

THREAT LEVEL

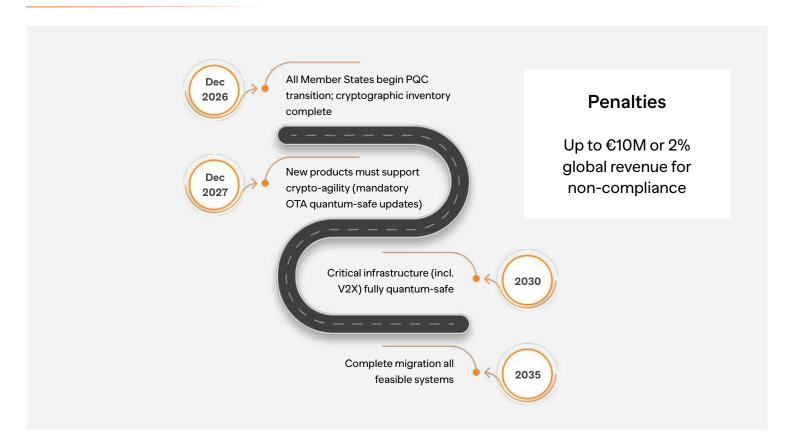
EXTREME

The global automobile industry faces a critical quantum cryptographic vulnerability with 400M+ connected vehicles operating on encryption breakable by quantum computers expected 2026-2031.

KEY FINDINGS:

- Timeline Crisis

 Vehicles produced in 2025 operate until 2035-2040, beyond quantum computer arrival (2026-2031)
- Active Attacks
 "Harvest Now, Decrypt Later" (HNDL) collecting vehicle telemetry, OTA updates, proprietary designs NOW
- Global Mandates
 EU requires quantum-safe infrastructure by 2030; US federal systems by 2027
- Financial Impact
 \$130-193B industry cost for quantum transition; \$150-300B breach exposure
- Fleet Vulnerability
 300M+ vehicles globally at risk during 4-15 year quantum exposure window


GLOBAL REGULATORY MANDATES & TIMELINES

1.1 | EUROPEAN UNION

- NIS2 Directive + Cyber Resilience Act
- Automotive-Specific

NIS2 Directive + Cyber Resilience Act:

Automotive-Specific:

V2X Communications Must be quantum-safe by 2030

OTA
Updates

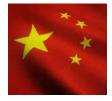
Quantum-safe signatures
required Dec 2027

(Source: https://digital-strategy.ec.europa.eu)

1.2 | UNITED STATES

- Federal Mandates
- NIST Standards (Aug 2024)

Federal Mandates:


- NSM-10
 All agencies mitigate quantum risk by 2035
- OMB M-23-02
 Annual quantum-vulnerable system inventories through 2035
- Quantum Preparedness Act
 Mandatory PQC migration for federal contractors (includes automotive suppliers)
- EO 14144 (Jan 2025)
 TLS 1.3 quantum-safe by Jan 2, 2030; CISA/NSA product categories by Dec 1, 2025
- NSA CNSA 2.0
 New National Security Systems acquisitions PQC-compliant by Jan 1, 2027; full compliance 2033

NIST Standards (Aug 2024):

FIPS 203 ML-KEM (CRYSTALS-	FIPS 204 ML-DSA (CRYSTALS-	FIPS 205 SLH-DSA	FIPS 206 FN-DSA
Kyber)	Dilithium)	(SPHINCS+)	(FALCON)
Key encapsulation	Digital signatures	Hash-based signatures	Lattice signatures (pending)

1.3 | OTHER MAJOR MARKETS

CHINA

Mandating quantum-safe connected vehicles 2026-2027; 2,000km quantum network operational

UK

NCSC clear roadmap; critical automotive infrastructure PQC by 2030

JAPAN

\$7.4B quantum investment; Toyota/Honda PQC integration targeting 2028

INDIA

₹6,003.65 crore National Quantum Mission; indigenous development focus 2025-2030

(Source: https://www.safelogic.com/compliance/pqc-standards)

THREAT LANDSCAPE & ATTACK VECTORS

2.1 | CRYPTOGRAPHIC VULNERABILITIES

Protocol	Usage	Quantum Attack	Risk
RSA-2048	V2V comms, sessions	Shor's algorithm	CRITICAL
ECC	Chip PKI, certificates	Shor's algorithm	CRITICAL
AES-128/256	Data encryption	Grover's algorithm	HIGH
TLS/SSL	Internet connectivity	Both algorithms	CRITICAL
PKI	Certificate authority	Both algorithms	CRITICAL

Breakthrough

RSA-2048 breakable with only 372 physical qubits (Source: arXiv:2212.12372) - significantly accelerates threat timeline.

2.2 | CRITICAL ATTACK VECTORS

A | V2X Communication Compromise

Scale400M+ connected vehicles

 Impact
 Traffic manipulation, collision induction, mass disruption

Safety
 ISO 26262 functional safety compromised

C | ECU Exploitation

Targets

70-100 ECUs per vehicle (braking, steering, acceleration, ADAS)

- Result
 Life-threatening physical manipulation
- RegulationUN R155/R156 insufficient for quantum threats

E | Supply Chain Intelligence

- TargetsBattery tech, powertrain, manufacturing processes
- Exposure
 Tier 1-3 supplier networks vulnerable

2.3 | "HARVEST NOW, DECRYPT LATER" ACTIVE THREATS

Currently Being Collected:

- Encrypted vehicle telemetry (location, driving behavior)
- OTA update packages (firmware, patches)
- Proprietary R&D communications

B | OTA Update Hijacking

- Method
 Quantum breaks update authentication
- Impact
 Malicious firmware injection at fleet scale

Example

Tesla 4M+ annual OTA updates - all vulnerable

D | Autonomous Vehicle Al Theft

- Data25 GB/hour autonomous vehicle generation
- Value\$1B+ investment per manufacturer
- ImpactInstant competitive technology parity

Manufacturing process data

/ Infotainment personal data

Future Impact (Post-Quantum 2026-2031):

/

10-15 years historical data exposed

Individual privacy catastrophically violated

Complete vehicle design specifications revealed

Safety vulnerabilities systematically identified

Attribution

China PLA Cyberspace Force, Russia state actors, North Korea cybercrime, corporate espionage

 $(Source: \underline{https://vicone.com/blog/quantum-computing-in-the-automotive-industry-looming-risks-to-cybersecurity)) \\$

QUANTUM COMPUTING TIMELINE & CAPABILITIES

3.1 | CURRENT STATE (October 2025)

IBM

Quantum System Two - 1,121 qubits Google

Willow chip computational advantage

IonQ

64-qubit commercial systems

China

Massive quantum research investment

3.2 | PROJECTED CRQC TIMELINE

Year	Capability	Automotive Impact
2026	500-1,000 qubits	Early V2X vulnerabilities
2027-2028	1,000-2,000 qubits	OTA update compromise possible
2029-2030	2,000-5,000 qubits	Fleet-wide exposure
2031+	5,000+ qubits	Complete security failure

MITIGATION STRATEGIES & ACTION PLAN

4.1 | IMMEDIATE (Q4 2025 - Q1 2026)

A | Cryptographic Inventory - Complete by Q1 2026:

Map all encryption

ECUs, protocols, supplier dependencies

Use Cryptographic Bill of Materials (CBOM)

C | OTA Enhancement:

- Ensure crypto-agility for algorithm updates
- Test quantum-safe signature verification
- Mandatory

EU Cyber Resilience Act Dec 2027

4.2 | SHORT-TERM (2026-2027)

A | Hybrid Cryptography:

- Deploy classical + quantum-resistant (FIPS 140-3 compliant)
- Performance impact

10-30% latency increase

B | NIST PQC Integration:

ML-KEM (FIPS 203)

Key encapsulation

ML-DSA (FIPS 204)

Digital signatures, OTA

B | Risk Assessment (Mosca's Theorem):

Automotive

(15yr lifecycle + 3yr migration) > 5yrs = **SEVERE RISK**

D | Supply Chain Audit:

- Establish contractual PQC requirements
- Create vendor scorecards
- Required

EU NIS2 Directive

SLH-DSA (FIPS 205)

Long-term certificates

C | V2X Updates:

- Ensure crypto-agility for algorithm updates
- Test quantum-safe signature verification

4.3 | MEDIUM-TERM (2027-2030)

A | Fleet-wide Rollout:

OTA deployment

100M+ vehicles per major OEM

Dealership updates for non-connected vehicles

C | Supplier Ecosystem:

- Mandate quantum-safe components
- Industry-wide certification (AIAG, JASPAR, VDA)

D | HSM Upgrades:

- Deploy Quantum Random Number Generators (QRNG)
- ISO/SAE 21434 compliance

B | New Production Standards:

- All new models quantum-safe by default
- Type approval requirements updated

D | Autonomous Protection:

- Quantum-safe Al training data
- Secure vehicle-to-cloud

ISO 26262 + quantum integration

FINANCIAL ANALYSIS & ROI

5.1 | INVESTMENT REQUIREMENTS (Per Major OEM)

Category	Cost (5 Years)	
R&D	\$500M - \$1B	
Infrastructure	\$1B - \$2B	
Fleet Updates	\$5B - \$10B	
Supplier Programs	\$500M - \$1B	
TOTAL PER OEM	\$7B - \$14B	

5.2 | COST OF INACTION

Risk	Exposure
IP Theft	\$10B - \$50B per manufacturer
Safety Recalls	\$50B - \$150B
Litigation	\$5B - \$2OB
Brand Damage	Immeasurable
Market Share Loss	10-30% potential
TOTAL BREACH COST	\$65B - \$220B+

ROI CALCULATION

Investment \$7B - \$14B

Breach Cost Avoided \$65B - \$220B+

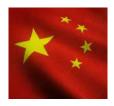
Net Benefit \$51B - \$206B+

450% - 1,500%

INDUSTRY STATISTICS & THREAT INTELLIGENCE

6.1 | 2024 AUTOMOTIVE CYBERSECURITY DATA

- Connected Vehicle Attacks
 280% increase over 2023
- Average Breach Cost\$4.45M per incident
- Time to Identify287 days average


- Time to Contain80 days average
- OTA Compromises15+ documented attempts (2024)
- Supplier Attacks60% of automotive cyberattacks

(Source: IBM Cost of Data Breach Report 2024)

6.2 | THREAT ACTOR CAPABILITIES

Nation-State:

China PLA
Targeting EV tech,
autonomous driving; HNDL
active since 2020+

Russia

Manufacturing intelligence,
supply chain disruption

North Korea
Ransomware funding,
cryptocurrency theft

Corporate Espionage:

R&D theft

Battery tech, autonomous systems, ADAS

Organized Crime:

- Preparation for quantum-enabled ransomware
- Connected vehicle IoT botnets
- Payment system vulnerabilities

Market strategy

Production plans, pricing, launches

CONCLUSION: STRATEGIC IMPERATIVES

FIVE CRITICAL ACTIONS:

01	ACT IMMEDIATELY Window closing: quantum computers expected 2026-2031
02	COMPLY GLOBALLY Meet EU 2030, US 2027 mandates proactively
03	PROTECT FLEETS Ensure OTA quantum-safe capability ALL vehicles
04	SECURE SUPPLY CHAINS Mandate PQC entire ecosystem
05	COLLABORATE INDUSTRY-WIDE Coordinate via Auto-ISAC, standards bodies

CONSEQUENCES OF DELAY

Regulatory non-compliance → Market exclusion

IP theft → Competitive disadvantage

Safety liability \rightarrow Massive recalls (\$150B+)

Brand destruction → Consumer trust loss

BENEFITS OF ACTION NOW

Competitive differentiation & market leadership

Regulatory compliance & market access

IP protection & innovation preservation

Customer trust & brand strengthening

THE QUANTUM THREAT IS NOT "IF" BUT "WHEN."

ACT NOW.

KEY SOURCES

EU Digital Strategy
 https://digital-strategy.ec.europa.eu

SafeLogic PQC Standards

https://www.safelogic.com/compliance/pqc-standards

VicOne Automotive Security

https://vicone.com/blog/quantum-computing-in-the-automotive-industry

- NIST PQC Standards

https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards

US DIA Threat Assessment

https://armedservices.house.gov/uploadedfiles/2025_dia_statement_for_the_record.pdf

McKinsey Quantum Report

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights

Whitepaper →

Tomorrow's Quantum Security, Today.

Scan for more details

Registered Office:

QuNu Labs Private Limited, Centenary Building, 2nd Floor, East Wing, #28 MG Road Bengaluru - 560025

CIN: U72900KA2016PTC096629

India USA Australia Global