	С	Α	N	I	S	М	0	S
Т	E	М	Р	Е	R	Α	Т	U	R	Α	D	0	Н	J	L	М	L	U	0	S	Т
Z	Ç	U	Е	G	R	R	Ô	K	N	E	۲	R	Α	G	Е	R	Α	Ç	Ã	0	R
С	L	V	Α	U	M	Е	N	Т	Α	F	S	М	V	I	Q	Υ	Т	Υ	S	J	U
I	Ã	0	M	L	0	S	U	D	0	R	_	Р	А	R	Α	S	Α	N	В	G	Х
Α	Т	ı	V	Α	D	0	S	Т	В	W	0	K	0	T	K	Н	Ç	С	Υ	Α	Р
S	S	Р	L	D	I	S	S		P	Α	Ç	Ã	0	S		J	Ã	Р	I	Р	D
ı	Q	F	С	0	L	-	N	E	R	G	ı	С	Α	S	T	V	9	R	Е	Ç	J
S	Α	D	Х	R	Z		R	S	F	U	N	R	Q	D	E	Α		0	K	Z	D
Т	ı	R	Е	0		D		Α	N	0	S	V	F	S	L	X	S	D	G	R	W
Е	Е	G	М	V	Α	S	0	С	0	N	S	Т	R	I	Ç	Ã	0	U	Α	E	Т
М	С	R	G	F	H	Н	U	M	Α	N	0	S	N	U	J	Υ	W	Ç	J	D	Н
Α	С	Х	0	V	Р	Т	Α	J	G	Н	S	Н	I	V	Н	0	U	Ã	K	U	E
R	K	F	D	Ç	Υ	Т	L	G	W	J	Υ	N	Е	R	V	0	S	0	Р	Z	В

GABARITO 02

С	1			Α	U	М	E	N	Т	Α	М	1	Р	0	Т	Е	N	Т	Е	Ì	
0				M	0	IVI	_	11	'		IVI		0	O	'	_	14		_		Р
M	Е	Т	Α	В	Ó	L	ı	С	Α	l	Т	1	S								R
P	_	•	, ,	ı	0	_		Ü	D		E	S	Т	ı	М	U	L	Α	Ç	Ã	0
0			Р	E	L	Е	1		1		R		E	•	IVI		_	, ,	ý	/ \	D
R			ı	N	_	_			P		M		R								U
T				T	R	ı	-	I	0	D	0	Т	I	R	0	N	ı	N	Α	Ì	Ç
A				E	N		_		S		G	'	0	N	U	IN	•	IN	_ ^		Ã
M					J	М	0	Т	0	N	E	U	R	Ô	N		0	S	1		0
E			Н	1		U	U	ı	U	IN	N	U	K	U	IN	I	U	3			U
N						S	Α	N	G	U	I	N	Е	0	S	1		D	1	Е	1
T			P			C	A	IN	G	U	С	IN	X	U	1			E		N	
			E			U							^ P					F		V	
A											0				S	_	<u> </u>		_		C
1			R			L			1		S		0		Т	Е	С	1	D	0 -	S
S		- 1,	Т)		A		G	-			_	S		E		Ī	С		L	
		Н	1	Р	0	T	I	R	Е	0	I	D	ı	S	M	0		-		٧	
	-	_	R			U		A					Ç		Α]		E		E	
	Т	R	E	М	0	R	-	٧					Ã					N		R	
			0			Α		E					0		_	l	_	C			- 1
	r –		1		,			S							D	É	F	I	С	I	T
Р	Е	R	D	Α]									r ~		1		Α]		E
	S		ı				С	0	N	V	Е	R	S	Ã	0						M
	С		S				0					_		_		_	_		_		Р
	L		М		7		R					S	U	Р	Е	R	F	I	С	I	Е
С	Α	L	0	R			Р								S				·		R
	R		•				0			С	0	N	S	Е	Q	U	Ê	N	С	I	Α
	Е	Х	С	Е	S	S	0						ı		U						Т
	С						R			-		_	М		Е						U
Н	ı	Р	0	Т	Α	L	Α	М	0		R		Р		L		Т	U	М	0	R
	D						L				Е		Α		Е						Α
С	0	N	S	U	М	0			Т		С		Т		Т				_		
_			ı		_			Т	ı	R	Е	0	I	D	I	Α	N	0			
	С		N						R		Р		С		С						
	I	N	Е	R	V	Α	М		Е		Т		0		Α						
	R		R					I	0	D	0								Н		
	U		G			С			I		R	Е	G	U	L	Α	Ç	Ã	0		
	R		ı			0			D		Е			-					R		-
	G		С			N			I		S				М	Á	Х	I	М	Α	
	ı		Α			Т			Т										0		
	С					R		М	Е	С	Α	N	I	S	М	0			N		
V	Α	S	С	U	L	Α	R										F	R	I	0	
						Ç		-		N							L		0		_
						Ã				Е							U			•	
	V	Α	S	0	С	0	N	S	Т	R	I	Ç	Ã	0			Х				
										V					•		0				
							Т	I	R	0	Х	I	N	Α							
										S					•						
										0	1										
										_											

GABARITO 03

Mecanismos de Dissipação do Calor

Quando a ambiente aumenta,		❖	Φ.	٠	\$	→	☺	Æ	*	→	☺					
a dissipação de calor deve ser maior.	Т	E	М	Р	Е	R	Α	Т	U	R	Α					
A febre é uma anormal da	≎	P.		A	0	€ %	(3)	4								
temperatura corporal.	E	L	E	V	Α	Ç	Ã	0								
A é um dos mecanismos	®-	*	ô	4		\$	*	\$								
fisiológicos para dissipação do calor	S	U	D	0	R	Е	S	E								
O calor é um subproduto normal do		\$	Æ	0		4	2	•	®	Ð	4					
	М	E	Т	Α	В	0	L	I	S	М	0					
Os são substâncias	٠	•	+		2	\$	€ %		*		l	j				
causadoras de febre.	Р	I	R	Ó	G	Е	N	0	S							
A maligna é caracterizada	٥	•	٠	\$		K		→	Ð	•	0					
por um grande aumento da taxa metabólica.	Н	ı	Р	E	R	Т	E	R	М	I	Α					
O desvio do sangue para a superfície causa	A			4		2	٥	0	ô	(3)	4					
e aumento da temperatura.	V	Е	R	М	Е	L	Н	ı	D	Ã	0					
Toda a pele do corpo apresenta	Æ	\$	→	4	^	+	→		٥		٠	Æ	4	→	\$	®.
para percepção da temperatura.	Т	E	R	М	0	R	R	E	С	Е	Р	Т	0	R	Е	S
O centro está	Æ	\$	+	Φ.	4	→	→	\$			2	0	ô	4	→	•
localizado no hipotálamo anterior.	Т	E	R	М	0	R	R	E	G	U	L	Α	D	0	R	
A do tônus simpático	ô	•	Φ.	0	•		•	•	(3)	4						
aumenta a vasodilatação periférica.	D	ı	М	I	N	U	I	Ç	Ã	0						
Os mecanismos para dissipação de calor	٥	•	٠	4	Æ			☺	Ð	4						
são coordenados pelo anterior.	Н	ı	Р	0	Т	Á	L	Α	М	0						
O AAS inibe a produção de	٠	→	^	6.	Æ	☺	2	Z		•	ô	•	•	☺	46	
o que aciona a dissipação de calor.	Р	R	0	S	Т	Α	G	L	Α	N	D	ı	N	Α	S	
A perda de calor pelo corpo ocorre através	٥	4	•	A	\$	٥		(3)	4		1					
de radiação e	С	0	N	V	Е	С	Ç	Ã	0							
Um dos mecanismos para dissipação de	A	☺	*	4	ô	•	2	☺	Ł	©	•		4			
calor inclui a	V	Α	S	0	D	ı	L	Α	Т	Α	Ç	Ã	0			
Um mecanismo de dissipação de calor é a	*	*	ô		→		٠	☺	→	☺	·			_		
ativação das glândulas	S	U	D	0	R	ĺ	Р	Α	R	Α	S					
	•						•									

Bibliografia

- 1. BECKER, R. O. et al. Anatomia Humana. Porto Alegre: SAGAH, 2018.
- 2. GRAY, H. Anatomia. 29. ed. Rio de Janeiro: Guanabara Koogan, 2012.
- 3. LAROSA, P. R. R. **Anatomia Humana: Texto e Atlas**. 1. ed. [Reimpr.]. Rio de Janeiro: Guanabara Koogan, 2023.
- 4. MARTINI, F. H. TIMMONS M J,; TALLITSCH, R. B. **Anatomia Humana**. 6. ed. Porto Alegre: Artmed, 2009.
- 5. MOORE, Keith L.; DALLEY, Arthur F.; AGUR, Anne M. **Anatomia Orientada para a Clínica**. 6. ed. Rio de Janeiro: Guanabara Koogan, 2013.
- 6. NETTER, Frank H. **Atlas de Anatomia Humana**. 5. ed. Rio de Janeiro: Elsevier, 2011.
- 7. TORTORA, G. J., NIELSEN, M. T. **Princípios de Anatomia Humana**. 14. ed. Rio de Janeiro: Guanabara Koogan, 2019.
- 8. VAN DE GRAAFF, K. M. Anatomia Humana. 6. ed. Barueri: Manole, 2003.