THREAT LEVEL: EXTREME | The global automobile industry faces a critical quantum cryptographic vulnerability with 400M+ connected vehicles operating on encryption breakable by quantum computers expected 2026-2031.

KEY FINDINGS:

Timeline Crisis

Vehicles produced in 2025 operate until 2035-2040, beyond quantum computer arrival (2026-2031)

Active Attacks

"Harvest Now, Decrypt Later" (HNDL) collecting vehicle telemetry, OTA updates, proprietary designs NOW

Global Mandates

EU requires quantum-safe infrastructure by 2030; US federal systems by 2027

- Financial Impact

\$130-193B industry cost for quantum transition; \$150-300B breach exposure

Fleet Vulnerability

300M+ vehicles globally at risk during 4-15 year quantum exposure window

GLOBAL REGULATORY MANDATES & TIMELINES

1.1 | EUROPEAN UNION

NIS2 Directive + Cyber Resilience Act

- Dec 2026

All Member States begin PQC transition; cryptographic inventory complete

- Dec 2027

New products must support crypto-agility (mandatory OTA quantum-safe updates)

-2030

Critical infrastructure (incl. V2X) fully quantum-safe

- 2035

Complete migration all feasible systems

- Penalties

Up to €10M or 2% global revenue for non-compliance

Automotive-Specific

EU General Safety Regulation II: Cybersecurity mandatory for type approval

- V2X Communications: Must be quantum-safe by 2030
- OTA Updates: Quantum-safe signatures required Dec 2027 (Source: https://digital-strategy.ec.europa.eu)

1.2 | UNITED STATES

Federal Mandates

NSM-10

All agencies mitigate quantum risk by 2035

- OMB M-23-02

Annual quantum-vulnerable system inventories through 2035

- Quantum Preparedness Act

Mandatory PQC migration for federal contractors (includes automotive suppliers)

- EO 14144 (Jan 2025)

TLS 1.3 quantum-safe by Jan 2, 2030; CISA/NSA product categories by Dec 1, 2025

NSA CNSA 2.0

New National Security Systems acquisitions PQC-compliant by Jan 1, 2027; full compliance 2033

NIST Standards (Aug 2024)

- FIPS 203

ML-KEM (CRYSTALS-Kyber) - Key encapsulation

- FIPS 204

ML-DSA (CRYSTALS-Dilithium) - Digital signatures

- FIPS 204

SLH-DSA (SPHINCS+) - Hash-based signatures

- EO 14144 (Jan 2025)

FN-DSA (FALCON) - Lattice signatures (pending)

1.3 | OTHER MAJOR MARKETS

China

Mandating quantum-safe connected vehicles 2026-2027; 2,000km quantum network operational

Japan

\$7.4B quantum investment; Toyota/Honda PQC integration targeting 2028

– UK

NCSC clear roadmap; critical automotive infrastructure PQC by 2030

- India

₹6,003.65 crore National Quantum Mission; indigenous development focus 2025-2030

(Source: https://www.safelogic.com/compliance/pqc-standards)

THREAT LANDSCAPE & ATTACK VECTORS

2.1 | CRYPTOGRAPHIC VULNERABILITIES

Protocol	Usage	Quantum Attack	Risk
RSA-2048	V2V comms, sessions	Shor's algorithm	CRITICAL
ECC	Chip PKI, certificates	Shor's algorithm	CRITICAL
AES-128/256	Data encryption	Grover's algorithm	HIGH
TLS/SSL	Internet connectivity	Both algorithms	CRITICAL
PKI	Certificate authority	Both algorithms	CRITICAL

Breakthrough

RSA-2048 breakable with only 372 physical qubits (Source: arXiv:2212.12372) - significantly accelerates threat timeline.

2.2 | CRITICAL ATTACK VECTORS

A. V2X Communication Compromise:

Scale

400M+ connected vehicles

Impact

Traffic manipulation, collision induction, mass disruption

- Safety

ISO 26262 functional safety compromised

B. OTA Update Hijacking:

Method

Quantum breaks update authentication

Impact

Malicious firmware injection at fleet scale

- Example

Tesla 4M+ annual OTA updates - all vulnerable

C. ECU Exploitation:

Targets

70-100 ECUs per vehicle (braking, steering, acceleration, ADAS)

Result

Life-threatening physical manipulation

- Regulation

UN R155/R156 insufficient for quantum threats

D. Autonomous Vehicle Al Theft:

Data

25 GB/hour autonomous vehicle generation

Value

\$1B+ investment per manufacturer

Impact

Instant competitive technology parity

E. Supply Chain Intelligence:

- Targets

Battery tech, powertrain, manufacturing processes

- Exposure

Tier 1-3 supplier networks vulnerable

2.3 | "HARVEST NOW, DECRYPT LATER" ACTIVE THREATS

Currently Being Collected

- ✓ Encrypted vehicle telemetry (location, driving behavior)
- ✓ OTA update packages (firmware, patches)
- ✓ Proprietary R&D communications
- ✓ Manufacturing process data
- ✓ Infotainment personal data

Future Impact (Post-Quantum 2026-2031)

- → 10-15 years historical data exposed
- → Complete vehicle design specifications revealed
- → Individual privacy catastrophically violated
- → Safety vulnerabilities systematically identified

Attribution

China PLA Cyberspace Force, Russia state actors, North Korea cybercrime, corporate espionage

(Source: https://vicone.com/blog/quantum-computing-in-the-automotive-industry-looming-risks-to-cybersecurity)

QUANTUM COMPUTING TIMELINE & CAPABILITIES

3.1 | CURRENT STATE (October 2025)

IBM
 Quantum System Two - 1,121 qubits

Google
 Willow chip computational advantage

lonQ64-qubit commercial systems

China
 Massive quantum research investment

3.2 | PROJECTED CRQC TIMELINE

Year	Capability	Automotive Impact
2026	500-1,000 qubits	Early V2X vulnerabilities
2027-2028	1,000-2,000 qubits	OTA update compromise possible
2029-2030	2,000-5,000 qubits	Fleet-wide exposure
2031+	5,000+ qubits	Complete security failure

MITIGATION STRATEGIES & ACTION PLAN

4.1 | IMMEDIATE (Q4 2025 - Q1 2026)

A. Cryptographic Inventory - Complete by Q1 2026:

- Map all encryption
 ECUs, protocols, supplier dependencies
- Use Cryptographic Bill of Materials (CBOM)

B. Risk Assessment (Mosca's Theorem):

Automotive (15yr lifecycle + 3yr migration) > 5yrs = SEVERE RISK

C. OTA Enhancement:

- Ensure crypto-agility for algorithm updates
- Test quantum-safe signature verification
- Mandatory
 EU Cyber Resilience Act Dec 2027

D. Supply Chain Audit:

- Establish contractual PQC requirements
- Create vendor scorecards
- RequiredEU NIS2 Directive

4.2 | SHORT-TERM (2026-2027)

A. Hybrid Cryptography:

- Deploy classical + quantum-resistant (FIPS 140-3 compliant)
- Performance impact
 10-30% latency increase

B. NIST PQC Integration:

- ML-KEM (FIPS 203)
 Key encapsulation
- ML-DSA (FIPS 204)
 Digital signatures, OTA
- SLH-DSA (FIPS 205)

SLH-DSA (FIPS 205)

Long-term certificates

C. V2X Updates:

- Migrate to quantum-safe standards (SAE, ETSI)
- UN R155/R156 updates expected 2026

D. HSM Upgrades:

- Deploy Quantum Random Number Generators (QRNG)
- ISO/SAE 21434 compliance

4.3 | MEDIUM-TERM (2027-2030)

A. Fleet-wide Rollout:

- OTA deployment
 100M+ vehicles per major OEM
- Dealership updates for non-connected vehicles

B. New Production Standards:

- All new models quantum-safe by default
- Type approval requirements updated

C. Supplier Ecosystem:

- Mandate quantum-safe components
- Industry-wide certification (AIAG, JASPAR, VDA)

D. Autonomous Protection:

- Quantum-safe Al training data
- Secure vehicle-to-cloud
- ISO 26262 + quantum integration

FINANCIAL ANALYSIS & ROI

5.1 | INVESTMENT REQUIREMENTS (Per Major OEM)

Category	Cost (5 Years)
R&D	\$500M - \$1B
Infrastructure	\$1B - \$2B
Fleet Updates	\$5B - \$10B
Supplier Programs	\$500M - \$1B
TOTAL PER OEM	\$7B - \$14B

5.2 | COST OF INACTION

Risk	Exposure
IP Theft	\$10B - \$50B per manufacturer
Safety Recalls	\$50B - \$150B
Litigation	\$5B - \$2OB
Brand Damage	Immeasurable
Market Share Loss	10-30% potential
TOTAL BREACH COST	\$65B - \$220B+

ROI CALCULATION

- Investment\$7B \$14B
- Breach Cost Avoided\$65B \$220B+

- Time to Identify287 days average
- Net Benefit\$51B \$206B+

INDUSTRY STATISTICS & THREAT INTELLIGENCE

6.1 | 2024 AUTOMOTIVE CYBERSECURITY DATA

Connected Vehicle Attacks
 280% increase over 2023

Average Breach Cost\$4.45M per incident

Time to Identify287 days average

(Source: IBM Cost of Data Breach Report 2024)

- Time to Contain80 days average
- OTA Compromises
 15+ documented attempts (2024)
- Supplier Attacks60% of automotive cyberattacks

6.2 | THREAT ACTOR CAPABILITIES

Nation-State:

China PLA

Targeting EV tech, autonomous driving; HNDL active since 2020+

Russia

Manufacturing intelligence, supply chain disruption

North Korea

Ransomware funding, cryptocurrency theft

Corporate Espionage:

R&D theft

Battery tech, autonomous systems, ADAS

Market strategy

Production plans, pricing, launches

Organized Crime:

- Preparation for quantum-enabled ransomware
- Connected vehicle IoT botnets
- Payment system vulnerabilities

CONCLUSION: STRATEGIC IMPERATIVES

FIVE CRITICAL ACTIONS:

ACT IMMEDIATELY

Window closing: quantum computers expected 2026-2031

COMPLY GLOBALLY

Meet EU 2030, US 2027 mandates proactively

PROTECT FLEETS

Ensure OTA quantum-safe capability ALL vehicles

SECURE SUPPLY CHAINS

Mandate PQC entire ecosystem

COLLABORATE INDUSTRY-WIDE

Coordinate via Auto-ISAC, standards bodies

CONSEQUENCES OF DELAY:

- Regulatory non-compliance → Market exclusion
- igotimes IP theft ightarrow Competitive disadvantage
- Safety liability → Massive recalls (\$150B+)
- Brand destruction → Consumer trust loss

BENEFITS OF ACTION NOW:

- Competitive differentiation & market leadership
- Regulatory compliance & market access
- IP protection & innovation preservation
- Customer trust & brand strengthening

THE QUANTUM THREAT IS NOT "IF" BUT "WHEN." ACT NOW.

KEY SOURCES

EU Digital Strategyhttps://digital-strategy.ec.europa.eu

SafeLogic PQC Standards

https://www.safelogic.com/compliance/pqc-standards

VicOne Automotive Security

https://vicone.com/blog/quantum-computing-in-the-automotive-industry

- NIST PQC Standards

https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards

US DIA Threat Assessment

https://armedservices.house.gov/uploadedfiles/2025_dia_statement_for_the_record.pdf

McKinsey Quantum Report

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights

Tomorrow's Quantum Security, Today.

Scan for more details

Registered Office:

QuNu Labs Private Limited, Centenary Building, 2nd Floor, East Wing, #28 MG Road Bengaluru - 560025

CIN: U72900KA2016PTC096629

India USA Australia Global