

Company Address

Energy Web Foundation

Worker Pallet

Security Assessment Report

May 23rd, 2025

Version 1.1

CONFIDENTIAL

2 | P a g e

Table of Contents

Table of Contents .. 2

1 Executive Summary ... 5

1.1 Introduction ... 5

1.2 Assessment Results .. 6

1.2.1 Retesting Results ... 6

1.3 Summary of Findings .. 8

2 Assessment Description ... 10

2.1 Target Description .. 10

2.2 In-Scope Components .. 10

2.3 Assessment limitations .. 12

3 Methodology .. 13

3.1 Assessment Methodology .. 13

3.2 Smart Contracts .. 13

4 Scoring System .. 15

4.1 CVSS ... 15

5 Identified Findings ... 16

5.1 High Severity Findings .. 16

5.1.1 lib.rs/submit_solution_result emits the voting round settled result

 16

5.1.2 lib.rs/submit_solution_result result bruteforcing on Settled voting

rounds ... 18

5.1.3 lib.rs/submit_solution_result emits voting results 19

5.1.4 data_struct:next_voters_batch for non-nominated worker case is

not assessing a snapshot .. 20

5.2 Medium Severity Findings .. 23

3 | P a g e

5.2.1 lib.rs/calculate_deposit_fee does not reserve bonus_reward from

registrar ... 23

5.2.2 The length of nominated_workers is not dynamically assessed

during a voting round .. 24

5.2.3 lib.rs/unsubscribe_from_solution_group is not taking into

account current voting periods ... 26

5.3 Low Severity Findings ... 28

5.3.1 lib.rs/remove_allowed_operator can be blocked by malicious

operators ... 28

5.3.2 voting-rs:get_nomination snapshot not properly validating user

stake 30

5.3.3 lib.rs/remove_allowed_operator relies on

determine_user_overall_stake .. 31

5.3.4 lib.rs/raise_group_rewards fails silently .. 32

5.4 Informational Findings ... 33

5.4.1 Outdated and Vulnerable dependencies in-use at "Cargo.lock" 33

5.4.2 voting_threshold_percent allows for minority voting 36

6 Retesting Results ... 38

6.1 Retest of High Severity Findings .. 38

6.1.1 lib.rs/submit_solution_result emits the voting round settled result

 38

6.1.2 lib.rs/submit_solution_result result bruteforcing on Settled voting

rounds ... 38

6.1.3 lib.rs/submit_solution_result emits voting results 38

6.1.4 data_struct:next_voters_batch for non-nominated worker case is

not assessing a snapshot .. 38

6.2 Retest of Medium Severity Findings ... 39

6.2.1 lib.rs/calculate_deposit_fee does not reserve bonus_reward from

registrar ... 39

6.2.2 The length of nominated_workers is not dynamically assessed

during a voting round .. 39

4 | P a g e

6.2.3 lib.rs/unsubscribe_from_solution_group is not taking into

account current voting periods ... 39

6.3 Retest of Low Severity Findings ... 40

6.3.1 lib.rs/remove_allowed_operator can be blocked by malicious

operators ... 40

6.3.2 voting-rs:get_nomination snapshot not properly validating user

stake 40

6.3.3 lib.rs/remove_allowed_operator relies on

determine_user_overall_stake .. 40

6.3.4 lib.rs/raise_group_rewards fails silently .. 40

6.4 Retest of Informational Findings ... 42

6.4.1 Outdated and Vulnerable dependencies in-use at "Cargo.lock” 42

6.4.2 voting_threshold_percent allows for minority voting 42

Document History ... 43

5 | P a g e

1 Executive Summary

1.1 Introduction

The report contains the results of Energy Web Worker solution pallet security

assessment that took place from January 6th, 2025, to January 24th, 2025. The

security engineers performed an in-depth manual analysis of the provided

functionalities, and uncovered issues that may be used by adversaries to affect

the confidentiality, the integrity, and the availability of the in-scope components.

All the identified vulnerabilities are presented in the report, including their impact

and the proposed mitigation strategy, and are ordered by their severity.

In total, the team identified eleven (11) vulnerabilities. There were also two (2)

informational issues of no-risk.

All the identified vulnerabilities are presented in the report, including their impact

and the proposed mitigation strategy, and are ordered by their severity. A

retesting phase was carried out on May 20th, 2025, and the results are presented

in Section 6

0 1 2 3 4 5

INFO

LOW

MEDIUM

HIGH

6 | P a g e

1.2 Assessment Results

The assessment results revealed that the in-scope application components were

mainly vulnerable to three (3) Information Disclosure and one (1) Data Validation

issues of HIGH risk. Regarding the Information Disclosure issues, it was identified

that the submit_solution_result extrinsic was emitting critical information regarding

the outcome of the vote in 3 different instances. This would allow workers to vote

the correct results without the need to conduct the actual work needed as part of

the normal flow of the application. As a result, these workers would benefit from

the voting rewards when they shouldn’t.

In reference to the High-risk Data Validation issue, it was identified that the

next_voters_batch function was processing vote rewards using the current set of

operators rather than the set of operators that voted in the round leading to the

loss of rewards for the operators affected.

The in-scope components were also affected by one (1) Data Validation, one (1)

Access Control and one (1) and Business Logic vulnerabilities of MEDIUM risk.

In one case, an operator could vote and unsubscribe without implications or

having their vote removed. In another case, when nominated workers are in place,

a worker who leaves the subscription pool without voting could brick the voting

round. In the final MEDIUM risk issue, we see the partial implementation of the

performance bonus feature which while it could be accepted by the system the

amount wouldn’t be reserved from the registrar’s wallet.

There were also four (4) vulnerabilities of LOW risk and two (2) findings of no-risk

(INFORMATIONAL). Chaintroopers recommend the immediate mitigation of all

HIGH and MEDIUM-risk issues. It is also advisable to address all LOW and

INFORMATIONAL findings to enhance the overall security posture of the

components.

1.2.1 Retesting Results

Results from resting carried out on May 2025, determined that four (4 out of 4)

reported HIGH risk issues were sufficiently addressed.

7 | P a g e

Furthermore, three (3 out of 3) and four (4 out of 4) MEDIUM and LOW risk issues

were sufficiently addressed.

Of the remaining two issues one (1 out of 2) informational issues was accepted as

risk to the business and the remaining one is OPEN. More information can be

found in Section 6.

8 | P a g e

1.3 Summary of Findings

The following findings were identified in the examined source code:

Vulnerability Name Status
Retest

Status
Page

lib.rs/submit_solution_result emits the voting round settled result HIGH CLOSED 16

lib.rs/submit_solution_result result bruteforcing on Settled voting

rounds

HIGH CLOSED 18

lib.rs/submit_solution_result emits voting results HIGH CLOSED 19

data_struct:next_voters_batch for non-nominated worker case is

not assessing a snapshot

HIGH CLOSED 20

lib.rs/calculate_deposit_fee does not reserve bonus_reward from

registrar

MEDIUM CLOSED 23

The length of nominated_workers is not dynamically assessed

during a voting round

MEDIUM CLOSED 24

lib.rs/unsubscribe_from_solution_group is not taking into account

current voting periods

MEDIUM CLOSED 26

lib.rs/remove_allowed_operator can be blocked by malicious

operators

LOW CLOSED 28

voting-rs:get_nomination snapshot not properly validating user

stake

LOW CLOSED 30

lib.rs/remove_allowed_operator relies on

determine_user_overall_stake

LOW CLOSED 31

lib.rs/raise_group_rewards fails silently LOW CLOSED 32

Outdated and Vulnerable dependencies in-use at "Cargo.lock" INFO INFO 33

9 | P a g e

voting_threshold_percent allows for minority voting INFO Risk

Accepted

36

10 | P a g e

2 Assessment Description

2.1 Target Description

The Energy Web worker solution pallet is a system which allows for the

registration of specific solutions and solution groups. These groups in return allow

operators to subscribe to them by staking funds and participating in a voting

system. To vote in this system, the operator needs to register a worker and the

worker to conduct some processing work.

Workers who vote in this system would see some additional rewards if they have

conducted the work properly.

2.2 In-Scope Components

The following pallets were in-scope for this assessment:

▪ data_structs

▪ lib

▪ rewards

▪ solution

▪ stake_manager

▪ vote_processing

▪ voting

The components are located at the following URL:

https://github.com/energywebfoundation/ewx-worker-solution-pallet

Component Commit Identifier

https://github.com/energywebfoundat

ion/ewx-worker-solution-pallet

6d0ffd0687ebd85e6d629ce4a9c23f7209

55e85e

A retesting phase was carried out on May 20th, 2025.

11 | P a g e

Component Commit Identifier

https://github.com/energywebfoundation/e

wx-worker-solution-pallet
9d57d8a5d0637e00497d253461fe6d18bc3b7

3e2

12 | P a g e

2.3 Assessment limitations

The following features are planned for future development hence could not be

part of the assessment. In case a feature is partially implemented, and a security

vulnerability is present it is reported as an actual vulnerability of the system.

• Top performance bonus, this is a feature which would reward a worker with

the highest amount of correct vote submissions. This feature is partially

implemented.

• Slashing mechanism, with this mechanism voters who abstain from a vote

or submit an incorrect result will have part of their stake slashed. This

feature is not implemented.

• Commit reveal, the voting system currently doesn’t have a commit reveal

approach implemented but it is part of future plans.

13 | P a g e

3 Methodology

3.1 Assessment Methodology

Chaintroopers’ methodology attempts to bridge the penetration testing and

source code reviewing approaches in order to maximize the effectiveness of a

security assessment.

Traditional pentesting or source code review can be done individually and can

yield great results, but their effectiveness cannot be compared when both

techniques are used in conjunction.

In our approach, the application is stress tested in all viable scenarios though

utilizing penetration testing techniques with the intention to uncover as many

vulnerabilities as possible. This is further enhanced by reviewing the source code

in parallel to optimize this process.

When feasible our testing methodology embraces the Test-Driven Development

process where our team develops security tests for faster identification and

reproducibility of security vulnerabilities. In addition, this allows for easier

understanding and mitigation by development teams.

Chaintroopers’ security assessments are aligned with OWASP TOP10 and NIST

guidance.

This approach, by bridging penetration testing and code review while bringing the

security assessment in a format closer to engineering teams has proven to be

highly effective not only in the identification of security vulnerabilities but also in

their mitigation and this is what makes Chaintroopers’ methodology so unique.

3.2 Smart Contracts

The testing methodology used is based on the empirical study “Defining Smart

Contract Defects on Ethereum” by J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo and T.

14 | P a g e

Chen, in IEEE Transactions on Software Engineering, and the security best

practices as described in “Security Considerations” section of the solidity wiki.

The following is a non-exhaustive list of security vulnerabilities that are identified

by our methodology during the examination of the in-scope contract:

▪ Unchecked External Calls

▪ Strict Balance Equality

▪ Transaction State Dependency

▪ Hard Code Address

▪ Nested Call

▪ Unspecified Compiler Version

▪ Unused Statement

▪ Missing Return Statement

▪ Missing Reminder

▪ High Gas Consumption Function Type

▪ DoS Under External Influence

▪ Unmatched Type Assignment

▪ Re-entrancy

▪ Block Info Dependency

▪ Deprecated APIs

▪ Misleading Data Location

▪ Unmatched ERC-20 standard

▪ Missing Interrupter

▪ Greedy Contract

▪ High Gas Consumption Data Type

 In Substrate Pallets, the list of vulnerabilities that are identified also includes:

▪ Static or Erroneously Calculated Weights

▪ Arithmetic Overflows

▪ Unvalidated Inputs

▪ Runtime Panic Conditions

▪ Missing Storage Deposit Charges

▪ Non-Transactional Dispatch Functions

▪ Unhandled Errors &Unclear Return Types

▪ Missing Origin Authorization Checks

15 | P a g e

4 Scoring System

4.1 CVSS

All issues identified as a result of Chaintroopers’ security assessments are

evaluated based on Common Vulnerability Scoring System version 3.1

(https://www.first.org/cvss/).

With the use of CVSS, taking into account a variety of factors a final score is

produced ranging from 0 up to 10. The higher the number goes the more critical

an issue is.

The following table helps provide a qualitative severity rating:

Rating CVSS Score

None/Informational 0.0

Low 0.1-3.9

Medium 4.0-6.9

High 7.0-8.9

Critical 9.0-10.0

Issues reported in this document contain a CVSS Score section, this code is

provided as an aid to help verify the logic of the team behind the evaluation of a

said issue. A CVSS calculator can be found in the following URL:

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

16 | P a g e

5 Identified Findings

5.1 High Severity Findings

5.1.1 lib.rs/submit_solution_result emits the voting round settled result

Description

The consensus result is broadcasted before the end of the voting period

allowing this way for operators to learn the consensus result and vote for it in

the remainder of the voting round.

The unsigned extrinsic lib.rs/submit_solution_result, is making changes in the

storages Votes and Voters. In addition to that, when consensus has been

reached along with setting the VotingRoundStatus to Settled, an event will be

emitted with the result of the consensus.

// Broadcast event

Self::deposit_event(Event::VotingRoundSettled {

 namespace: solution_namespace.to_owned(),

 id: voting_round_id.to_owned(),

 result: result.to_owned(),

 });

While this behavior is setting the consensus to a specific value it does not end

the voting round, as this will happen once the relevant block has been reached.

This allows for more votes to go through.

The behavior of the extrinsic for new votes will now go through the following

match statement and will allow for further registration of correct votes.

match voting_round_info.status {

 ...

HIGH

17 | P a g e

 VotingRoundStatus::Settled(outcome) => {

 ensure!(outcome == result, Error::<T>::WrongVotingResult);

 // TODO is this something we need to raise offense for?

Impact

This behavior allows workers to provide the correct solutions to the voting

round without being required to do the actual work. Workers can monitor the

network for the event emission which contains the solution that they need to

provide and just copy the result. While they can't affect the consensus they will

be rewarded as honest voters.

Recommendation

The consensus result should be emitted when the voting period has finished

and not before as to not interfere with the voting process.

18 | P a g e

5.1.2 lib.rs/submit_solution_result result bruteforcing on Settled voting

rounds

Description

When a voting round is Settled but not expired, workers can submit and

essentially bruteforce the right solution as calling the

libs.rs/submit_solution_result extrinsic with an incorrect result will simply throw

an error and not punish the malicious effort.

match voting_round_info.status {

 ...

 VotingRoundStatus::Settled(outcome) => {

 ensure!(outcome == result, Error::<T>::WrongVotingResult);

 // TODO is this something we need to raise offense for?

Since this extrinsic is unsigned, there is no cost for the malicious worker to brute

force the solution.

Impact

Once the voting round has been settled, workers can utilize this behavior to

identify the correct consensus result and participate in the voting rewards as

honest voters. Since the extrinsic is unsigned there is no cost to the user to call

the function and there is no penalty for a worker to abuse this behavior.

Recommendation

Since the current behavior allows for correct votes to go through even if the

consensus threshold has been reached, it is advised to allow and log incorrect

votes as well.

HIGH

19 | P a g e

5.1.3 lib.rs/submit_solution_result emits voting results

Description

The extrinsic lib.rs/submit_solution_result is currently emitting an event of every

successful vote going through with the result of the vote. Operators monitoring

the network will be able to identify which votes go through and predict the

outcome of the vote.

lib.rs/submit_solution_result

Self::deposit_event(Event::SolutionResultSubmitted {

 solution_namespace,

 voting_round_id,

 result,

 operator,

 worker,

 reward_period_index: period.index,

});

Even in the scenario where a commit reveal approach is implemented it is still

plausible even though unlikely for this issue to still be present.

Impact

Operators/Workers can monitor the network, count the votes and vote only

when the consensus is clear to maximize their chances of getting the vote

correct and participating to the rewards phase.

Recommendation

It is advised to not broadcast the results of each vote prior to the end of the

voting round.

HIGH

20 | P a g e

5.1.4 data_struct:next_voters_batch for non-nominated worker case is not

assessing a snapshot

Description

The current implementation of data_struct.rs/next_voters_batch for the case

where there are non-nominated workers, allows for the extraction of the

current list of staked operators and not the list of staked operators at the time

of voting round.

This function is triggered as part of the lib.rs/on_idle function which is not certain

to run at the end of every block. If there isn't sufficient weight remaining at the

end of the block execution, the function will skip its operation.

on_idle is preferred to be used for non-critical operations and opportunistic

processing.

The next_voters_batch is processing batches of voters at a max number of

VOTE_PROCESSING_BATCH_SIZE (which is currently set to 128). The number of

voters/entries in SolutionGroupStakeRecords is not limited to this number which

allows for the logical assumption that a voting round will need more than one

call to the lib.rs/on_idle function to fully process its rewards. This further

enhances the possibility of this issue occurring as the processing may take

multiple blocks/calls to the on_idle function.

In this case, if an operator has voted, the voting round has finished and then the

operator has unsubscribed from the solution, they may not be included in the

processing round as the lib.rs/on_idle function will take a later copy of the

SolutionGroupStakeRecords.

/// Returns batch of not yet processed voters.

 pub(crate) fn next_voters_batch<T: Config>(

 &mut self,

 solution_namespace: &SolutionNamespace,

) -> Option<Vec<T::AccountId>>

HIGH

21 | P a g e

 where

 T::AccountId: From<AccountId>,

 AccountId: From<T::AccountId>,

 {

 let batch: Option<Vec<T::AccountId>> =

 match VotingRoundToNominatedSnapshot::<T>::get(&self.id) {

....

None => match GroupOfSolution::<T>::get(solution_namespace) {

 Some(group_namespace) => match &self.last_processed {

 Some(last_processed) => {

 let hashed_key = SolutionGroupStakeRecords::<T>::hashed_key_for(

 &group_namespace,

 T::AccountId::from(last_processed.clone()),

);

 SolutionGroupStakeRecords::<T>::iter_key_prefix_from(

 &group_namespace,

 hashed_key,

)

 .take(VOTE_PROCESSING_BATCH_SIZE as usize)

 .collect::<Vec<_>>()

 .into()

 },

 None =>

SolutionGroupStakeRecords::<T>::iter_key_prefix(&group_namespace)

 .take(VOTE_PROCESSING_BATCH_SIZE as usize)

22 | P a g e

 .collect::<Vec<_>>()

 .into(),

 },

 None => None,

},

In addition to that, the operators that were part of the voting round and have

not left the subscription pool will receive a higher reward than intended, as the

total_weighted_subscription_stake is evaluated based on the amount of votes that

are processed and since the operators who voted and left after the voting round

are not processed, the total_weighted_subscription_stake will be lower.

In the example of 100 operators voting in the round, with a 100% consensus

threshold reached (Absolute majority). 99 of them leave before the

next_voters_batch has fully processed the results. The 1 remaining operator will

receive 100% of the voting rewards instead of 1% which should have been the

case.

Impact

Operators who have voted and stayed for the whole voting period may not be

able to receive rewards if they leave before the next_voters_batch is triggered.

If the above scenario happens, then the operators who voted and stayed for the

next_voters_batch to kick in will receive a higher reward than intended as there

are less "correct" voters to share the rewards with.

Recommendation

It is advised to review the way voter rewards are calculated to include a more

accurate list of users.

23 | P a g e

5.2 Medium Severity Findings

5.2.1 lib.rs/calculate_deposit_fee does not reserve bonus_reward from

registrar

Description

A registrar calling the raise_group_rewards extrinsic to update the group rewards

and include a performance bonus will have the rewards reserved from their

balance for subscription and voting rewards but not for the performance bonus.

The extrinsic libs.rs:raise_group_rewards is utilizing the function

struct.rs:calculate_deposit_fee in order to identify the additional_deposit_fee and

eventually the additional_depost_fee is reserved from the registrars wallet.

It was identified that the calculate_deposit_fee is not taking into account the

top_performance_bonus value. This effectively means that the performance

bonus is not reserved from the registrar’s wallet even though it's possible to

process the request and update the SolutionGroupRewardPeriodConfig storage

and eventually emit an event updating the network that a performance bonus

is set.

Impact

This behavior can be misleading to the users of the network and to the registrar

using the extrinsic. Users of the network will believe that a performance bonus

has been set while it’s not. In addition to that, the system will not make sure that

the performance bonus amount has been reserved from the registrar ensuring

that these funds will be available by the time they are needed. In case the

registrar does not have the amount ready to be paid out when needed, this will

leave the network itself open to liability.

Recommendation

It is advised to either temporarily prevent the registrar from calling the extrinsic

with a populated performance bonus or advance the logic of the extrinsic to

consider the performance bonus when calculating the deposit fee.

MEDIUM

24 | P a g e

5.2.2 The length of nominated_workers is not dynamically assessed during a

voting round

Description

Voting round obstruction is currently feasible by a minority of voters. In case a

nominated voter deregisters as an operator during the voting round, the round

has a good chance of not going through. The submit_solution_result extrinsic

counts the size of the voting pool according to the time where the voting round

was created and does not update it during the round. In the example of 100

nominated workers and a 51% consensus threshold, if one worker leaves the

subscription pool it could invalidate the vote. The voting sample will remain at

100 but only 99 votes would be able to go through.

When a new voting round is created, the round may accept votes from all

subscribers or from a set of specific workers (nominated workers). This issue

affects the nominated workers case. Upon creation of the voting round the

system will take a snapshot of the nominated workers at that time.

voting.rs/create_voting_round

if solution.nominations_enabled {

 let nominated_voters = get_nomination_snapshot::<T>(&solution.namespace,

group)?;

 VotingRoundToNominatedSnapshot::<T>::insert(voting_round_id.clone(),

nominated_voters);

}

The issue arises as part of the submit_solution_result extrinsic which accepts the

votes for the voting round. In that, the size of the voting pool

(eligible_voters_count) is calculated according to the snapshot and not according

to the current state of that snapshot.

MEDIUM

25 | P a g e

lib.rs/submit_solution_result

....

let eligible_voters_count =

match VotingRoundToNominatedSnapshot::<T>::get(&voting_round_id) {

 Some(nominations) => nominations.voters.len() as u32,

 None => SolutionGroupSubscribersCount::<T>::get(&group_namespace),

 };

This allows for the case where a nominated worker who was part of the

subscription pool at the time of the creation_voting_round is no longer part of it

to affect the outcome of the vote.

In the example of 100 nominated workers and a 51% consensus threshold, if

one worker leaves the subscription pool it could invalidate the vote. The voting

sample will remain at 100 but only 99 votes would be able to go through.

Impact

A malicious nominated worker would be able to abuse this issue to invalidate a

specific voting round. In addition to that, this is an issue which could be

produced normally without any ill intention as operators can register and

deregister from groups as they see fit.

Recommendation

In the case where a bricked round is acceptable, the system should terminate

the vote immediately.

In all other cases, the nominated worker storage map should be updated

dynamically and remove the unsubscribed operators.

26 | P a g e

5.2.3 lib.rs/unsubscribe_from_solution_group is not taking into account

current voting periods

Description

The current implementation of libs.rs/unsubscribe_from_solution_group does not

consider if a current voting period is in place. Lack of this control allows for cases

where an operator can cast a vote in a voting round via submit_solution_result

(both in the cases of NominatedWorkers and not) and then unsubscribe from the

solution group manipulating this way the outcome of the voting round. This

issue affects the non-Nominated workers case.

The current format of the submit_solution_result assesses the consensus

threshold based on the number of available operators at the time of their vote.

A voting round without nominated workers may see the following scenario:

• The requirement for a consensus vote is set at 51% with a pool of 100

workers.

• The pool's length is evaluated dynamically and depending on the duration

of the voting round the total number of workers may increase or decrease.

• At this stage 51 votes would reach a consensus, and we consider that no

new workers join the pool.

• Two workers cast a vote and then their operators unsubscribe from the

solution group.

The result now is that there are two additional votes in the system while at the

same time the size of the voting pool is reduced which could cause the voting

round to reach a Settled outcome sooner.

Now that the subscriber pool is at 98 operators, the 51% threshold is equivalent

to 49.98 votes out of the 98, which rounds up to 50. With this scenario, out of

100 operators with 2 voting and leaving, the consensus is reached by only 50

operators voting.

MEDIUM

27 | P a g e

It is important to state that unsubscribe_from_solution_group does have an

unsubscription delay (solution_group.withdrawal_delay) but this isn't connected

to the lifespan of a voting round (or to the additional time where rewards and

slashing would require to be calculated).

Impact

Operators can willingly or unwillingly (as part of the normal flow of activities)

manipulate the outcome of a voting round by unsubscribing after voting.

Recommendation

This issue can be tackled in a couple of ways.

• An operator shouldn't be able to unsubscribe if a voting round is in effect,

e.g. pause unsubscriptions during voting rounds.

• During unsubscription, the operator's vote should be purged

28 | P a g e

5.3 Low Severity Findings

5.3.1 lib.rs/remove_allowed_operator can be blocked by malicious operators

Description

The extrinsic lib.rs/remove_allowed_operator can be blocked by a malicious

operator preventing a registrar from removing that operator from their

allowlist.

The extrinsic remove_allowed_operator is used to control the number of

operators allowed to subscribe to groups. With the allow_operator the registrar

is setting a list of operators that are allowed and with the

remove_allowed_operator they can remove them.

With the current format of the extrinsic remove_allowed_operator an operator

cannot be forced out of a pool which can be the intended behavior. This

becomes more of an issue when an operator doesn't want to be removed from

that group.

 There are two cases here:

• Operator is subscribed - remove_allowed_operator won't force them out

which is intended behavior.

• Operator is not currently subscribed.

In the latter case the operator can still prevent the registrar from removing them

by frontrunning the remove_allowed_operator extrinsic with a call to the stake

extrinsic. Essentially the operator stakes just before the registrar removes them.

Even if the helper function stake_manager::has_stake was being used instead the

same scenario would persist, as the has_stake function queries the last_key_value

of the StakeRecord which would be true and positive.

Impact

A malicious operator who is currently unsubscribed can monitor the transaction

pool for a call to remove_allowed_operator aimed to remove them from the allow

LOW

29 | P a g e

list. In this case, the operator can send off a call to the stake extrinsic in the same

block with a higher priority which would block the action of the registrar.

Recommendation

Currently the remove_allowed_operator extrinsic cannot be used as a security

control.

After discussion with the team, this function works more like a clean-up function

and is not essential for the operation of the system. As such this issue is reduced

to Low severity.

30 | P a g e

5.3.2 voting-rs:get_nomination snapshot not properly validating user stake

Description

If an operator has unsubscribed in the same block as the start_voting_round

extrinsic is called, then the nomination snapshot will count the worker as part

of the voting even though they will never be able to participate.

This issue affects the voting rounds where nominated workers are enabled.

The extrinsic voting.rs/get_nomination_snapshot is using the function

stake_manager::determine_user_overall_stake instead of stake_manager::has_stake

, allowing this way to include previously deregistered operators who remain in

the WorkerNodeToOperator storage.

During the on_initialize function a pruning of old stakes is taking place reducing

the occurrence of this event to 1 block and 2 blocks if this happens during the

final block of the reward period (reward_period.has_finished). Due to that the

severity of this issue is reduced to Low.

Impact

This behavior would allow for the accidental or intentional manipulation of the

voting round. This event has the potential to invalidate the voting round from

its creation. In the example where the voting round has a 51% consensus

threshold with 100 nominated workers but 50 of them unsubscribe just before

the start_voting_round extrinsic is called then the voting round will require 51

votes for consensus to be reached out of 50 operators.

Recommendation

It is advised to adjust the get_nomination_snapshot function to include only

operators with greater than 0 stake.

LOW

31 | P a g e

5.3.3 lib.rs/remove_allowed_operator relies on determine_user_overall_stake

Description

The extrinsic lib.rs/remove_allowed_operator is utilizing

check_account_is_not_subscribed_to_solution_group as one of its checks which in

turn is utilizing the stake_manager::determine_user_overall_stake function which

will not throw an error in case the operator has previously unsubscribed.

This behavior will essentially block the use of the extrinsic rendering it useless.

Records from SolutionGroupStakeRecords are pruned at the beginning of every

block during the on_initialize function. This reduces the nuisance that this issue

would cause to 1 block and in case it coincides with the finalization of the

reward_period this would be extended by an additional block, hence the severity

is reduced to Low.

Impact

This behavior will forbid a registrar from removing an operator from the allowed

list for a specific number of blocks. In that timeframe a malicious operator could

resubscribe back to a solution group.

Recommendation

It is advised to adjust the check_account_is_not_subscribed_to_solution_group

function to utilize the stake_manager:has_stake function instead.

LOW

32 | P a g e

5.3.4 lib.rs/raise_group_rewards fails silently

Description

A registrar calling the extrinsic lib.rs:raise_group_reward and updating only the

top_performance_bonus will not be able to successfully register the bonus

reward. The extrinsic will exit with an Ok with no further changes taking place.

This happens due to the current behavior described in raise_group_rewards,

where the additional_deposit_fee will not take into account the performance

bonus. As such the following if clause will return without updating the group

settings.

lib.rs/raise_group_rewards

if additional_deposit_fee.eq(&Self::to_balance(0)) {

 log::debug!("Reward configuration of group {:?} was not changed", namespace);

 return Ok(().into());

}

It is important to note here that if the registrar makes this call and updates at

least one of the other two variables (staking or voting reward) the extrinsic will

proceed and update the storage successfully and emit the relevant event.

Impact

This issue affects the registrar as they won't be able to update the performance

bonus easily. A direct request to update the bonus will fail without any

information to the user as to what went wrong.

Recommendation

The case where the raise_group_rewards extrinsic is called with only the

performance bonus should be handled appropriately and not fail without any

notification to the user.

LOW

33 | P a g e

5.4 Informational Findings

5.4.1 Outdated and Vulnerable dependencies in-use at "Cargo.lock"

Description

The team identified multiple dependencies that were outdated and vulnerable.

Outdated and vulnerable dependencies are open-source or proprietary

components, in the form of libraries or frameworks, that contain known

software vulnerabilities or are no longer maintained. Once a vulnerable

component is discovered by adversaries, applications using this component can

be targeted and exploited.

Vulnerable dependencies found at Cargo.lock:

Crate: curve25519-dalek

Version: 2.1.3

Title: Timing variability in `curve25519-dalek`'s

`Scalar29::sub`/`Scalar52::sub`

Date: 2024-06-18

ID: RUSTSEC-2024-0344

URL: https://rustsec.org/advisories/RUSTSEC-2024-0344

Solution: Upgrade to >=4.1.3

Crate: curve25519-dalek

Version: 3.2.0

Title: Timing variability in `curve25519-dalek`'s

`Scalar29::sub`/`Scalar52::sub`

Date: 2024-06-18

ID: RUSTSEC-2024-0344

URL: https://rustsec.org/advisories/RUSTSEC-2024-0344

INFO

34 | P a g e

Solution: Upgrade to >=4.1.3

Outdated:

Crate: parity-wasm

Version: 0.45.0

Warning: unmaintained

Title: Crate `parity-wasm` deprecated by the author

Date: 2022-10-01

ID: RUSTSEC-2022-0061

URL: https://rustsec.org/advisories/RUSTSEC-2022-0061

Crate: mach

Version: 0.3.2

Warning: unmaintained

Title: mach is unmaintained

Date: 2020-07-14

ID: RUSTSEC-2020-0168

URL: https://rustsec.org/advisories/RUSTSEC-2020-0168

Crate: ansi_term

Version: 0.12.1

Warning: unmaintained

Title: ansi_term is Unmaintained

Date: 2021-08-18

ID: RUSTSEC-2021-0139

35 | P a g e

URL: https://rustsec.org/advisories/RUSTSEC-2021-0139

Crate: proc-macro-error

Version: 1.0.4

Warning: unmaintained

Title: proc-macro-error is unmaintained

Date: 2024-09-01

ID: RUSTSEC-2024-0370

URL: https://rustsec.org/advisories/RUSTSEC-2024-0370

Impact

When a vulnerable 3rd-party component is discovered by adversaries, all

applications that utilize this component can be identified and targeted. Even if

the vulnerability might initially look like a small weakness in the application

codebase, in some cases it can lead to a full system compromise. Such a breach

can have a seriously affect the users' data and potentially lead to lost revenue

and reputational damage the organization.

Recommendation

It is recommended to update the related dependencies to the latest version.

36 | P a g e

5.4.2 voting_threshold_percent allows for minority voting

Description

The current implementation allows for the registration of new solutions with a

voting_thresold_percent from 0-100. A percentage below 33% would allow for a

veto-only system.

The only check currently happening for vote_threshold_percent is to confirm it's

more than 0 and less than 100.

solution.rs/new

ensure!(

 vote_threshold_percent <= 100,

 Error::<T>::ArgumentOutOfBounds(FieldCode::VoteThresholdPercent)

);

The current consensus threshold cannot be modified. The issue would only be

introduced as an intended action or a misconfiguration during the creation of

the solution which would be known before the start of any voting round.

After discussion with the team this behavior is intended and as such the issue

now is informational.

Impact

The ability to set a low consensus threshold allows for potential manipulation

of voting rounds by a minority set of users. According to the current set up, a

1% consensus is feasible. In the example of 100 voters, we have the case where

a malicious voter, monitors the transaction pool for the voting round to start

and sneaks in any result, capturing this way the round consensus and its

potential rewards.

Recommendation

INFO

37 | P a g e

The current behavior allows for the use of the voting system as an approval

system (majority) or a veto system (minority protection).

If this is not the intended behavior, then it is advised to conduct further analysis

on the lower end of the consensus threshold. Percentages lower than 33% allow

for abuse of the voting system.

If updating the consensus thresholds are part of future plans it is strongly

advised to separate veto and approval systems as the reward distribution will

be able to be abused.

38 | P a g e

6 Retesting Results

6.1 Retest of High Severity Findings

Results from retesting carried out on May 2025, determined that four (4 out of 4)

reported HIGH risk issues were sufficiently addressed (see sections 5.1.1, 5.1.2,

5.1.3, 5.1.4).

6.1.1 lib.rs/submit_solution_result emits the voting round settled result

The VotingRoundStatus is no longer emitted in the extrinsic

submit_solution_result. In addition to that, the round result is no longer calculated

within the same extrinsic.

Issue mitigated in PR https://github.com/energywebfoundation/ewx-worker-

solution-pallet/pull/367.

6.1.2 lib.rs/submit_solution_result result bruteforcing on Settled voting rounds

The reported logic has been removed. The issue is now fixed.

Team comment: Voting rounds are settled after expiration when no other votes

are accepted

Issue mitigated in PR, https://github.com/energywebfoundation/ewx-worker-

solution-pallet/pull/367.

6.1.3 lib.rs/submit_solution_result emits voting results

The SolutionResultSubmitted event has been deprecated, and the extrinsic

submit_solution_result uses VoteSubmitted event instead which does not include

the result.

The issue is sufficiently mitigated in PR

https://github.com/energywebfoundation/ewx-worker-solution-pallet/pull/367.

6.1.4 data_struct:next_voters_batch for non-nominated worker case is not

assessing a snapshot

Function is not used anymore. Issue is addressed in PR

https://github.com/energywebfoundation/ewx-worker-solution-pallet/pull/367.

The issue is now sufficiently mitigated.

39 | P a g e

6.2 Retest of Medium Severity Findings

Three (3 out of 3) reported MEDIUM risk issues were sufficiently addressed (see

sections 5.2.1, 5.2.2, 5.2.3).

6.2.1 lib.rs/calculate_deposit_fee does not reserve bonus_reward from

registrar

The issue is now resolved. solution_group_registration will exit if top_performance

bonus is added.

ensure!(rewards_config.top_performance_bonus==0, Error::<T>::NotImplemented);

raise_group_rewards does not allow the use of top_performance bonus. The fix is

introduced in PR https://github.com/energywebfoundation/ewx-worker-solution-

pallet/pull/393.

6.2.2 The length of nominated_workers is not dynamically assessed during a

voting round

The extrinsic submit_solution_result no longer fetches the

VotingRoundNominatedSnapshot.

The logic of this operation has been heavily modified. There are no scenarios

where a user can unsubscribe within a voting period. All unsubscriptions take

place after the conclusion of that period. The issue is now considered resolved.

The issue is mitigated in PR https://github.com/energywebfoundation/ewx-

worker-solution-pallet/pull/409.

6.2.3 lib.rs/unsubscribe_from_solution_group is not taking into account

current voting periods

A voting round with non-nominated workers now has a fixed size snapshot. Even

if an operator votes and unsubscribes the size of the snapshot will remain the

same. This change invalidates the scenario stated in this issue. The fix is in the PR

https://github.com/energywebfoundation/ewx-worker-solution-pallet/pull/365.

The issue is now fixed.

40 | P a g e

6.3 Retest of Low Severity Findings

Four (4 out of 4) reported LOW risk issues were sufficiently addressed (see

sections 5.3.1, 5.3.2, 5.3.3, 5.3.4).

6.3.1 lib.rs/remove_allowed_operator can be blocked by malicious operators

This issue has been fixed in PR https://github.com/energywebfoundation/ewx-

worker-solution-pallet/pull/410. The extrinsic libs.rs/remove_allowed_operator

uses the function register_unsubscribe which schedules the deregistration of an

operator. This operation will work in both cases where the operator's stake is

active or not. The cases that were mentioned are currently also covered by tests

cases. This issue is now fixed.

6.3.2 voting-rs:get_nomination snapshot not properly validating user stake

The issue is mitigated in PR https://github.com/energywebfoundation/ewx-

worker-solution-pallet/pull/369. In that, voting.rs/get_nomination_snapshot now

validates the operator_stake and if it is equal to 0, the operator will be skipped.

6.3.3 lib.rs/remove_allowed_operator relies on determine_user_overall_stake

Item was mitigated on https://github.com/energywebfoundation/ewx-worker-

solution-pallet/pull/370/.

During retesting the version `9d57d8a5d0637e00497d253461fe6d18bc3b73e2`

was provided. In the latest version, the above segment is altered even further.

Function ̀ check_account_is_not_subscribed_to_solution_group` is removed from

the code. In the `remove_allowed_operator` extrinsic which was previously

calling the aforementioned extrinsic now has an altered logic. The alrtered logic

does make use of the has_stake. This issue is considered Fixed.

6.3.4 lib.rs/raise_group_rewards fails silently

When a user is calling the lib.rs:raise_group_reward extrinsic with a reward with

includes bonus, the error NotImplemented will be thrown. The issue is resolved.

41 | P a g e

Item is resolved in PR https://github.com/energywebfoundation/ewx-worker-

solution-pallet/pull/392/.

42 | P a g e

6.4 Retest of Informational Findings

One (1 out of 2) reported issues bearing no risk (INFORMATIONAL) were marked

as risk accepted (see sections 5.4.2). The remaining issue is still open 5.4.1.

6.4.1 Outdated and Vulnerable dependencies in-use at "Cargo.lock”

Issue remains Open. The team replied that the issue will be addressed when

updating the polkadot-sdk version.

6.4.2 voting_threshold_percent allows for minority voting

The team replied that the WNP aims to give complete flexibility and responsibility

to the registrars in order to create consensus systems according to their needs. If

a registrar aims for 1% consensus because the use case requires it then the WNP

should accept it. Documentation and guidance on each use case is provided from

E.W. Dapps to solution registrars.

43 | P a g e

Document History

Revision Description Changes Made By Date

1.0 First Version Chaintroopers
January 24th,

2025

1.1 Retest Report Chaintroopers May 23rd, 2025

