

1

2

Table of Contents

Executive Summary​ 4

Project Context​ 4

Audit Scope​ 7

Security Rating​ 8

Intended Smart Contract Functions​ 9

Code Quality​ 10

Audit Resources​ 10

Dependencies​ 10

Severity Definitions​ 11

Status Definitions​ 12

Audit Findings​ 13

Centralisation​ 24

Conclusion​ 25

Our Methodology​ 26

Disclaimers​ 28

About Hashlock​ 29

Hashlock Pty Ltd

3

CAUTION

THIS DOCUMENT IS A SECURITY AUDIT REPORT AND MAY CONTAIN

CONFIDENTIAL INFORMATION. THIS INCLUDES IDENTIFIED

VULNERABILITIES AND MALICIOUS CODE WHICH COULD BE USED TO

COMPROMISE THE PROJECT. THIS DOCUMENT SHOULD ONLY BE FOR

INTERNAL USE UNTIL ISSUES ARE RESOLVED. ONCE VULNERABILITIES ARE

REMEDIATED, THIS REPORT CAN BE MADE PUBLIC. THE CONTENT OF THIS

REPORT IS OWNED BY HASHLOCK PTY LTD FOR USE OF THE CLIENT.

Hashlock Pty Ltd

4

Executive Summary

The Energy Web Foundation team partnered with Hashlock to conduct a security audit

of their smart contracts. Hashlock manually and proactively reviewed the code in order

to ensure the project’s team and community that the deployed contracts are secure. ​

Project Context

Energy Web is a global, open-source nonprofit focused on accelerating the clean energy

transition through decentralized digital infrastructure. Launched in 2017, the

organization stewarded the Energy Web Chain (EWC), an enterprise-focused

Proof-of-Authority blockchain. Energy Web is now transitioning to it's flagship network:

Energy Web X (EWX), a Substrate-based Polkadot parachain.

EWX introduces a permissionless Proof-of-Stake consensus model, enabling broad

validator and delegator participation while unlocking staking rewards for participants

and supporting a robust on-chain economy. To expand liquidity and interoperability, the

Energy Web Token (EWT) is transitioning into a fully compliant ERC-20 token on

Ethereum mainnet, supported by a dual bridge architecture: a bidirectional bridge

between Ethereum and EWX as well as continued support for lifting from EWC to EWX.

Project Name: The Energy Web Foundation

Project Type: Defi, Token, Bridge

Website: https://www.energyweb.org/

Logo:

Hashlock Pty Ltd

https://www.energyweb.org/

5

Visualised Context:

Project Name Launch Date

The Energy Web Foundation 11/09/2025

 Compiler Version Language

 v^0.8.30 SOLIDITY

 Network Token Ticker

 ETHEREUM, EWX EWT

Hashlock Pty Ltd

6

Project Visuals:

Hashlock Pty Ltd

7

Audit Scope

We at Hashlock audited the solidity code within The Energy Web Foundation project,

the scope of work included a comprehensive review of the smart contracts listed below.

We tested the smart contracts to check for their security and efficiency. These tests

were undertaken primarily through manual line-by-line analysis and were supported by

software-assisted testing.

Description The Energy Web Foundation Smart Contracts

Platform Ethereum / Solidity

Audit Date July, 2025

Contract 1 EnergyBridge.sol

Contract 2 EnergyWebToken.sol

Audited GitHub Commit
Hash f8acf620fd2ccae3274b556b4693cd5bb98ad700

Fix Review GitHub
Commit Hash ab920c3fc89780f179a6f4e2fd7c663493fa4cac

Hashlock Pty Ltd

8

Security Rating

After Hashlock’s Audit, we found the smart contracts to be “Hashlocked”. The
contracts all follow simple logic, with correct and detailed ordering. They use a series of
interfaces, and the protocol uses a list of Open Zeppelin contracts.

The ‘Hashlocked’ rating is reserved for projects that ensure ongoing security via bug bounty programs or
on chain monitoring technology.

All issues uncovered during automated and manual analysis were meticulously reviewed

and applicable vulnerabilities are presented in the Audit Findings section. The list of

audited assets is presented in the Audit Scope section and the project's contract

functionality is presented in the Intended Smart Contract Functions section.

All vulnerabilities initially identified have now been resolved and acknowledged.

Hashlock found:

1 High severity vulnerability

1 Medium severity vulnerability

4 Low severity vulnerabilities

1 Gas Optimisations

1 QA

Caution: Hashlock’s audits do not guarantee a project's success or ethics, and are not

liable or responsible for security. Always conduct independent research about any

project before interacting.

Hashlock Pty Ltd

9

Intended Smart Contract Functions

Claimed Behaviour Actual Behaviour

EnergyBridge.sol

-​ bridging between EWX and Ethereum

-​ author consensus (add/remove)

-​ trigger periodic inflation of EWT

-​ lift and lower ERC20 tokens

-​ UUPS proxy upgradeable via EIP‑1822

Contract achieves this

functionality.

​

EnergyWebToken.sol

-​ upgradeable ERC20 token with ERC‑2612 permit

-​ The owner can set the bridge and create an

initial supply

-​ bridge‑only mint and burn

Contract achieves this

functionality.

Hashlock Pty Ltd

10

Code Quality

This audit scope involves the smart contracts of The Energy Web Foundation project, as

outlined in the Audit Scope section. All contracts, libraries, and interfaces mostly follow

standard best practices and to help avoid unnecessary complexity that increases the

likelihood of exploitation; however, some refactoring was recommended to optimize

security measures.

The code is very well commented on and closely follows best practice nat-spec styling.

All comments are correctly aligned with code functionality.

Audit Resources

We were given The Energy Web Foundation project smart contract code in the form of

GitHub access.

As mentioned above, code parts are well commented. The logic is straightforward, and

therefore it is easy to quickly comprehend the programming flow as well as the complex

code logic. The comments are helpful in providing an understanding of the protocol's

overall architecture.

Dependencies

As per our observation, the libraries used in this smart contracts infrastructure are

based on well-known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

Hashlock Pty Ltd

11

Severity Definitions

The severity levels assigned to findings represent a comprehensive evaluation of both

their potential impact and the likelihood of occurrence within the system. These

categorizations are established based on Hashlock's professional standards and

expertise, incorporating both industry best practices and our discretion as security

auditors. This ensures a tailored assessment that reflects the specific context and risk

profile of each finding.

Significance Description

High

High-severity vulnerabilities can result in loss of funds,
asset loss, access denial, and other critical issues that
will result in the direct loss of funds and control by the
owners and community.

Medium
Medium-level difficulties should be solved before
deployment, but won't result in loss of funds.

Low
Low-level vulnerabilities are areas that lack best
practices that may cause small complications in the
future.

Gas Gas Optimisations, issues, and inefficiencies.

QA
Quality Assurance (QA) findings are informational and
don't impact functionality. Supports clients improve the
clarity, maintainability, or overall structure of the code.

Hashlock Pty Ltd

12

Status Definitions

Each identified security finding is assigned a status that reflects its current stage of

remediation or acknowledgment. The status provides clarity on the handling of the

issue and ensures transparency in the auditing process. The statuses are as follows:

Significance Description

Resolved

The identified vulnerability has been fully mitigated
either through the implementation of the recommended
solution proposed by Hashlock or through an alternative
client-provided solution that demonstrably addresses the
issue.

Acknowledged

The client has formally recognized the vulnerability but
has chosen not to address it due to the high cost or
complexity of remediation. This status is acceptable for
medium and low-severity findings after internal review
and agreement. However, all high-severity findings must
be resolved without exception.

Unresolved
The finding remains neither remediated nor formally
acknowledged by the client, leaving the vulnerability
unaddressed.

Hashlock Pty Ltd

13

Audit Findings

High

[H-01] EnergyBridge#_requiredConfirmations - Insufficient consensus

threshold allows minority control over critical operations

Description

The _requiredConfirmations function implements a threshold calculation that results in

an incorrect consensus requirement for small author sets, falling short of Byzantine

fault tolerance standards, which require greater than 66.7% agreement.

Vulnerability Details

The function calculates required confirmations as N - floor(2N/3), which produces

inconsistent and insufficient thresholds:

●​ 4 authors: requires 2 signatures (50%)

●​ 5 authors: requires 2 signatures (40%)

●​ 6 authors: requires 2 signatures (33.3%)

●​ 7 authors: requires 3 signatures (42.8%)

This allows a minority of authors to control critical operations, including

adding/removing authors, publishing roots, and triggering token inflation.

function _requiredConfirmations() private view returns (uint256 required) {

 required = numActiveAuthors;

 unchecked {

 required -= (required * 2) / 3;

 }

 }

Hashlock Pty Ltd

14

Impact

A malicious minority can compromise the bridge's security model by approving

unauthorized state transitions, adding malicious authors, or triggering unintended token

minting.

Recommendation

Implement proper super-majority calculation that ensures at least floor(2N/3) + 1

signatures are required.

Status

Resolved

Hashlock Pty Ltd

15

Medium

[M-01] EnergyBridge#setGrowthRate - Unbounded loops when iterating over

assets from the asset manager could cause out of gas error

Description

The setGrowthRate function permits rates up to exactly 10,000 basis points (100%),

allowing the entire token supply to be doubled in a single triggerGrowth call.

Vulnerability Details

The validation uses > instead of >=:

function setGrowthRate(uint16 newRate) public onlyOwner {

 if (newRate > BASIS_POINTS) revert RateOutsideRange();

 growthRate = newRate;

 emit LogGrowthRateUpdated(newRate);

 }

This allows growthRate = 10,000, which in triggerGrowth calculates to:

amount = totalSupply * 10,000 / 10,000 = totalSupply

Impact

Admin can instantly double the token supply, potentially destabilizing the token

economy and diluting holder value.

Recommendation

We recommend changing the validation to prevent 100% inflation.

Status

Resolved

Hashlock Pty Ltd

16

Low

[L-01] EnergyBridge#removeAuthor - Dynamic threshold reduction enables

author removal with insufficient signatures

Description

The removeAuthor function decrements numActiveAuthors before verifying the removal

proof, allowing the operation to complete with fewer signatures than initially required.

Flow:

1.​ Sets isAuthor[id] = false

2.​ Decrements numActiveAuthors ifthe author was active

3.​ Calls _verifyConfirmations, which uses the already reduced count

For example, with 7 authors where 3 signatures are required, the threshold drops to 2

signatures mid-operation after decreasing to 6 authors.

Malicious authors can exploit this vulnerability to remove legitimate authors with fewer

approvals than the protocol intended, gaining unauthorized control.

Recommendation

We recommend verifying confirmations before modifying the state.

Status

Resolved

Hashlock Pty Ltd

17

[L-02] EnergyBridge#claimLower - Zero address recipient validation missing

enables permanent token loss

Description

The claimLower function does not validate that the recipient address extracted from the

proof is non-zero before executing the token transfer. The function calls

_extractLowerData to parse the recipient from raw bytes at offset 52-72, then directly

transfers tokens via safeTransfer(recipient, amount) without any address validation,

allowing permanent token loss if authors accidentally sign proofs with zero addresses.

Recommendation

We recommend adding recipient validation before the token transfer.

Status

Resolved

Hashlock Pty Ltd

18

[L-03] EnergyBridge#_domainSeparator - Static EIP-712 version allows

signature replay across upgrades

Description

The domain separator uses hardcoded VERSION_HASH = keccak256('1') while the

contract's version state variable increments on each upgrade via _authorizeUpgrade.

This inconsistency means EIP-712 signatures remain valid across all contract versions,

even when proof structures or validation logic changes, as the domain separator hash

remains constant despite the contract implementation evolving.

Recommendation

We recommend dynamically incorporating the current contract version into the domain

separator calculation.

Status

Resolved

Hashlock Pty Ltd

19

[L-04] EnergyBridge#checkLower - Perpetual validity of lower proofs prevents

time-boxed withdrawals

Description

Lower proofs lack any expiry parameter or timestamp validation, remaining valid

indefinitely once signed by authors. Unlike other bridge operations (addAuthor,

removeAuthor, publishRoot, triggerGrowth) that include an expiry parameter validated

by the withinCallWindow modifier, lower proofs can be claimed at any time in the

future, preventing implementation of temporary withdrawal windows or proof

expiration policies.

Recommendation

We recommend adding an expiry field to the LOWER_DATA_TYPEHASH and validating it in

claimLower.

Status

Acknowledged

Hashlock Pty Ltd

20

[L-05] EnergyBridge#addAuthor - Missing T2 public key validation allows

invalid registrations

Description

The contract accepts any bytes32 value as a T2 public key without validating format,

non-zero status, or cryptographic validity. While T1 public keys are validated to be

exactly 64 bytes and properly derive to the expected address, T2 keys undergo no

validation beyond checking for duplicate registration, allowing registration of malformed

keys that cannot function on the T2 network.

Recommendation

We recommend adding basic T2 key validation.

Status

Resolved

Hashlock Pty Ltd

21

Gas

[G-01] EnergyBridge#_domainSeparator - Repeated computation wastes gas

Description

The _domainSeparator function recalculates the complete EIP-712 domain separator on

every proof verification by encoding and hashing constant values (DOMAIN_TYPEHASH,

contract name, version, chain ID, and address).

Since these values remain constant between upgrades (except potentially chain ID in

rare fork scenarios), this repeated computation wastes approximately 3,000-5,000 gas

per verification across all proof-based operations.

Recommendation

We recommend caching the domain separator as a state variable during initialization.

Status

Acknowledged

Hashlock Pty Ltd

22

QA

[Q-01] EnergyBridge#triggerGrowth - Unused signed parameters create

Description

The triggerGrowth function requires authors to sign a proof containing rewards,

avgStaked, and period parameters via the TRIGGER_GROWTH_TYPEHASH, but only uses

period in the actual implementation. The inflation calculation completely ignores the

signed rewards and avgStaked values, instead computing amount =

(IERC20(EWT).totalSupply() * growthRate) / BASIS_POINTS, creating a confusing

mismatch between the secured proof data and execution logic that could lead to

integration errors.

Recommendation

We recommend removing unused parameters from the function signature and proof

structure as indicated by the TODO comment.

Status

Acknowledged​

Hashlock Pty Ltd

23

Centralisation

The Energy Web Foundation project is moving toward full decentralization by having

many independent validators make all key decisions instead of a single team. A

temporary admin role is only in place during upgrades, after which governance will be

fully community-driven.

Hashlock Pty Ltd

24

Conclusion

After Hashlock’s analysis, The Energy Web Foundation project seems to have a sound

and well-tested code base; now that our vulnerability findings have been resolved and

acknowledged. Overall, most of the code is correctly ordered and follows industry best

practices. The code is well commented on as well. To the best of our ability, Hashlock is

not able to identify any further vulnerabilities.

Hashlock Pty Ltd

25

Our Methodology

Hashlock strives to maintain a transparent working process and to make our audits a

collaborative effort. The objective of our security audits is to improve the quality of

systems and upcoming projects we review and to aim for sufficient remediation to help

protect users and project leaders. Below is the methodology we use in our security

audit process.

Manual Code Review:

In manually analysing all of the code, we seek to find any potential issues with code

logic, error handling, protocol and header parsing, cryptographic errors, and random

number generators. We also watch for areas where more defensive programming could

reduce the risk of future mistakes and speed up future audits. Although our primary

focus is on the in-scope code, we examine dependency code and behaviour when it is

relevant to a particular line of investigation.

Vulnerability Analysis:

Our methodologies include manual code analysis, user interface interaction, and white

box penetration testing. We consider the project's website, specifications, and

whitepaper (if available) to attain a high-level understanding of what functionality the

smart contract under review contains. We then communicate with the developers and

founders to gain insight into their vision for the project. We install and deploy the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Hashlock Pty Ltd

26

Documenting Results:

We undergo a robust, transparent process for analysing potential security vulnerabilities

and seeing them through to successful remediation. When a potential issue is

discovered, we immediately create an issue entry for it in this document, even though

we have not yet verified the feasibility and impact of the issue. This process is vast

because we document our suspicions early even if they are later shown to not represent

exploitable vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative,

and we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyse the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take and finally, we

suggest the requirements for remediation engineering for future releases. The

mitigation and remediation recommendations should be scrutinised by the developers

and deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the contract details are

made public.

Hashlock Pty Ltd

27

Disclaimers

Hashlock’s Disclaimer

Hashlock’s team has analysed these smart contracts in accordance with the best

industry practices at the date of this report, in relation to: cybersecurity vulnerabilities

and issues in the smart contract source code, the details of which are disclosed in this

report, (Source Code); the Source Code compilation, deployment, and functionality

(performing the intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be considered as a

sufficient assessment regarding the utility and safety of the code, bug-free status, or

any other statements of the contract. While we have done our best in conducting the

analysis and producing this report, it is important to note that you should not rely on

this report only. We also suggest conducting a bug bounty program to confirm the high

level of security of this smart contract.

Hashlock is not responsible for the safety of any funds and is not in any way liable for

the security of the project.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have their

own vulnerabilities that can lead to attacks. Thus, the audit can’t guarantee the explicit

security of the audited smart contracts.

Hashlock Pty Ltd

28

About Hashlock

Hashlock is an Australian-based company aiming to help facilitate the successful

widespread adoption of distributed ledger technology. Our key services all have a focus

on security, as well as projects that focus on streamlined adoption in the business

sector.

Hashlock is excited to continue to grow its partnerships with developers and other

web3-oriented companies to collaborate on secure innovation, helping businesses and

decentralised entities alike.

Website: hashlock.com.au

Contact: info@hashlock.com.au

Hashlock Pty Ltd

http://hashlock.com.au
mailto:info@hashlock.com.au

29

Hashlock Pty Ltd

	Executive Summary
	Project Context
	Audit Scope
	Security Rating
	Intended Smart Contract Functions
	
	
	
	
	
	Code Quality
	Audit Resources
	Dependencies
	Severity Definitions
	Status Definitions
	Audit Findings
	High
	[H-01] EnergyBridge#_requiredConfirmations - Insufficient consensus threshold allows minority control over critical operations
	Description
	Vulnerability Details
	Impact
	Recommendation
	Status

	Medium
	[M-01] EnergyBridge#setGrowthRate - Unbounded loops when iterating over assets from the asset manager could cause out of gas error
	Description
	Vulnerability Details
	Impact
	Recommendation
	Status

	Low
	[L-01] EnergyBridge#removeAuthor - Dynamic threshold reduction enables author removal with insufficient signatures
	Description
	Recommendation
	Status

	[L-02] EnergyBridge#claimLower - Zero address recipient validation missing enables permanent token loss
	Description
	Recommendation
	Status

	[L-03] EnergyBridge#_domainSeparator - Static EIP-712 version allows signature replay across upgrades
	Description
	Recommendation
	Status

	[L-04] EnergyBridge#checkLower - Perpetual validity of lower proofs prevents time-boxed withdrawals
	Description
	Recommendation
	Status

	[L-05] EnergyBridge#addAuthor - Missing T2 public key validation allows invalid registrations
	Description
	Recommendation
	Status

	
	Gas
	[G-01] EnergyBridge#_domainSeparator - Repeated computation wastes gas
	Description
	Recommendation
	Status

	QA
	[Q-01] EnergyBridge#triggerGrowth - Unused signed parameters create
	Description
	Recommendation
	Status

	Centralisation
	Conclusion
	Our Methodology
	Disclaimers
	About Hashlock
	

