Quantum Key Distribution Network (QKDN)

Accelerating the world's transition to a connected, quantum-secure future through software-defined orchestration of QKD nodes and controllers.

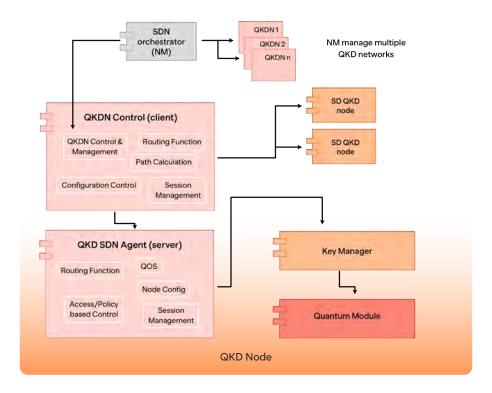
Traditional QKD systems were limited to point-to-point communication: typically, between two nodes known as Alice and Bob.

- Need for a scalable way: As networks grow and span across geographical locations, all enterprises must find a scalable way to extend QKD's power across multiple links, nodes, and applications.
- Need for better control: All QKD nodes, links and applications must be controlled centrally with better visibility.

Product Overview

QNu Labs' Quantum Key Distribution Network (QKDN) is a networked, software-defined architecture that connects multiple QKD systems. QKDN orchestrates quantum key distribution at a network scale using Software Defined Networking (SDN) principles.

- Offering a unified, secure and manageable infrastructure
- Quantum-secure communication networks of Terrestrial QKD, Free space QKD and Digital QKD.
- Scalable foundation for the future of quantum
- Fully compliant with international ETSI GS QKD 014, 015, 018, and IETF NETCONF/YANG standards


Key Benefits of QKDN

- End-to-End Orchestration: Manage the entire quantum key network from nodes to controllers through a central orchestrator.
- Scalable Quantum Security: Supports hundreds of QKD nodes and controllers, connecting multiple cities or data centres.
- Flexible: It is compatible with all three formats of QKD systems: physical, digital, and hybrid.
- Automated & Built-in Fault Handling: Self-evolving, re-routing, and diagnostic intelligence.
- Cost-effective: Compared to the current point-to-point systems, QKDN has better cost-effectiveness.

How QKDN Works?

- Quantum Key Distribution Network extends QKD from a single link to a full network by interconnecting multiple
 QKD nodes through a Software Defined Network (SDN).
- A Network Manager (NM) centrally orchestrates the system and it interacts with QKD Network Controllers (QKDNCs) managing each domain of nodes.
- Each layer is built on standard interfaces and protocols (NETCONF, YANG models). It will ensure vendor independence.

Architecture Overview

Component	Function	Standards Interface
Network Manager / SDN Orchestrator	Orchestrates the entire QKD network	ETSI GS QKD 018 (Southbound: NETCONF/ YANG)
QKD Network Controller (QKDNC)	Controls QKD nodes and manages sessions	ETSI GS QKD 015
Key Management Module	Key session creation and delivery	ETSI GS QKD 014, SKIP
QKD Nodes (Physical / Digital / Hybrid)	Quantum key generation	

Key Features of QKDN

Feature	Description
User & Access Management	User registration, role-based access, and MFA authentication
Inventory Management	Manages Digital, Free-Space, and Hybrid QKD, and QRNG devices
Network Configuration	End-to-end orchestration, including node creation, topology setup, and path configuration
Monitoring & Reporting	Tracks alarms, QBER, temperature, SKR via WebSocket, RabbitMQ, NETCONF
Automated Reports	Schedule and email detailed QKD node reports for audit and analysis
Key Management	Dynamic session control and key distribution via ETSI GS QKD 014
Fault & Incident Handling	Multi-level fault recovery, path re-routing, and BITE/POST diagnostics
Security Management	PQC-secured links, TLS 1.3, data encryption at rest and in transit
QoS Policies	Application-based bandwidth and TTL management
Visualisation	Network maps and topology rendering

Architecture Intelligence

Functionality	Description
Path Management	Intelligent cost-based routing
QoS Control	Application-level quality of service management
Routing Protocols	OSPF-based routing and optimisation
Diagnostics	Real-time data analysis and performance metrics

Audit & Logs	Syslog, audit trails, and compliance reporting	

Technical Specifications

Parameter	Specification
Network Scale	Hundreds of QKD nodes
QKD Controllers	Up to 100 controllers
High Availability	Active-Standby and horizontal load balancing
Supported QKD Types	Physical, Digital, and Free space QKD
Controller Hardware	Intel Xeon (8 cores, 32 GB RAM)
Orchestrator Hardware	Intel Xeon (32 cores, 64 GB RAM)
Network Interface	1 Gbps between controllers and nodes, 10 Gbps between the controller and the orchestrator
Applications per Node	25+ applications per node, 1000+ key paths per network

Standards & Compliance

Standard	Description
ETSI GS QKD 014	Key delivery API
ETSI GS QKD 015	Control interface for SDN
ETSI GS QKD 018	Orchestration interface for SDN
IETF RFC 6020 / 7950 / 6241	NETCONF and YANG data modelling standards

$Q \rightarrow NU$

QNu Labs is revolutionizing cybersecurity with cutting-edge quantumsafe solutions, making India a leader in quantum cryptography. Through its patent-protected products - Armos and Tropos, QNu Labs is at the forefront to enable quantum secure key generation & distribution for secure data transmission.

With its innovative QShield platform, which is based on NIST complaint PQC algorithms, QNu offers quantum-secure services such as VPN, messaging, file sharing & key management (QHSM).

QNu Labs is at the forefront of quantum security, shaping the future of secure communications & protecting critical infrastructures like finance, defence, and telecom from future quantum threats.

Have a trusted advisor get in touch with you to explore how QHSM can protect your operations from quantum cyber threats.

Request a Demo

Scan for more details

Registered Office:

QuNu Labs Private Limited, Centenary Building, 2nd Floor, East Wing, #28 MG Road Bengaluru - 560025

CIN: U72900KA2016PTC096629