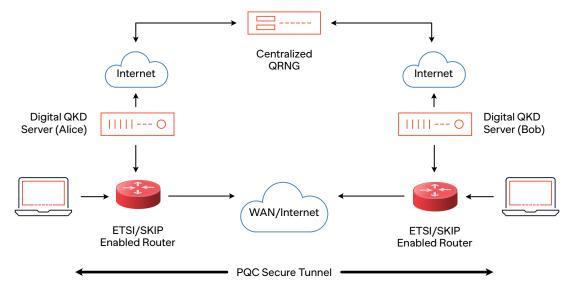
Digital Quantum Key Distribution (dQKD) for Quantum-safe Key Exchange

Accelerating the World's Transition towards a Quantum-Safe Future with Software-Defined Quantum-Safe Key Exchange

Introduction


As quantum computing advances, today's encryption methods will soon be rendered obsolete. Secure Key Exchange is the foundation for an secure network; however, it must evolve to resist quantum attacks tomorrow.

- The need for evolution in cybersecurity is immense.
- The cost of a breach is increasing exponentially.

Product Overview

- QNu Labs' Digital QKD (dQKD) is a software-defined, Quantum-Secure Key Distribution system that delivers the strength of quantum security without the need for quantum hardware or channels.
- Uses Quantum Random Number Generators (QRNGs), advanced entropy extractors, and post-quantum algorithm ML-KEM and QNu Labs Proprietary HODOS (PQC).
- Seamless integration into enterprise IT and Cloud Infrastructures.
- Scalable, compliant, and ready for deployment today.

Network Architecture

Digital QKD Network Architecture

Product Overview

- Hardware-free Quantum Security: Achieve quantum-grade protection without the cost or complexity of physical qkd systems. protects against shor's and grover's algorithms.com
- Future-Proof Architecture: Combines Quantum Random Number Generator (QRNG) with Post-Quantum
 Cryptography (PQC) to resist both classical and quantum attacks. Automated key rotation, expiry, and destruction.
- Cloud & On-Prem Ready: Cloud-first and fully compatible with AWS, Azure, and private networks.
- Global Scalability: Securely exchange keys across any distance (from metro to intercontinental links)
- Compliant & Interoperable: Built in alignment with ETSI GS QKD 014, SKIP, and TLS 1.3 standards.

Traditional QKD vs Digital QKD

Aspect	Traditional (Hardware-based) QKD	Digital QKD (QNu Labs)
Infrastructure	Uses <u>dedicated optical fibre links</u> to transmit quantum states directly between nodes.	Operates securely over <u>existing IP/TLS</u> networks , without requiring dedicated fibre.
Hardware	Involves <u>specialized quantum</u> <u>transmitters and receivers</u> (photon sources, detectors, etc.).	Implements QKD principles through software-defined cryptography, minimizing dependence on specialized hardware.
Distance	Typically effective up to 100–200 km in point-to-point links; can be extended using trusted nodes or quantum repeaters.	Provides <u>global</u> , <u>cloud-agnostic coverage</u> through networked and virtualized architectures.
Scalability	Expansion requires <u>additional optical</u> <u>infrastructure</u> , making scaling complex and costly.	<u>Linearly scalable</u> across multiple nodes using standard network protocols and hybrid PQC-QKD integration.
Integration	Often relies on <u>custom or vendor-specific</u> <u>interfaces</u> and formats.	Compliant with ETSI, SKIP, and PQC standards, enabling seamless interoperability with classical and post- quantum systems
Use Case Strength	Ideal for <u>ultra-secure point-to-point</u> <u>links</u> and <u>research-grade quantum</u> <u>networks.</u>	Best suited for <u>large-scale</u> , <u>cloud-</u> <u>integrated</u> , <u>and geographically</u> <u>distributed environments</u> .
Aspect	<u>Traditional (Hardware-based) QKD</u>	<u>Digital QKD (QNu Labs)</u>

Technical Specifications & Performance Benchmarks

Parameter	Value/Performance
Key Size	256 bits
Key Generation Time	~3 seconds per key
Key Throughput	~1200 keys/hour
Key Retrieval Latency	0.01 – 0.028 seconds
Entropy Source	Quantum Random Number Generator (QRNG)
Key Derivation Methods	HKDF-SHA512, ML-KEM, HODOS
Network Compatibility	IPv4, HTTPS, TLS 1.3
System Integration	Works with existing Key Management Systems (KMS)
Storage Method	In-memory hash tables
Key Generation Latency	~3 seconds
Key Retrieval Time	< 0.03 seconds
Throughput 1200 keys/hour (linear scalability)	1200 keys/hour (linear scalability)
Distance Support	Global coverage over public & cloud networks
Cloud Tested Platforms	AWS (Singapore), Azure (Global)

QNu Labs is revolutionizing cybersecurity with cutting-edge quantumsafe solutions, making India a leader in quantum cryptography. Through its patent-protected products - Armos and Tropos, QNu Labs is at the forefront to enable quantum secure key generation & distribution for secure data transmission.

With its innovative QShield platform, which is based on NIST complaint PQC algorithms, QNu offers quantum-secure services such as VPN, messaging, file sharing & key management (QHSM).

QNu Labs is at the forefront of quantum security, shaping the future of secure communications & protecting critical infrastructures like finance, defence, and telecom from future quantum threats.

Have a trusted advisor get in touch with you to explore how QHSM can protect your operations from quantum cyber threats.

Request a Demo

Scan for more details

Registered Office:

QuNu Labs Private Limited, Centenary Building, 2nd Floor, East Wing, #28 MG Road Bengaluru - 560025

CIN: U72900KA2016PTC096629