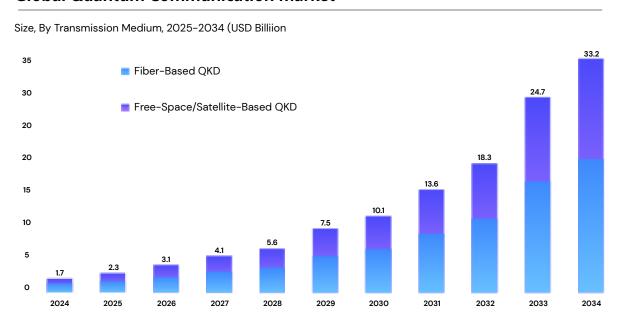



The CXO's Post–Quantum Cryptography (Crypto agility) Playbook: 7–Step Enterprise Security Framework for the Q-Day Era

How CXOs Can Navigate the Urgent Transition to Quantum-Safe Security


# Introduction:

The digital infrastructure that powers today's global economy is living on borrowed time. While enterprises continue to rely on RSA, ECC, and other classical encryption methods to protect their most sensitive data, quantum computers are advancing at an unprecedented pace, threatening to render current security measures obsolete. The question is no longer whether this quantum threat will materialize, but when – and whether your organization will be ready.

# The Quantum Communication Market: A \$33.2 Billion Security Revolution

The quantum communication landscape has evolved from laboratory experiments to mission-critical enterprise infrastructure with unprecedented momentum. The global quantum Communication Market is estimated to reach USD 33.2 Billion By 2034, riding on a strong 34.6% CAGR throughout the forecast period.

# **Global Quantum Communication Market**



Solutions accounted for the largest share of 69.5% in 2024. With the rising threats from cyberattacks and the growing sophistication of quantum computing, organisations are turning to advanced solutions like QKD (Fibre-based QKD, Free Space/Satellite-based QKD) and quantum cryptography systems to protect sensitive data. This shift represents a fundamental recognition that traditional encryption methods are approaching obsolescence.

The quantum communications market is predicted to grow significantly, with a CAGR of 28%. Quantum communications technology seeks to improve data security, which is increasingly compromised in the modern world. This explosive growth reflects not just technological advancement, but an urgent enterprise response to the looming quantum threat.

For enterprise leaders, these statistics represent a clear market signal: quantum communication is no longer experimental technology—it's becoming essential infrastructure.

O2 qnulabs.com

For enterprise leaders, these statistics represent a clear market signal: quantum communication is no longer experimental technology—it's becoming essential infrastructure.

Organisations that delay quantum communication adoption risk being left vulnerable in an increasingly quantum-enabled threat landscape.

# **Understanding Q-Day: The Cryptographic Apocalypse**

#### What is Q-Day

Q-Day is the moment when quantum computers become powerful enough to break current encryption standards. This represents a fundamental inflection point for global cybersecurity.

Unlike traditional security threats that target specific vulnerabilities, Q-Day threatens the mathematical foundations upon which all modern digital security is built.

Current RSA-2048 encryption, which forms the backbone of secure communications, online banking, and digital identity verification, could theoretically be cracked by a sufficiently powerful quantum computer in hours rather than the billions of years it would take for classical computers.

This isn't a distant sci-fi scenario — it's an approaching reality that demands immediate attention from enterprise leadership.

# The Timeline Reality

While experts debate the exact timeline, most credible assessments place Q-Day within the next 5 years, with some more aggressive predictions suggesting it could occur within the next 2 years. For enterprise planning purposes, this timeline demands action today, not tomorrow.

# Why CXOs Must Act Now: The Executive Imperative | CXO Strategy

The quantum threat presents unique challenges that span every level of enterprise leadership:

#### For Chief Executive Officers (CEOs)

"The quantum transition isn't merely a technology upgrade — it's a business continuity imperative that affects competitive positioning, regulatory compliance, and stakeholder trust."

Organisations that delay quantum readiness risk:

- Competitive Disadvantage: Early adopters will gain quantum-enhanced capabilities while quantumvulnerable companies face security breaches and operational disruptions
- Regulatory Non-Compliance: Emerging regulations will mandate quantum-safe security standards

O3 qnulabs.com

- Customer Trust Erosion: Data breaches from quantum attacks will devastate brand reputation and customer confidence
- Strategic Partnership Limitations: Quantum-ready organisations will increasingly require quantumsafe security from their partners

#### For Chief Information Officers (CIOs)

The quantum transition represents the largest infrastructure migration in corporate history, affecting every system, application, and data flow. CIOs must orchestrate this transition while maintaining operational continuity and performance standards.

# For Chief Technology Officers (CTOs)

The complexity of migrating to quantum-safe cryptography requires thoughtful planning, algorithm selection, and optimization across varied stacks.

#### For Chief Information Security Officers (CISOs)

Quantum threats demand a fundamental rethinking of security architecture, risk assessment, and threat modelling. The traditional "defence in depth" approach must evolve to address quantum-specific attack vectors.

# For C-Level Deputies (CXO-1, CXO-2, CXO-3)

Mid-level executives must translate quantum strategy into operational reality, managing cross-functional teams through the most complex technology transition their organisations have ever undertaken.

# NIST's Post-Quantum Cryptography Standards: The New Security Foundation

The <u>National Institute of Standards and Technology (NIST)</u> has been leading the global effort to develop quantum-resistant cryptographic standards. <u>FIPS 203</u>, <u>FIPS 204</u> and <u>FIPS 205</u>, which specify algorithms derived from CRYSTALS-Dilithium, CRYSTALS-KYBER and SPHINCS+, were published on August 13, 2024.

# The NIST Timeline and Mandates (2019-2025)



O4 qnulabs.com

- 2019-2020: NIST launched the post-quantum cryptography standardisation process, acknowledging the urgent need for quantum-resistant algorithms.
- 2021-2022: Multiple rounds of algorithm evaluation and refinement, with increasing government and industry participation.
- 2023: Draft standards released for public comment, with federal agencies beginning migration planning.
- August 2024: The U.S. Department of Commerce's National Institute of Standards and Technology
   (NIST) has finalised its principal set of encryption algorithms designed to withstand cyberattacks from
   a quantum computer. This milestone marks the beginning of mandatory migration timelines for
   government agencies and contractors.
- March 2025: NIST has chosen a new algorithm for post-quantum encryption called HQC, which will
  serve as a backup for ML-KEM, the main algorithm for general encryption. HQC is based on different
  math than ML-KEM, which could be important if a weakness were discovered in ML-KEM.

# The Reality Gap: Standards vs. Implementation

While NIST has provided the cryptographic foundation, the reality of enterprise implementation remains challenging:

- Algorithm Performance: Post-quantum algorithms typically require more computational resources and larger key sizes
- Integration Complexity: Legacy systems weren't designed for crypto-agility, making algorithm swapping difficult
- Hybrid Transition: Organisations must operate dual classical/quantum-safe systems during migration
- Vendor Readiness: Many enterprise software vendors are still developing quantum-safe versions of their products

# The QNu Labs 7-Step Quantum Readiness Framework: A Practical Implementation Guide

Based on the comprehensive Assessment Framework aligned with NIST, DHS, and CISA standards, we've developed a proven 7-step approach that guides enterprises through the complex journey from quantum vulnerability to quantum readiness. This framework has been successfully deployed across banking, IT, pharmaceutical, and telecommunications sectors.

- >> Get Your Free Quantum Threat Assessment Complete in less than 5 Minutes
- ▶ Watch this video to decode the Quantum Security Landscape

O5 qnulabs.com



# Step1: Engage with Continuous evolving quantum-safe Standards

Objective: Establish continuous monitoring of evolving quantum-safe standards and regulatory requirements.

# Key Activities & Timeline (4-6 weeks):

- Week 1-2: Direct CIOs to increase engagement with standards organisations (NIST, DHS, CISA)
- Week 3: Subscribe to critical updates from NIST Cybersecurity Framework (CSF) and Post-Quantum
   Cryptography (PQC) Standardisation
- Week 4: Establish internal communication channels for regulatory updates
- Ongoing: Monitor NIST Special Publications (SP) 800 Series for crypto guidance

#### **Deliverables:**

- Standards monitoring dashboard
- Regulatory update communication plan
- Stakeholder engagement matrix

O6 qnulabs.com

Key Stakeholders: CISO, CIO/CTO, Legal & Compliance teams

**Critical Insight:** With NIST publishing final PQC algorithms in August 2024, the transition timeline has accelerated. Organisations can no longer wait for "final" standards—the time for crypto-agility planning is now.

# Step 2: Inventory of Critical Data

Objective: Identify and catalogue all data that may be vulnerable to quantum attacks, particularly information requiring long-term protection.

#### **Comprehensive Data Discovery Process:**

- 1. Data Identification: Map all critical data assets across the organisation
- 2. Data Cataloguing: Document type, location, and dependencies of sensitive information
- Risk Analysis: Evaluate the current encryption protecting critical data and assess quantum vulnerability
- 4. Regulatory Impact Assessment: Analyse compliance implications of quantum threats
- 5. Mitigation Strategy Development: Create targeted protection plans for high-risk data

#### **Industry-Specific Critical Data Categories**

# **Banking & Financial Services:**

- Customer account information and transaction histories
- Trading algorithms and financial models
- Regulatory reporting data with 7+ year retention requirements
- Digital payment infrastructure data
- Credit scoring and risk assessment models

# IT & Software Companies:

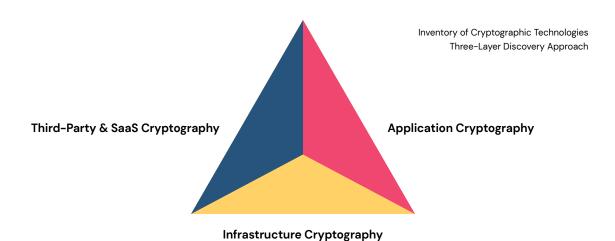
- Source code and intellectual property
- Customer data in managed services environments
- Software signing certificates and distribution keys
- Cloud infrastructure configuration data
- Client project data and business intelligence

O7 qnulabs.com

# Pharmaceutical & Healthcare:

- Patient health records and genomic data
- Clinical trial data and research protocols
- Drug formulation and manufacturing processes
- Regulatory submission documents
- Supply chain and distribution data

#### Telecommunications:


- Subscriber personal information and usage patterns
- Network configuration and security credentials
- IoT device management data
- Government and enterprise communication logs
- Infrastructure vulnerability assessments

#### **Deliverables:**

- Comprehensive data inventory with risk classifications
- Data catalogue with protection requirements
- Risk analysis report with quantum threat assessments
- Critical data protection strategy and timeline

# **Step 3: Inventory of Cryptographic Technologies**

Objective: Conduct a comprehensive discovery of all systems using cryptographic technologies across infrastructure, applications, and third-party services.



O8 gnulabs.com

# Layer 1: Infrastructure Cryptography

- Network encryption protocols (TLS/SSL, IPSec, VPN)
- Database encryption at rest and in transit
- Storage encryption and backup security
- Cloud environment cryptographic implementations
- Infrastructure Bill of Materials (IBoM) documentation

# **Layer 2: Application Cryptography**

- Application-level encryption and digital signatures
- API security and authentication mechanisms
- Software libraries and cryptographic dependencies
- Development pipeline security (CI/CD)
- Software Bill of Materials (SBOM) generation

#### Layer 3: Third-Party & SaaS Cryptography

- Vendor and contractor cryptographic implementations
- Software-as-a-Service security controls
- Supply chain cryptographic dependencies
- External integration encryption requirements
- Third-party security certifications and compliance

# **Cryptographic Discovery Components:**

- Operating Systems: Built-in crypto functions and certificates
- Applications: Embedded encryption and signature verification
- Hardware: Crypto accelerators and security modules
- Network Protocols: Communication encryption standards
- Key Management: Certificate authorities and key distribution

# **Discovery Tools and Techniques:**

- Automated cryptographic scanning tools

O9 qnulabs.com

- Network traffic analysis for crypto protocol identification
- Code analysis for embedded cryptographic libraries
- Configuration audits of security appliances
- Vendor questionnaires for third-party crypto implementations

#### Deliverables:

- Complete cryptographic technology inventory
- Infrastructure and Application Bills of Materials (IBoM/SBOM)
- Third-party cryptographic dependency mapping
- Quantum vulnerability assessment by component

# Step 4: Identification of Internal Standards

Objective: Update organisational standards, policies, and procedures to incorporate post-quantum cryptography requirements.

#### **Standards Review Process:**

- Acquisition Standards: Procurement requirements for quantum-safe technology
- Cybersecurity Policies: Integration of PQC into security frameworks
- Data Security Standards: Encryption requirements and key management policies
- Compliance Frameworks: Regulatory alignment with quantum-safe mandates
- Vendor Management: Third-party security requirements and assessments

#### **Policy Update Areas:**

- Cryptographic algorithm approval lists
- Key size and lifecycle management requirements
- Certificate authority and trust chain policies
- Data classification and protection standards
- Incident response procedures for crypto failures

#### **Deliverables:**

- Updated standards documentation reflecting PQC requirements
- Policy gap analysis and remediation plan

- Compliance mapping for quantum-safe regulations
- Training materials for policy implementation

# Step 5: Identification of Public Key Cryptography

Objective: Systematically identify and catalogue all uses of quantum-vulnerable public key cryptography across the enterprise.

# **Public Key Cryptography Usage Categories:**

# **Digital Signatures:**

- Document signing and verification
- Software code signing and integrity verification
- Financial transaction authentication
- Legal document non-repudiation
- Digital certificate validation

# **Identity Authentication:**

- User login and session establishment
- System-to-system authentication
- API access control and authorisation
- Multi-factor authentication tokens
- Certificate-based device authentication

# **Key Transport and Management:**

- Symmetric key distribution and wrapping
- Secure key exchange protocols
- Certificate lifecycle management
- Hardware security module integration
- Cryptographic service provider interfaces

#### **Common Implementation Locations:**

- Web servers and application gateways
- Email systems and collaboration platforms

- Intellectual property and trade secrets
- Financial data and transaction records
- Healthcare records and genomic data

# System Integration Complexity (15%)

- Number of dependent systems
- Data sharing with external entities
- Federal/government agency connections
- Critical infrastructure sector support
- Cross-border data transfer requirements

# Data Longevity Requirements (15%)

- Regulatory retention periods
- Legal hold requirements
- Business continuity needs
- Historical data value
- Compliance archival mandates

# Operational Criticality (15%)

- 24/7 availability requirements
- Real-time processing needs
- Disaster recovery priorities
- Business continuity classification
- Service level agreement impact

# Migration Feasibility (10%)

- Technical complexity assessment
- Vendor support availability
- Resource requirements
- Timeline constraints and Budget considerations

- Database management systems
- Network infrastructure devices
- Mobile applications and endpoints

# Quantum Vulnerability Assessment: Current algorithms marked for replacement

- RSA (all key sizes): Complete vulnerability to Shor's algorithm
- Elliptic Curve Cryptography (ECC): Quantum attacks reduce security to zero
- Diffie-Hellman Key Exchange: Compromised by quantum computers
- DSA (Digital Signature Algorithm): Quantum-vulnerable signatures

#### **Deliverables:**

- Complete public key cryptography usage inventory
- Quantum vulnerability classification by system
- Impact analysis for algorithm replacement
- Migration complexity assessment by component

# Step 6: Prioritisation of Systems for Replacement

Objective: Develop risk-based prioritisation for cryptographic migration based on business impact, data sensitivity, and operational requirements.

# **QNu Labs Prioritisation Matrix:**

# **Evaluation Criteria (Weighted Scoring):**

# High-Value Asset Classification (25%)

- Revenue impact if compromised
- Strategic business importance
- Customer trust implications
- Competitive advantage considerations

# Data Protection Requirements (20%)

- Personally Identifiable Information (PII)
- Sensitive Personal Information (SPI)

# **Industry-Specific Prioritisation Examples**

# **Banking Priority Matrix:**

| System Category         | Risk Score | Migration Priority | Timeline     |
|-------------------------|------------|--------------------|--------------|
| Core Banking Platform   | 95/100     | CRITICAL           | O-6 MONTHS   |
| Payment Processing      | 90/100     | CRITICAL           | O-6 MONTHS   |
| Customer Mobile Banking | 75/100     | HIGH               | 6-12 MONTHS  |
| Internal Communications | 45/100     | MEDIUM             | 12-18 MONTHS |
| Archive Systems         | 30/100     | LOW                | 18-24MONTHS  |

# **Healthcare Priority Matrix:**

| System Category         | Risk Score | Migration Priority | Timeline     |
|-------------------------|------------|--------------------|--------------|
| Patient Record Systems  | 92/100     | CRITICAL           | O-6 MONTHS   |
| Clinical Research Data  | 88/100     | CRITICAL           | 3-9 MONTHS   |
| Medical Device Networks | 70/100     | HIGH               | 6-12 MONTHS  |
| Administrative Systems  | 50/100     | MEDIUM             | 12-18 MONTHS |
| Historical Archives     | 35/100     | LOW                | 18-24MONTHS  |

#### Deliverables:

- Comprehensive system prioritisation matrix
- Risk-based migration timeline
- Resource allocation plan by priority level
- Stakeholder communication plan for prioritisation decisions

# **Step 7: Plan for Transition**

Objective: Develop a comprehensive migration plan with detailed timelines, resource requirements, and risk mitigation strategies.

# Four-Phase Transition Strategy:

# Phase 1: Critical Systems Migration (0-6 months)

- Target Systems: Highest priority quantum-vulnerable systems

- Approach: Hybrid implementation maintaining backwards compatibility
- Resource Requirements: Dedicated migration team and vendor support
- Success Metrics: Zero-downtime migration of critical systems

#### Phase 2: Core Infrastructure Migration (6-12 months)

- Target Systems: Core enterprise infrastructure and primary applications
- Approach: Phased rollout with extensive testing and validation
- Resource Requirements: Cross-functional teams and extended vendor partnerships
- Success Metrics: Complete migration of primary business systems

#### Phase 3: Extended Systems Migration (12-18 months)

- Target Systems: Secondary applications and legacy system integration
- Approach: Coordinated migration with business process optimisation
- Resource Requirements: Business unit collaboration and change management
- Success Metrics: Enterprise-wide quantum-safe implementation

# Phase 4: Third-Party Integration (18-24 months)

- Target Systems: Vendor systems and external partner integrations
- Approach: Collaborative migration with external stakeholders
- Resource Requirements: Contract negotiations and compliance verification
- Success Metrics: Complete ecosystem quantum-safe compliance

# **Program Management Framework:**

# **Migration Tracks:**

- Internal Systems Track: Organisation-controlled infrastructure and applications
- Third-Party Systems Track: Vendor-managed systems and SaaS platforms
- Integration Track: System-to-system connections and data flows
- Compliance Track: Regulatory requirements and audit preparations

#### **Risk Mitigation Strategies:**

- Rollback Procedures: Rapid restoration to previous cryptographic implementations

- Hybrid Operations: Simultaneous classical and quantum-safe algorithm support
- Performance Monitoring: Continuous validation of system performance and security
- Business Continuity: Minimal operational disruption during migration
- Stakeholder Communication: Regular updates to leadership and affected parties

#### **Budget and Resource Planning:**

- Technology Costs: Hardware, software, and licensing requirements
- Professional Services: Implementation, training, and support services
- Internal Resources: Staff time, training, and productivity impact
- Ongoing Operations: Maintenance, support, and continuous monitoring
- Risk Insurance: Additional coverage for migration-related risks

#### **Deliverables:**

- Comprehensive migration project plan with detailed timelines
- Resource allocation and budget requirements by phase
- Risk assessment and mitigation strategy documentation
- Third-party coordination and contract management plan
- Success metrics and monitoring framework
- Executive communication and reporting structure

# **Program Success Metrics:**

- Security Posture: Elimination of quantum-vulnerable cryptography
- Operational Continuity: Zero security incidents during migration
- Performance Maintenance: No degradation in system performance
- Compliance Achievement: Meeting all regulatory quantum-safe requirements
- Cost Management: Migration completion within the approved budget
- Timeline Adherence: Completion within established migration windows

# Implementing the Framework: Automated Discovery and Assessment Tools

The complexity of modern enterprise environments makes manual cryptographic discovery impractical.

QNu Labs' QShield – an End-to-end enterprise-grade quantum safe integrated platform provides automated tools that accelerate the 7-step framework implementation.

# ► Watch QNu Labs' interview with CNBC TV18 on making the world quantum resilient and achieving national and global sovereignty.

# Phase 1: Automated Cryptographic Discovery Engine

- Network Protocol Analysis: Identifies quantum-vulnerable protocols in real-time traffic
- Application Code Scanning: Discovers embedded cryptographic libraries and dependencies
- Configuration Auditing: Maps cryptographic settings across infrastructure components
- Certificate Inventory: Catalogues all digital certificates and their cryptographic algorithms
- Dependency Mapping: Traces cryptographic relationships across interconnected systems

# **Risk Assessment Automation:**

- Vulnerability Scoring: Automated calculation of quantum risk scores by system
- Compliance Mapping: Real-time assessment against regulatory requirements
- Priority Ranking: Dynamic prioritisation based on business impact and threat exposure
- Timeline Generation: Automated migration timeline based on risk and complexity factors
- Resource Planning: Intelligent estimation of budget and staffing requirements

# Beyond Assessment: The QNu Labs Quantum Security Platform

While assessment and planning are crucial first steps, organisations need comprehensive quantum-safe solutions. The QNu Labs Platform provides enterprise-ready quantum security capabilities:

#### **Hybrid Key Distribution:**

- Combines quantum key distribution (QKD) with post-quantum cryptography (Watch the QKD Video here)
- Provides cryptographic agility for seamless algorithm transitions
- Supports both point-to-point and network-scale deployments
- Integrates with existing infrastructure without requiring complete replacement

# Implementing the Framework: Automated Discovery and Assessment Tools

The complexity of modern enterprise environments makes manual cryptographic discovery impractical.

QNu Labs' QShield – an End-to-end enterprise-grade quantum safe integrated platform provides automated tools that accelerate the 7-step framework implementation.

Watch QNu Labs' interview with CNBC TV18 on making the world quantum resilient and achieving national and global sovereignty.

# Phase 1: Automated Cryptographic Discovery Engine

- Network Protocol Analysis: Identifies quantum-vulnerable protocols in real-time traffic
- Application Code Scanning: Discovers embedded cryptographic libraries and dependencies
- Configuration Auditing: Maps cryptographic settings across infrastructure components
- Certificate Inventory: Catalogues all digital certificates and their cryptographic algorithms
- Dependency Mapping: Traces cryptographic relationships across interconnected systems

# **Risk Assessment Automation:**

- Vulnerability Scoring: Automated calculation of quantum risk scores by system
- Compliance Mapping: Real-time assessment against regulatory requirements
- Priority Ranking: Dynamic prioritisation based on business impact and threat exposure
- Timeline Generation: Automated migration timeline based on risk and complexity factors
- Resource Planning: Intelligent estimation of budget and staffing requirements

# Beyond Assessment: The QNu Labs Quantum Security Platform

While assessment and planning are crucial first steps, organisations need comprehensive quantum-safe solutions. The QNu Labs Platform provides enterprise-ready quantum security capabilities:

#### **Hybrid Key Distribution:**

- Combines quantum key distribution (QKD) with post-quantum cryptography (Watch the QKD Video here)
- Provides cryptographic agility for seamless algorithm transitions
- Supports both point-to-point and network-scale deployments
- Integrates with existing infrastructure without requiring complete replacement

# **Quantum Security Services Portfolio:**

- QConnect: Secure tunnelling with quantum-safe encryption (know more)
- QVault: Quantum-enhanced key management services (KMS)
- QVerse: Collaboration suite with quantum-safe communications (know more)
- QRNG Integration: Quantum random number generation for enhanced entropy (know more)

# Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) Options:

- Rapid deployment for organisations seeking immediate quantum protection
- Scalable architecture supporting enterprise-wide implementations
- Integration APIs for existing applications and infrastructure
- 24/7 monitoring and management services

# **Banking & Financial Services Risk Matrix:**

| System Component           | Quantum Vulnerability | Business<br>Impact | Regulatory<br>Risk | Timeline to<br>Secure |
|----------------------------|-----------------------|--------------------|--------------------|-----------------------|
| Core Banking Platform      | HIGH                  | CRITICAL           | HIGH               | 6-12 MONTHS           |
| Payment Gateways           | HIGH                  | CRITICAL           | HIGH               | 3-6 MONTHS            |
| Customer Portals           | MEDIUM                | HIGH               | MEDIUM             | 6-9 MONTHS            |
| Internal<br>Communications | MEDIUM                | MEDIUM             | LOW                | 9-12 MONTHS           |
| Data Analytics<br>Platform | LOW                   | MEDIUM             | LOW                | 12-18 MONTHS          |

# **Regulatory Considerations**

- RBI Guidelines: Master Direction on Cyber Security Framework
- SEBI: Cybersecurity and Cyber Resilience framework
- IRDAI: Guidelines on Information and Cyber Security

# Information Technology & Software:

| System Component              | Quantum Vulnerability | Business<br>Impact | Regulatory<br>Risk | Timeline to<br>Secure |
|-------------------------------|-----------------------|--------------------|--------------------|-----------------------|
| Client Data Centers           | HIGH                  | CRITICAL           | HIGH               | 3-6 MONTHS            |
| Software Distribution         | HIGH                  | HIGH               | HIGH               | 6-9 MONTHS            |
| Development<br>Environments   | MEDIUM                | MEDIUM             | MEDIUM             | 9-12 MONTHS           |
| Customer Support<br>Systems   | MEDIUM                | HIGH               | MEDIUM             | 6-9 MONTHS            |
| Internal IT<br>Infrastructure | LOW                   | MEDIUM             | LOW                | 12-18 MONTHS          |

# **Regulatory Considerations**

- MeitY: National Cyber Security Strategy
- STQC: Security testing and certification requirements

# Pharmaceutical & Healthcare:

| System Component           | Quantum Vulnerability | Business<br>Impact | Regulatory<br>Risk | Timeline to<br>Secure |
|----------------------------|-----------------------|--------------------|--------------------|-----------------------|
| Patient Records (EHR)      | HIGH                  | CRITICAL           | HIGH               | 6-12 MONTHS           |
| Research Data              | HIGH                  | CRITICAL           | MEDIUM             | 3-6 MONTHS            |
| Clinical Trial Systems     | HIGH                  | HIGH               | HIGH               | 6-9 MONTHS            |
| Supply Chain<br>Management | MEDIUM                | HIGH               | MEDIUM             | 9-12 MONTHS           |
| Manufacturing<br>Systems   | MEDIUM                | MEDIUM             | LOW                | 12-18 MONTHS          |

# **Regulatory Considerations**

- CDSCO: Data integrity guidelines
- \*\*Clinical trial data protection requirements
- HIPAA, HL7, GDPR Guidelines

# **Telecommunications:**

| System Component            | Quantum Vulnerability | Business<br>Impact | Regulatory<br>Risk | Timeline to<br>Secure |
|-----------------------------|-----------------------|--------------------|--------------------|-----------------------|
| Network Infrastructure      | HIGH                  | CRITICAL           | HIGH               | 3-6 MONTHS            |
| Customer Data<br>Management | HIGH                  | HIGH               | HIGH               | 6-9 MONTHS            |
| Billing & CRM Systems       | MEDIUM                | MEDIUM             | MEDIUM             | 9-12 MONTHS           |
| loT Device<br>Management    | MEDIUM                | HIGH               | MEDIUM             | 6-9 MONTHS            |
| Internal<br>Communications  | LOW                   | MEDIUM             | LOW                | 12-18 MONTHS          |

# **Regulatory Considerations**

- DoT: Telecommunication security guidelines
- TRAI: Consumer data protection requirements
- 5G security enhancements mandated by 2025

# Public Sector Undertakings (PSUs):

| System Component                              | Quantum<br>Vulnerability | Business<br>Impact | Regulatory<br>Risk | Timeline to<br>Secure |
|-----------------------------------------------|--------------------------|--------------------|--------------------|-----------------------|
| Citizen data protection audit                 | HIGH                     | CRITICAL           | HIGH               | 3-6 MONTHS            |
| Inter-department communication security       | HIGH                     | CRITICAL           | HIGH               | 3-6 MONTHS            |
| Digital governance platform assessment        | HIGH                     | CRITICAL           | HIGH               | 3-6 MONTHS            |
| Critical infrastructure protection review     | HIGH                     | CRITICAL           | HIGH               | 3-6 MONTHS            |
| National security communication protocols     | HIGH                     | HIGH               | HIGH               | 3-6 MONTHS            |
| Cross-agency quantum security standardisation | MEDIUM                   | MEDIUM             | MEDIUM             | 3-12 MONTHS           |
| Public service delivery security enhancement  | MEDIUM                   | MEDIUM             | MEDIUM             | 3-12 MONTHS           |

# **Regulatory Considerations**

- Digital India security frameworks
- Right to Information Act compliance
- National cybersecurity strategy alignment
- National Security Council: Critical infrastructure protection
- CERT-In: Government security guidelines
- National quantum security standards by 2024-2025

# Defence & Aerospace:

| System Component                              | Quantum<br>Vulnerability | Business<br>Impact | Regulatory<br>Risk | Timeline to<br>Secure |
|-----------------------------------------------|--------------------------|--------------------|--------------------|-----------------------|
| Classified information encryption audit       | HIGH                     | CRITICAL           | HIGH               | 3-6 MONTHS            |
| Communication systems security review         | HIGH                     | CRITICAL           | HIGH               | 3-6 MONTHS            |
| Supply chain security assessment              | HIGH CRITICAL            |                    | HIGH               | 3-6 MONTHS            |
| Critical weapons systems protection           | HIGH                     | CRITICAL           | HIGH               | 3-6 MONTHS            |
| Quantum-safe military communication networks  | HIGH                     | HIGH               | HIGH               | 3-16 MONTHS           |
| Allied nation data sharing security protocols | MEDIUM                   | MEDIUM             | MEDIUM             | 6-12 MONTHS           |
| Strategic asset protection enhancement        | HIGH                     | CRITICAL           | HIGH               | 3-12 MONTHS           |

# **Regulatory Considerations**

- National security classification guidelines
- International defence cooperation security standards
- Export control compliance requirements
- CERT-In: Government security guidelines
- National quantum security standards by 2024-2025

# Phase 2: Strategic Planning - The 90-Day Action Framework

Successful quantum readiness requires structured, time-bound planning that balances urgency with operational continuity.

# Days 1-30: Foundation & Assessment

# Week 1: Leadership Alignment

- Form Quantum Security Task Force with cross-functional representation
- Assign executive sponsor and dedicated project manager
- Complete a comprehensive threat assessment using industry-specific risk matrices
- Conduct stakeholder interviews across IT, Security, Compliance, and Business units

# **Regulatory Considerations**

- National security classification guidelines
- International defence cooperation security standards
- Export control compliance requirements
- CERT-In: Government security guidelines
- National quantum security standards by 2024-2025

# Phase 2: Strategic Planning - The 90-Day Action Framework

Successful quantum readiness requires structured, time-bound planning that balances urgency with operational continuity.

# Days 1-30: Foundation & Assessment

# Week 1: Leadership Alignment

- Form Quantum Security Task Force with cross-functional representation
- Assign executive sponsor and dedicated project manager
- Complete a comprehensive threat assessment using industry-specific risk matrices
- Conduct stakeholder interviews across IT, Security, Compliance, and Business units

# Week 2: Current State Analysis

- Complete a detailed asset inventory across all technology layers
- Map data flows and encryption touchpoints throughout the organisation
- Review vendor contracts for quantum-readiness clauses and upgrade paths
- Assess current budget allocation and resource availability for quantum initiatives

# Week 3: Risk Prioritisation

- Create a high-level implementation roadmap with clear milestones
- Define success metrics and key performance indicators
- Establish governance structure and regular reporting cadence
- Plan internal awareness and training programs for technical teams

# Days 31-60: Planning & Piloting

# Week 5-6: Solution Architecture Design

- Design a hybrid quantum-classical security architecture
- Select pilot use cases and establish test environments
- Develop technical requirements and detailed specifications
- Create comprehensive vendor evaluation and selection criteria

# Week 7-8: Pilot Implementation

- Procure quantum security solutions for pilot deployment
- Set up an isolated test environment with baseline performance measurements
- Begin controlled pilot deployment with selected use cases
- Establish comprehensive monitoring and performance tracking systems

# Days 61-90: Validation & Scaling Preparation

#### Week 9-10: Pilot Validation

- Conduct thorough testing of pilot implementations across all scenarios
- Measure performance impact and quantify security improvements
- Document comprehensive lessons learned and best practices
- Refine implementation approach based on pilot results and feedback

#### Week 11-12: Scale-Up Preparation

- Develop a detailed enterprise-wide rollout plan with risk mitigation strategies
- Secure budget approval and resource allocation for full implementation
- Create comprehensive change management and training programs
- Establish long-term vendor partnerships and support agreements

# Phase 3: Crypto-Agility Implementation - The Technical Transition

The technical implementation of crypto-agility requires careful orchestration to maintain security and performance while transitioning to quantum-safe algorithms.

#### **Algorithm Selection and Integration**

# **NIST-Approved Algorithms:**

- ML-KEM (FIPS 203): For general encryption and key establishment
- ML-DSA (FIPS 204): For digital signatures and authentication
- SLH-DSA (FIPS 205): For stateless hash-based signatures
- HQC: Backup algorithm for ML-KEM with a different mathematical foundation

# Implementation Strategy:

- 1. Hybrid Approach: Run quantum-safe algorithms alongside classical encryption during transition
- 2. Performance Optimisation: Tune implementations to minimise computational overhead
- 3. Backwards Compatibility: Maintain interoperability with non-upgraded systems
- 4. Gradual Migration: Phase rollout based on risk priority and system criticality

#### **Architecture Considerations**

Key Management Evolution: Traditional key management systems must evolve to handle

- Larger key sizes (quantum-safe keys are typically 10-100x larger)
- More complex key lifecycle management
- Hybrid key derivation during transition period
- Performance optimisation for larger cryptographic operations

#### **Network and Infrastructure Impact**

- Increased bandwidth requirements for larger key exchanges
- Additional computational overhead for quantum-safe operations
- Network latency considerations for real-time applications
- Load balancing optimisation for quantum-safe processing

# Phase 4: Vendor Evaluation and Partnership Strategy

Selecting the right quantum security partners is crucial for successful implementation.

# **Technical Capabilities Assessment**

| Criteria                     | Weight | OEM A Score | OEM B Score | OEM C Score |
|------------------------------|--------|-------------|-------------|-------------|
| Quantum Key Distribution     | 25%    | /10         | /10         | /10         |
| Post-Quantum<br>Cryptography | 20%    | /10         | /10         | /10         |
| Integration Capabilities     | 15%    | /10         | /10         | /10         |
| Performance & Scalability    | 15%    | /10         | /10         | /10         |
| Security Certifications      | 10%    | /10         | /10         | /10         |
| Local Support & Services     | 10%    | /10         | /10         | /10         |
| Total Cost of Ownership      | 5%     | /10         | /10         | /10         |

# **Critical Vendor Questions**

# **Technical Capabilities:**

- What specific quantum-safe algorithms do you implement?
- How do you handle hybrid classical/quantum-safe operations?
- What is your algorithm upgrade and migration strategy?
- How do you optimise performance for large-scale deployments?

# **Business Considerations:**

- Do you provide 24/7 support with local presence in India?
- What certifications and compliance standards do you meet?
- Can you provide customer references in our specific industry?
- What is your technology roadmap for emerging quantum developments?

# **Industry-Specific Implementation Strategies**

#### **Banking and Financial Services**

Financial institutions face unique regulatory and operational challenges in quantum readiness:

#### **Regulatory Compliance Requirements:**

- RBI cybersecurity framework alignment
- SEBI Mandates
- PCI DSS evolution for quantum-safe payment processing
- Basel III operational risk considerations
- Digital rupee security requirements

# Implementation Priorities:

- 1. Core Banking Systems: Immediate focus on transaction processing and account management
- 2. Payment Infrastructure: UPI, RTGS, and payment gateway quantum-hardening
- 3. Customer Interfaces: Mobile banking and internet banking portal security
- 4. Risk Management Systems: Trading platforms and risk calculation engines

# Information Technology and Software Companies

IT companies must secure both their own operations and their client-facing services:

#### **Client Trust Considerations:**

- Software supply chain security assurance
- Cloud service quantum-safe certification
- API security for client integrations
- Data sovereignty and residency compliance

# **Implementation Priorities:**

- 1. Development Infrastructure: Source code protection and CI/CD pipeline security
- 2. Cloud Platforms: Multi-tenant quantum-safe architecture
- 3. Client Data Protection: Enhanced encryption for managed services
- 4. Software Distribution: Quantum-safe software signing and updates

# Pharmaceutical and Healthcare

Healthcare organisations must balance innovation with patient privacy:

# **Regulatory Landscape:**

- FDA guidance on quantum-safe medical devices
- HIPAA evolution for quantum threat protection
- Clinical research data protection standards
- International collaboration security requirements

# Implementation Priorities:

- Patient Data Systems: Electronic health records and medical imaging
- 2. Research Protection: Clinical trial data and intellectual property
- 3. Supply Chain Security: Drug authentication and distribution tracking
- 4. IoT Device Management: Connected medical devices and monitoring systems

#### **Telecommunications**

Telecom providers serve as critical infrastructure requiring comprehensive quantum protection:

# **National Security Considerations:**

- Government and defence communication protection
- Critical infrastructure resilience requirements
- Cross-border communication security
- Emergency services and public safety systems

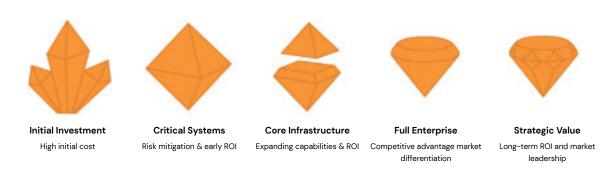
# Implementation Priorities on Infrastructure:

- 1. Network Core: Quantum-safe routing and switching infrastructure
- 2. Customer Data: Subscriber information and billing system protection
- 3. Service Delivery: 5G network slicing and edge computing security
- 4. IoT Ecosystem: Smart city and industrial IoT communication protection

# **ROI and Business Case Development**

# **Cost of Inaction Analysis**

The financial impact of quantum unpreparedness extends far beyond direct security breach costs:


# **Direct Financial Losses:**

- Data breach remediation and regulatory fines
- Business disruption and operational downtime
- Customer compensation and legal settlements
- Insurance premium increases and coverage limitations

# Strategic Business Impact:

- 1. Competitive disadvantage against quantum-ready competitors
- 2. Loss of customer trust and market share
- 3. Inability to participate in quantum-safe business ecosystems
- 4. Regulatory exclusion from certain markets or activities

# **Investment ROI Framework**



# Phase 1 Investment (Critical Systems - 6 months):

- Estimated Cost: ₹2-5 crores for large enterprises
- Expected ROI: 300-500% over 5 years through risk mitigation
- Break-even Point: 12-18 months

# Phase 2 Investment (Core Infrastructure - 12 months):

- Estimated Cost: ₹5-15 crores for large enterprises
- Expected ROI: 200-400% over 5 years
- Break-even Point: 18-24 months

# Phase 3 Investment (Full Enterprise - 24 months):

- Total Investment: ₹10-50 crores, depending on organisation size
- Expected ROI: 150-300% over 5 years
- Strategic Value: Competitive advantage and market differentiation

#### The Path Forward: From Awareness to Action

The quantum threat is not a distant possibility — it's an approaching reality that demands immediate executive attention and strategic action. Organisations that begin their <u>quantum readiness journey</u> today will emerge as leaders in the post-quantum era, while those who delay face existential risks to their business operations and competitive position.

Have further questions or would like to discuss? QNu Experts team are here to help you. Contact us here | Request a Workshop or Demo

# **Immediate Next Steps for CXOs**

#### This Week:

- Complete quantum threat assessment using the provided framework
- Calculate your organisation's quantum risk exposure
- Identify the top 3 critical systems requiring immediate protection
- Schedule a quantum readiness discussion with your leadership team

# Next 30 Days:

- Form a cross-functional quantum security task force
- Conduct comprehensive asset inventory and risk assessment
- Develop initial business case for quantum security investment
- Begin vendor evaluation and consultation process

# Next 90 Days:

- Implement pilot quantum security deployment
- Create enterprise-wide quantum readiness roadmap
- Secure budget and resource approval for full implementation
- Establish strategic partnerships with quantum security providers

# The Path Forward: From Awareness to Action



The quantum revolution is here. The question isn't whether your organisation will be affected — it's whether you'll be prepared. **The time for action is now,** and the roadmap for success is clear. The organisations that act decisively today will thrive in the quantum era, while those who hesitate will find themselves obsolete.

Start your quantum readiness journey today using future technology. Think Quantum. Think QNu. Your future depends on it.



# Tomorrow's Quantum Security, Today



Scan for more details

# **Registered Office:**

QuNu Labs Private Limited, Centenary Building, 2nd Floor, East Wing, #28 MG Road Bengaluru - 560025

CIN: U72900KA2016PTC096629

**India** 

**USA** 

**Australia** 

Global